Frame Analysis Program

STERA 3D

Dr. Taiki SAITO

tsaito@kenken.go.jp
Chief Research Engineer,
IISEE,
Building Research Institute,
Tsukuba, Japan

\underline{ST} ructural \underline{E} arthquake \underline{R} esponse \underline{A} nalysis $\underline{3D}$

About "STERA 3D"

- Seismic analysis of reinforced concrete buildings
 - 3D elastic modal analysis,
 - 3D nonlinear static push-over and cyclic analysis,
 - 3D nonlinear earthquake response analysis.
- Visual interface
 - STERA_3D has a visual interface to create building models and show the results easily and rapidly.
- Free software for research purpose
 - STERA_3D is distributed for free for the use of research and educational purpose.
- Free download from

http://iisee.kenken.go.jp/net/saito/stera3d/index.html

Element Models

- Beam
- Column
- Wall
- External Springs
- Base Isolation
- Nonstructural Wall Masonry

Beam

 $\begin{vmatrix} \theta'_{yA} \\ \theta'_{yB} \\ S' \end{vmatrix} = \begin{vmatrix} \tau'_{yA} \\ \tau'_{yB} \\ S' \end{vmatrix} + \begin{vmatrix} \phi_{yA} \\ \phi_{yB} \\ O \end{vmatrix} + \begin{vmatrix} \eta_{yA} \\ \eta_{yB} \\ O \end{vmatrix}$

Elastic element

Nonlinear bending springs

$$M'_{yA}$$

$$\begin{array}{c} \eta_{yA} \\ A \end{array}$$

$$\eta_{yB} B M'_{yB}$$

Nonlinear shear springs

Beam

Nonlinear bending spring

Nonlinear shear spring

Modified Takeda Model

Origin Oriented Model

Column

Column

Nonlinear Bending Springs

Wall

Wall

Nonlinear Bending Springs

External Spring

Base Isolator

Multi shear spring (MSS) Model

Nonstructural Wall

Nonlinear Shear Spring

Resistance envelope for plain masonry walls

Maximum shear resistance

•M. Tomazevic, Earthquake-Resistant Design of Masonry Buildings, Imperial College Press, 1999.

Resistance envelope for plain masonry walls

Effective elastic stiffness

$$k_0 = \frac{GA_w}{1.2h\left[1 + \alpha' \frac{G}{E} \left(\frac{h}{l}\right)^2\right]}$$

h: the height of the wall

! : the width of the wall

 A_{w} : the area of horizontal cross-section of the wall

G: shear modulus of masonry

E : modulus of elasticity of masonry

 α' :=0.83 for a fixed-ended, =3.33 for a cantilever wall

Resistance envelope for plain masonry walls

Resistance envelope for plain masonry walls*

•M. Tomazevic, Earthquake-Resistant Design of Masonry Buildings, Imperial College Press, 1999.

Example of calculation

Study Plan using "STERA 3D"

- Mathematical model of resistance envelope of masonry walls
 - plain, confined, reinforced masonry walls
 - masonry wall with openings
 - out-of-plane behavior
- Comparison with experiments
 - static test
 - shaking table test
- Analysis of typical masonry buildings