3 各種空調システムの潜熱処理メカニズムの解明と機器モデルの構築

3.1 調査の目的

潜熱処理機能を有する空調設備システムの性能評価方法を整備する上で、空調設備システムの実運 転状態における性能を予測する手段が必要となる。一方、潜熱処理を有する空調設備システムには冷 却除湿、吸着除湿などの種々の原理が存在する。

そこで、潜熱処理を有する空調設備システムの性能予測計算方法をその動作原理毎に整備すること を目的として、市場に存在する空調設備システムの類型化を行った。本報告では黄色部分の評価を主 に行った。

14.07	(BE +0)	方式		能力制御方注			+0.40		性能データ						
性現	原理	大分類	小分類	愤奋	大分類	小分類	规怡	汎用性	(潜熱能力)						
					蒸発温度	ファン風量固定 ファン風量自動	JISC9612(ルームエアコンディショナ) JISB8616(パッケージエアコンディショナ)								
				空調機		ファン風量固定	JISB8615-1(エアコンディショナー第一部: 声吹き形エアコンディショナル第一部:								
	冷却	***	-		311(年田通報)	ファン風量自動	一定格性能及び運転性能試験法)								
	1-2-1	烝灵上稲式		外調機	吹出温度制御 吸込温度制御	-		Ø	Δ						
				除湿機	苏発温度		JISC9617(陰湿機)	-							
			再熱	空調機	再熱ON.OFF	蒸発温度	JEMA基準								
			177 M	1 57 40	吹出温度制御	-	_								
险视			+ 展透過式	外調機	吸込温度制御	-	_								
1011/102			_	除湿機	ヒーター温度、風量	-	—								
			-	全熱交	-	-	JIS8628								
	吸着	ローター式	+蒸気圧縮	外調機	蒸発温度	-	-		0						
	1-2-2		ハイブリッド式	除湿機	蒸気圧縮:蒸発温度、吸着:ヒーター温度	-	_	∆~0	U						
		1		外調機	_	-	_								
		ハッナ式	直接冷却吸着	外調機	冷媒循環量	-	_	1							
	膜透過式	蒸気圧差(室内-室外間)		全熱交	_	- 1	JIS8628	<u> </u>	<u> </u>						
	1-2-3	+圧縮(真)	空)	プロセス用	_	-	_	0	0						
		圧縮(1-2-4)			_		—	×	×						
	吸収	スプレー式		外調機	液温度	-	—	X	×						
	1-2-5	膜透過		外調機	液温度	-	_	^	^						
		液下浸透	_	加湿器	水ON,OFF	ファン風量	JEMA1426(加湿器)								
			+ 恭気 圧線	空調機	水ON,OFF	凝縮温度	_								
			- AN AN END	外調機	水ON,OFF	凝縮温度	-								
		XIDA	+膜透過式	全熱交	水ON,OFF	- 1	-								
	気化式		+蒸気圧縮+膜透過式	外調機	水ON,OFF	凝縮温度	_	0	0						
	1-2-6			加湿器	水ON,OFF	ファン風量	JEMA1426(加湿器)	, v	Ŭ						
			+ 苏気 圧 線		水ON,OFF	凝縮温度	_								
		透過膜式	· 346 XUL #B	外調機	水ON,OFF	凝縮温度	-								
									+膜透過式	全熱交	水ON.OFF	-	-		
			+蒸気圧縮+膜透過式	外調機	水ON,OFF	凝縮温度	_								
加湿	水暗雲	超音波	_	加湿器	振動子ON,OFF		JEMA1426(加湿器)								
	1-2-7	スプレー式(一流体、二流体)	-	空調機 外調機	ポンプ ON, OFF	-	-	Δ	Δ						
	蒸発式	電力利用型	-	加湿器	ヒータON,OFF	- 1	JEMA1426(加湿器)		0						
	1-2-8	蒸気スプレー(一次、二次)	_	加湿器	弁ON.OFF	_	JEMA1426(加湿器)		0						
	膜透過式	全熱交	-	全熱交	-	-	-	0	0						
1	1-2-9	吸収		外調機	液温度	-	—								
1	おざ	D-2	室内空気吸着	外調機	ヒーター温度	-	—]							
	¥2式 胎差	ц—у—д	室外空気吸着	外調機	ヒーター温度		_		0						
	加油	パッチデ	_	外調機	ヒーター温度	- 1	_		0						
1	1-2-10		直接加熱脱着	外調機	冷媒循環量	-	_								

表 5 分類表

表に示すように、除湿では、

- 蒸気圧縮式
- 吸着式

- 膜透過式(全熱交換器)

の採用が多く、加湿では、

• 気化式

・ 膜透過式 (全熱交換器)

の採用が多い。

また、蒸気圧縮式では冷房システムとして利用された際も成行きで湿度処理を行う。温度制御方式 としては、冷媒温度を可変にする方式と固定にする方式の大きく二つに分類される。また、蒸気圧縮 式空調機において住宅用の製品は除湿機能を併設したものが多く存在するためその評価も併せて実 施する。

業務用空調においては、換気装置として全熱交換器、更に近年潜熱・顕熱分離空調を行うことを目 的とした乾式除湿器の採用が進んでいる。また、加湿器としてはエネルギー消費効率の面から乾式除 湿器の採用が主流である。以下に、原理、規格について報告する。 3.1.1 冷房除湿を行う空調設備システム

3.1.1.1 冷却除湿

(1) 動作原理

冷却除湿運転の原理を図 22 に示す。

空気が、熱交換器を流通時に冷却流体と熱交換することによって冷却され、(①→②) 露点温度以下 まで冷却されることによって除湿を行う。

出口空気の温度は

- ・ 冷却流体が流通する伝熱管と冷却流体間の熱伝達
- ・ 伝熱フィンのフィン効率
- ・ 空気と伝熱フィン間の熱伝達率
- 空気中の熱伝導

の影響で冷却流体温度よりも高い温度となる。クロスフィン型熱交換器の構造を図 23 に、模式図を 図 24 に示す。

図 24 熱交換器模式図

この時、空気中の熱伝導速度と比較して空気中への水分の物質拡散速度の方が早いため一般的には 出口空気は飽和蒸気圧よりも若干低い水蒸気分圧となる。

(2) 冷却除湿を行う空調設備システム

冷却除湿は、一般的な空調設備システムの冷房運転と同時に発生する。一般的な空調設備システムの模式図を図 25 に示す。

空調機の冷房能力(顕熱能力)制御の方法として、

- ・ 冷却流体の温度(冷媒の蒸発温度)を変化させる方式
- ・ 冷却流体の温度(冷媒の蒸発温度)を固定にして冷媒循環量(冷媒出口過熱温度: Super Heat(SH))やファン風量を変化させる方式

の二種類が存在する。

図 26 空調能力制御変化時の空気線図

左図に、冷媒蒸発温度を固定した際の空気線図上の動きを示す。図に示すように、顕熱処理時に同 時に潜熱も処理するため除湿量が確保される。従って、室内温湿度が一定の場合には顕熱能力比(顕 熱能力/全熱能力)はほぼ一定となる。

右図に、熱能力が小さい際に冷媒蒸発温度を高くして運転を行った際の空気線図を示す。図に示す ように、蒸発温度を変化させることによって顕熱能力比 (SHF) が変化し、蒸発温度を高くした際 (顕 熱能力が小さい場合)には潜熱能力が著しく低減する。

一般的には、居住向け建築物に冷房能力を蒸発温度で可変制御する方式、非居住向け建築物に蒸発 温度を固定にして冷房能力をファン風量もしくは冷媒循環量で制御をする方式が採用されている。一 方、近年エネルギー消費量削減を目的として非居住向け建築物においても蒸発温度を可変制御する方 式を採用し、潜熱は別設置の空調設備システムで処理を行う潜熱・顕熱分離空調システムが採用され はじめている。

再熱除湿

図 27 除湿運転時の空気調和設備模式図および空気線図

冷却除湿の原理を用いた、除湿運転モードを有する空調設備システムが存在する。除湿運転モード を有する代表的な空調設備システムの模式図および空気線図を図 27 に示す。

左図に一般的に弱冷房除湿と呼ばれる除湿運転方式、右図に一般的に再熱除湿と呼ばれる除湿運転 方式を示す。弱冷房除湿は、通常の冷房運転時と比較して冷媒の蒸発温度を低く設定し、熱交換器を 流通する空気の風量を低減して運転する方式である。空気線図に示すように通常の冷房運転時と比較 して小さい顕熱比で運転することによって除湿量を確保する。一方、潜熱を処理する際に併せて顕熱 も処理してしまうため除湿運転のみを実施することは不可能である。一般的に弱冷房除湿運転を実施 する際にはドラフトを低減するために、ファン風量を低減するか、熱交換器の過熱度を大きく取るこ とによって能力が出ない状態にし、ガス冷媒が流通している熱交換器の部分をバイパスした空気を混 入することによって吹き出し空気の温度を室温に近づけて運転を実施する。

一方、再熱除湿運転は図 27 の右図に示すように室内機の熱交換器の一部を凝縮器として運転する ことによって、加熱した空気と冷却した空気を混入した後に室内に吹出し、室内空気を冷却すること なく除湿運転を実現する。但し、再熱除湿運転は一度冷却した空気を再度暖めて室内に吹出す運転を 実施するために効率が通常の冷房運転と比較して低くなるという課題点が存在する。

(3) 冷却除湿を行う空調設備システムの規格で定められた性能評価点、カタログ、技術資料性能評価

点

冷却除湿を行う空調設備システムの性能に関連する規格、メーカー各社の技術資料記載データ、カ タログ記載データを表 6 に示す。

番号	名称	適用範囲
		定格能力 10kW 以下のルームエアコン
		・圧縮式冷凍機,送風機などを一つのキャビネットに内蔵した一体形
HCC0619	ルーム	 ・一台の室外機に一台の室内機を接続した分離形
J15C9612	エアコンディショナー	定格能力 28kW 以下のルームエアコン
		 ・一台の室外機に二台以上の室内機を接続した分離形
		マルチ形ルームエアコンディショナー
	パッケージ	業務用の建物に用いられるよう設計・製作された
JISB8616	ハックーン	エアコンディショナーであって、空冷式のもの及び
	エノコンワイショノー	水冷式冷房専用のもののうち、定格冷房能力が 28kW 以下のもの
	エアコンディショナー	・直吹き形空冷式エアコンディショナー,及び
	第1部:	直吹き形空気対空気ヒートポンプ
	直吹き形	・定格能力 8kW 未満かつ機外静圧が 25Pa 未満で運転するように
JISB8615-1	エアコンディショナー及び	設計した、ダクト形エアコンディショナー
	ヒートポンプ -定格性能	及びダクト形ヒートポンプ
	及び運転性能試験法	・全ての室内機を常に同時運転するマルチエアコン
		室内の湿度を低下させることを目的とし、圧縮式冷凍機,送風機
USC0617	雪与除温继	などを一つのキャビネットに内蔵したもので、除湿能力を
31509617	电风标业成	発揮するのに必要な電力の合計が 500W 以下の電気除湿機
		(熱交換器で冷却,除湿した空気を再加熱する方式のもの)

表 6 冷却除湿を行う空調設備システムの規格一覧

		室内側吸i	入空気温度	室外側吸込空気温度		
		乾球温度	湿球温度	乾球温度	湿球温度	
中友	標準気候	27°C	19°C	$35^{\circ}\!\mathrm{C}$	$24^{\circ}\!\mathrm{C}$	
上 俗 冬 供	低温気候	$21^{\circ}\mathrm{C}$	15° C	$27^{\circ}\!\mathrm{C}$	19°C	
禾件	高温気候	29°C	19°C	$46^{\circ}\mathrm{C}$	$24^{\circ}\mathrm{C}$	
低温条件		27°C	19°C	29°C	19°C	

表 7 JIS C 9612 試験条件

・表示項目

定格冷房能力[kW]: 全熱能力(製造業者が指定する定格冷房能力の97%以上) 定格冷房消費電力[kW](製造業者が指定する定格冷房消費電力の103%以下) 通年エネルギー消費効率

(II) JIS B 8616

		室内側吸i	入空気温度	室外側吸込空気温度			
		乾球温度	湿球温度	乾球温度	湿球温度		
☆妆	標準気候	$27^{\circ}\!\mathrm{C}$	19°C	$35^{\circ}\mathrm{C}$	24°C		
上 俗 冬研	低温気候	$21^\circ\!\mathrm{C}$	15° C	27° C	19°C		
未任	高温気候	$29^{\circ}\!\mathrm{C}$	19°C	46°C	$24^{\circ}\mathrm{C}$		
低温条件		$27^{\circ}\!\mathrm{C}$	19°C	29°C	19°C		

表 8 JIS B 8616 試験条件

·本体表示事項

定格冷房能力[kW]: 全熱能力(製造業者が指定する定格冷房能力の95%以上) 定格冷房消費電力[kW](製造業者が指定する定格冷房消費電力の105%以下) ・技術資料公表事項(技術資料などに適切に表示)

定格冷房時の顕熱比(SHF) 冷房エネルギー消費効率 中間冷房能力[kW](定格冷房能力の 50%±5%) 中間冷房消費電力[kW] 中間冷房エネルギー消費効率 冷房期間エネルギー消費効率

試験条例	牛	乾球温度	湿球温度				
標準(深	宦格)	$27^{\circ}\!\mathrm{C}$	$21.2^{\circ}\!\mathrm{C}$				
過負荷		$32^{\circ}\!\mathrm{C}$	$23^{\circ}\!\mathrm{C}$				
作泪	А	18°C	13.5° C				
化值	В	$5.0^{\circ}\mathrm{C}$	$2.1^\circ\!\mathrm{C}$				

表 9 JIS C 9617 試験条件

定格除湿能力[L/日](製造業者が指定する定格除湿能力の95%以上) 定格消費電力[W](製造業者が指定する定格消費電力の110%以下)

(IV) 住宅向け商品カタログデータ

教 10 Eも同い同曲のグログノーグ							
	室内側吸	込空気温度	室外側吸込空気温度		老子百日		
	乾球温度	相対湿度	乾球温度	相対湿度	衣小項日		
百執险湿					消費電力[W]		
(IBA 险混冬供)	$24^{\circ}\mathrm{C}$	60%	$24^{\circ}\!\mathrm{C}$	80%	除湿量[L/h]		
(504 际征未干)					吹出し温度[℃]		
再熱除湿	97°C	C0 ^{0/}	97°C	20 0/	除湿量[L/h]		
(P 社条件)	270	00 /0	210	80 /0	吹出し温度[℃]		
		600/	00°C	_	除湿量[cc/h]		
弱冷除湿	20°℃				吹出し温度[℃]		
(D 社条件)	200	00%	20 C		顕熱能力[W]		
					消費電力[W]		
《 今》曰 抄約	27%	CO ^{0/}			除湿量[L/日]		
际征饶	277C	60%	—	—	消費電力[W]		

表 10 住宅向け商品カタログデータ

現在、住宅向け空調機については潜熱処理能力について JIS 規格で必要表示項目として定められてい ない。一方、一体型の室内循環型の除湿専用機(再熱除湿機構)については、定格条件における除湿性 能の表示を定められている。また、空調機の再熱除湿運転モードについては JEMA の規格で性能評価 点が定められている。但し、性能表示されている空調設備システムにおいても室内温湿度条件は一点の みの表記となっており、実運転状態における性能を評価するには十分な情報とは言えない。

(V) 業務用商品設備設計資料データ

-

	室内側吸込空気温度		室外側吸i	入空気温度	表示值日	
	乾球温度	湿球温度	乾球温度	相対湿度	衣小項日	
空調機	27°C	19°C	35℃	_	定格能力[kW] 風量[m ³ /min] 電動機出力[W] SHF(顕熱比) 消費電力[W] バイパスファクター	
外調機	_	_	33°C	28°C	定格能力[kW] 風量[m ³ /h] 電動機出力[W] SHF(顕熱比) 消費電力[W] バイパスファクター	
全熱交 併設外調機	27°C	19℃	35℃	24°C	温度交換効率 エンタルピー交換効率 定格冷房能力[kW] 全熱交分冷房能力[kW] 運転電流[A] 消費電力[W] 電動機出力[W]	
除湿機	25°C	80%	_	_	除湿量[L/h] 消費電力[kW] 運転電流[A] 力率[%] 風量[m ³ /min] 除湿機能力線図	
除湿機	30℃	60%	_	_	除湿量[L/day] 定格消費電力[kW] 始動電流[A] 風量[m ³ /min] ファン電動機出力[kW] 除湿機能力線図	
除湿機	27°C	60%	_	_	除湿量[L/day] 定格消費電力[kW] 始動電流[A] 風量[m ³ /min] ファン電動機出力[kW] 除湿機能力線図	

表 11 業務用空調機設備設計資料データ

一方、業務用空調機については、設備設計資料上で空調機のSHF(顕熱比)を表示することがJIS 規格上要求されており、設備設計資料上で定格能力、SHF、バイパスファクターが表記されている。 しかし、室内温湿度条件は定格条件の一点のみとなっており、室内温湿度の変化や負荷率の変化によ る影響はデータからは予測できないため実運転状態における性能を評価するためには十分ではない と考えられる。一方、業務用(産業用)の除湿機(再熱除湿機能)については定格条件における性能 だけではなく除湿機能力線図が与えられており、室内温湿度変化時の能力が予測できる。ただし、消 費電力の変化についての情報が記載されていないため実運転時の消費電力量予測が困難であること に加え、効率が低く一般空調設備としての利用は難しい。

3.1.1.2 吸着除湿を行う空調設備システム

(1) 動作原理

水を吸着する材料(吸着材)は相対湿度の変化によって吸着できる水の量が変化する。この状態を 示す線図を吸着等温線と呼ぶ。下図に代表的な吸着材の吸着等温線を示す。

吸着等温線の縦軸である含水率は、吸着した水の質量/吸着材の質量で表すことが出来る。図 29 に 示すように吸着材を流通する空気の相対湿度を変化させる際に水分が吸着、脱着する現象を利用して 除湿運転を行う。図 28 に示すように、相対湿度の変化幅を大きく取ると吸着材に水を吸放湿できる 量が増大するため少ない吸着材の量で高い除湿性能を得ることが出来る。

この、吸着現象を用いた除湿システムの代表例であるデシカント空調機の模式図と空気線図を下図に示す。

図 29 デシカント空調機の模式図と空気線図

図 29 に示すように、暖かい湿った空気が吸着ローターを流通する際に水分を吸着すると同時に吸 着熱を発生し、熱い乾いた空気を吹き出す。熱い乾いた空気を室内空気と熱交換して冷却して室内に 流通する。吸着ローターは、室内空気を加熱した空気を流通して乾燥することによって吸着した水を 脱着して再生される。

この時、再生をする空気は動作原理上少なくとも吸着ローターで、水を吸着させた後の熱い乾いた 空気よりも低い相対湿度になるまで加熱する必要性がある。上記に示すように 33℃、22 g/kg の空気 を 9 g/kg まで除湿するためには最低でも 67℃の加熱温度が必要となる。実際には、放熱ロス、ヒー ターと空気の熱伝達ロス、空気とローター間の熱伝達ロス、ローターの熱容量ロス、吸着熱≧凝縮熱 であることから約 100℃の加熱が必要となる。従って、高圧蒸気やヒーターなどの比較的低効率な熱 源が必要となることから効率が低く一般空調には採用されてこなかった。しかし、近年これらの課題 を克服することを目的とした種々の方式が開発されている。

(2) 吸着除湿を行う空調設備システム

(I) 住宅向けハイブリッド除湿機

再熱除湿とデシカント除湿を組み合わせたシステム。一度冷却除湿で除湿された空気をデシカント で吸着除湿することにより、吸着部分での除湿量を低減することによって吸着熱の発生を抑制し室内 温度が低温条件以外ではヒーター加熱なしで十分な除湿量を確保可能とする。

図 30 住宅向けハイブリッド除湿機

(II) 業務用冷却除湿ハイブリッドシステム

住宅向け除湿機と同様に、業務用空調機にも冷却除湿と吸着除湿を組み合わせたシステムが存在する。代表的なシステムの模式図と空気線図を下図に示す。

顕熱交換ロータ 吸着ロータ

図 31 に示すように、住宅向けのハイブリッドシステムと同様に吸着ローターに流通する前に冷却 除湿によって除湿を行うことによって吸着ローターにおける吸着熱の発生を抑制している。これによ って、低温再生を可能とし、ヒートポンプの凝縮熱程度の熱量でも運転可能なシステムを実現してい る。

(III) 吸着ローター式全熱交換器

吸着現象を利用した全熱交換器システムが存在する。代表的なシステムの模式図と空気線図を下図に示す。

図 32 吸着ローターを用いた全熱交換器

図 32 に示すように、室外空気が吸着ローターを流通する際にローターに熱を蓄熱するとともに水 を蓄湿し、室内空気側流通側で放湿する。これにより、室内空気と室外空気の間の顕熱と同時に潜熱 を交換する。静止型のプレートフィン式全熱交換器と比較して一般的に吸着ローターを用いた全熱交 換器は潜熱交換効率が高い。

(Ⅳ) 直接冷却吸着、直接加熱脱着方式

吸着熱発生によって再生温度が高くなってしまうことを回避するために、吸着熱を直接除熱しなが ら吸着を行うシステム。代表的なシステムの模式図と空気線図を下図に示す。

図 34 HB デシカント素子

図 34 に示す通常の空調機に用いられるクロスフィン熱交換器の上に、吸着材をコーティングした HB デシカント素子の伝熱管内に冷媒を流通することによって水を吸着する際の吸着熱を直接除熱、水 を脱着する際の脱着熱を直接加熱する。

これによって、図 33 の空気線図に示すように、水を脱着するために必要な再生温度を大幅に低減している。

図 33の模式図に示すように二つの HB デシカント素子を搭載し一定時間毎に冷媒回路と空気通路を 切り換えるバッチ運転を行うことによって連続的な除湿運転を実現している。 (3) 吸着除湿を行う空調設備システムの規格で定められた性能評価点、カタログ、技術資料性能評価

点

吸着除湿を行う空調設備システムは、吸着型の全熱交換器のみ JIS で定められた規格が存在する。

表 12 吸着除湿を行う空調設備システムの規格一覧

番号	名称	適用範囲
JISB8628	全熱交換器	居住空間などの快適な空気調和における省エネルギーを目的 とした空気対空気の全熱交換器について規定する

(I) JIS B 8628

室内側吸込空気温度		室外側吸込空気温度					
乾球温度	湿球温度	乾球温度	湿球温度	——————————————————————————————————————			
27°C	20°C	35℃	29°C	 風量(定格風量の±10%以内) 静圧損失(仕様書表示値の±10%以内)または機外静圧 熱交換効率(仕様書表示値の 90%以上) ・温度交換効率 ・エンタルピー交換効率 パ型のアンジェンクルピー交換効率 消費電力または電動機の定格出力 ・有効換気量 小型(250m³/h 未満):定格風量の 85%以上 中型(250m³/h 以上 2000m³/h 以下 :定格風量の 90%以上 大型(2000m³/h 超える):定格風量の 85%以上 			

表 13 JIS B 8628 試験条件

(II) 住宅向け商品カタログデータ

	室内側吸i	入空気温度	室外側吸i	入空気温度	主二百日		
	乾球温度	相対湿度	乾球温度	相対湿度	衣小項日		
ハイブリッド方式	27°C	60%	_	_	消費電力[W] 除湿量[L/日]		
デシカント方式	20°C	60%	_	_	消費電力[W] 除湿量[L/日]		

表 14 住宅向け商品カタログデータ

	室内側吸込空気温度		室外側吸込空気温度			
	乾球温度	相対湿度 湿球温度	乾球温度	湿球温度	表示項目	
除湿機	15°C	40%	_	_	定格能力[L/h] 風量[m ³ /min] 定格消費電力[W] 除湿機能力線図	
全熱交換器	_	_	_	_	機種選定表風量比 風量と熱回収率[%]の関係	
外調機 直接冷却吸着 直接加熱脱着	$27^{\circ}\!\mathrm{C}$	19°C	33℃	28°C	全熱能力[kW] 顕熱能力[kW] 消費電力[W] 風量[m ³ /h] 除湿最大性能特性表	

表 15 業務用空調機設備設計資料データ

吸着ローターを用いた空調設備システムは大型の設備が多く、受注生産品が多いため(客先要望に 併せて性能を決める)性能特性が公開されていないものが多い。

全熱交換器は、比較的多くのデータが開示されているが熱回収率が潜熱と顕熱で分離されていない ため潜熱処理能力を予測するためのデータとしては不十分である。

直接冷却吸着、直接加熱脱着を用いた外調機は比較的多くのデータが開示されているが負荷率が変化された際の性能と消費電力については記載されていないため実運転状態の性能を技術資料の開示データだけで推測することは難しい。一方、公共的なエネルギー計算手法である国交省のLCEM ツールの特性式に性能予測が可能なデータ(特性式)が提供されている。

- 3.1.1.3 膜透過除湿を行う空調設備システム
- (1) 動作原理

膜透過除湿の動作原理を図 35 に示す。

図 35 に示すように、水を選択的に通す特殊加工紙や高分子透湿膜を介して二つの流体を流通し、 二つの流体の蒸気圧差によって湿度を移動させて除湿運転を行う。

(2) 膜透過除湿を行う空調設備システム

(I) プレートフィン式全熱交換器

膜透過除湿を行う空調設備システムの代表例として、換気を行いながら室内空気と室外空気の間の 顕熱と潜熱を同時に熱交換するプレートフィン式全熱交換器が存在する。 模式図と空気線図を図 36 に示す。

図 36 フレートフィン式全熱交換器

プレートフィン式全熱交換器は、室外空気の給気と室内空気の排気の間で熱と同時に湿度を熱交換 して熱回収運転を行う。給気と排気は、透湿性を有する仕切り板で仕切られており、給気と排気を混 合することなく換気運転を実施する。

3.1.1.4 気化式加湿器の状態変化

- ・ 気化式は、水を加湿材に浸透させて気化蒸発させる。
- 本変化は、水は気化蒸発して絶対湿度を高め、空気は水との熱伝達及び水の蒸発潜熱によって 冷やされる。潜熱は増えて、顕熱は減少する。
- 実用上、潜熱と顕熱の授受は等しい(エンタルピーの増減がない断熱変化)と考えて差し支えなく、空気線図上は以下の図のように湿球温度一定の線上(エンタルピーー定の線上と考えても差し支えない)を変化する。

図 37 空気線図上の変化

飽和効率について

- ・ 飽和効率は加湿による空気の状態変化の中で、飽和点に至るまで、どこまで加湿できるか(加湿 のしやすさ)を示す。
- ・ 図 38 に気化式加湿器の空気線図を記す。①の空気状態から湿球温度一定の線上を②まで加湿 したとする。次に②の状態点から延長していくと飽和点③に至る。この② - ①、③ - ①の線分 比が飽和効率である。

【気化式加湿器の飽和効率】

飽和効率=
$$\frac{(2-(1))}{(3-(1))}$$
×100(%)= $\frac{X_2 - X_1}{X_3 - X_1}$ ×100(%)= $\frac{t_2 - t_1}{t_3 - t_1}$ ×100(%)

式 6

また、以下に実際に記されているカタログ飽和効率を示す。機器ごとに数値が異なり、飽和効率が1~80%までレンジがある。よって、空気条件、目標湿度によって、機種選定を行う必要がある。(参照:ウエットマスター株式会社 VDC シリーズ)

	製品 A-1	製品 A-2	製品 A-3	製品 A-4
加湿モジュール 奥行寸法[mm]	50	65	100	130
飽和効率[%]	$1 \sim 45$	$46{\sim}55$	$56 \sim 70$	$71 \sim 80$

表 16 飽和効率とモジュール奥行寸法の関係

3.1.2 潜熱負荷処理メカニズムを考慮したエネルギー消費量ロジック

これまで種々の原理、規格について記した。以下に、実際に用いられる空調システムを夏期と冬期に分けて記す。

3.1.2.1 <夏期>

(1) 空調システム:パッケージエアコン+換気装置の場合

図 39 空調システム:パッケージエアコン+換気装置

換気装置は外気負荷(顕熱・潜熱)を処理する機械ではない為、負荷がそのまま室内に流入する。よって、ビル用マルチエアコンは内部負荷(顕熱・潜熱)と外気負荷(顕熱・潜熱)を処理する。ただし、 負荷条件によって SHF は決まるのでビル用マルチエアコンは顕熱処理もしくは、潜熱処理のどちらか を目標とした運転を実施する事になる。

図 41 空調システム:パッケージエアコン+全熱交換器

図 42 負荷処理ロジック

全熱交換器は換気によって失われる空調エネルギーの顕熱、潜熱を交換回収する省エネルギー装置で ある。具体的には、室内から排出する顕熱・潜熱を全熱交換器内部のエレメントにて外気と熱交換する 事により、給気時に負荷を低減させている。残顕熱負荷をビル用マルチエアコンによって処理を行う。 ただし、残負荷条件によって SHF は決まるのでビル用マルチエアコンは顕熱処理もしくは、潜熱処理 のどちらかを目標とした運転を実施する事になる。 (3) 空調システム:パッケージエアコン+調湿外気処理機の場合

図 43 空調システム:パッケージエアコン+調湿外気処理機

高顕熱形ビル用マルチエアコンおよびヒートポンプデシカント調湿外調機の負荷率を変化させて収 束計算を行う事で、外気負荷(顕熱・潜熱)、内部負荷(顕熱・潜熱)を全て処理する。※を記した顕熱 処理量、潜熱処理量は、負荷率によって、処理量が変更する。

3.1.2.2 <冬期>

(1) 空調システム:パッケージエアコン+換気装置の場合

図 45 空調システム :パッケージエアコン+換気装置

換気装置は外気負荷(顕熱・潜熱)を処理する機械ではない為、負荷がそのまま室内に流入する。 ただし、ビル用マルチエアコンは潜熱負荷を処理しない為、顕熱負荷のみを処理し、潜熱負荷は未処 理となる。

図 47 空調システム:パッケージアエアコン+全熱交換器

全熱交換器によって、室内空気と外気を熱交換する事により、給気時に負荷を低減する。残顕熱負 荷をビル用マルチェアコンにて処理を行う。ただし、ビル用マルチェアコンは潜熱負荷を処理しない 為、潜熱負荷は未処理となる。 (3) 空調システム:パッケージエアコン+換気装置+気化式加湿器の場合

図 49 空調システム:パッケージエアコン+換気装置+気化式加湿器

図 50 負荷処理ロジック

気化式加湿器を用いる事で、外気と内部由来の潜熱負荷を処理する。ただし、加湿器の飽和効率に よっては目標湿度未達の場合もある。尚、空気中に水分を放出し気化した際に、周辺空気の熱を奪う ので、顕熱負荷が発生する。顕熱負荷はビル用マルチエアコンが処理を行う。 (4) 空調システム:パッケージエアコン+全熱交換器+気化式加湿器の場合

図 51 空調システム:パッケージエアコン+全熱交換器+気化式加湿器

図 52 負荷処理ロジック

気化式加湿器を用いる事で、外気と内部由来の潜熱負荷を処理する。ただし、加湿器の飽和効率に よっては目標湿度未達の場合もある。尚、空気中に水分を放出し気化した際に、周辺空気の熱を奪う ので、顕熱負荷が発生する。顕熱負荷はビル用マルチエアコンが処理を行う。 (5) 空調システム:パッケージエアコン+全熱交換器(気化式加湿器内蔵)の場合

図 53 空調システム:パッケージエアコン+全熱交換器(気化式加湿器内臓)

全熱交換器(気化式加湿器内蔵)にて潜熱負荷を処理する。その為、室内側潜熱負荷を還気吸込み 時にモニタリングを行い、外気潜熱負荷と内部潜熱負荷を併せて処理を行う。ただし、飽和効率によ っては、残潜熱負荷が発生する。

(6) 空調システム:パッケージエアコン+調湿外気処理機の場合

図 55 空調システム:パッケージエアコン+調湿外気処理機

ヒートポンプデシカント調湿外調機にて外部由来の潜熱負荷と内部由来の潜熱負荷を処理する。そ の為、室内側潜熱負荷を還気吸込み時にモニタリングを行い、外気潜熱負荷と内部潜熱負荷を併せて 処理を行う。高顕熱ビル用マルチエアコンにて残顕熱を処理する。

3.1.3 対象建築物、空調システム概要

3.1.3.1 東京 A ビル

建築物概要

東京Aビルは都内某所に建築された業務用建築物である。表 17に建築概要を記す。

用途	事務所	
竣工	2013 年	
延床面積	7157.18m ² (2,165.04 坪)	
基準階面積	625.41m ² (189.18 坪)	
構造	鉄骨造(一部鉄骨鉄筋コンクリート造)	
規模	地上9階、地下1階	
基準階天井高	2800mm	

表 17 東京Aビル建築概要

実測は、2階で実施した。平面図を図 57に記す。

赤点線で示した部分が執務室スペースとなっており、その他部分はエレベーター、エレベーターホ ール、トイレ、給湯室、PS、EPS、その他の共用部スペースとなっている。尚、執務室に入室する為 の、ドアはセキュリティーカードを用いて入室する必要があり、基本的にドアが閉められている。ま た、執務者は最大 100 人程度が在室している。

本ビルは、「ダブルスキンカーテンウォール」を採用しており、南面にカーテンウォールを設置して、夏場は太陽光を遮蔽している。また、冬期に関しては導入する外気を暖めて、室内の換気装置に 導入している。図 58 にイメージを記す。

図 59 にダブルスキンカーテンウォールと接続している拡大図面を記す。(冬期:ダブルスキンカー テンウォールにて外気が暖められる状態イメージ)

図 58 ダブルスキンカーテンウォール

図 59 ダブルスキンカーテンウォール拡大図(図面下部が南面)

(1) 空調システム

図 60 に室内機の配置を記す。東京 A ビルの空調設備は天井隠蔽ダクト式になっており、接続する フレキシブルダクトとアネモによって室内へ送風を実施している。吸込みは天井内空間に設置されて おり、天井空間をチャンバーとして用いている。(天井チャンバー方式)

室内機設置位置を赤枠で記す。執務室用に延べ16台の室内機を設置している。本研究においては、 二重赤枠で示す、3台の室内機(P01、P05、I04)の能力を測定した。尚、3台の室内機は同一熱源 (室外機)に接続されている。表18、19に室外機と室内機の機器仕様を記す。同一室外機に接続さ れる室内機は、FXYMP140AA×4、FXYMP90AA×5、FXYMP71AA×1の10台が接続されている (計測を実施する3台を含む)。

図 60 東京 A ビル空調機設置位置

- 表 18 烈源(至外機)に

室外機(形式):マルチパッケージ形空気調和機(冷暖房同時形高顕熱形)	
機器名称	ビル用マルチ Ve-upⅢR
型番	REKP800AA
機器仕様	定格冷暖房能力(冷房/暖房): 80.0 / 90.0kW
	定格消費電力(冷房/暖房): 24.8 / 24.9kW
	室外ユニット COP : (冷房/暖房) 3.23 / 3.61
	定格試験条件:JIS B 8615 冷房_室内 27℃DB19℃WB、外気 35℃DB
	JIS B 8615 暖房_室内 20℃DB、外気 7℃DB,6℃WB
	※各室内ユニットまでの配管相当長 7.5m、高低差 0m、ラウンドフロー室内ユニット 100%接続時の値
	圧縮機電動機出力:3.3+4.5+2.7+4.5+4.5kW,ファン電動機出力:0.75+0.35+0.35kW
	電源:三相 200V
	冷媒配管:液側 φ 19.1、吸入ガス側 φ 31.8、高低圧ガス側 φ 28.6、均圧側 φ 19.1mm

室内ユニッ	ኑ : P01
機器名称	天井埋込ダクト形
型番	FXYMP140AA
機器仕様	定格冷暖房能力:14.0/16.0kW
	定格消費電力(冷房/暖房): 0.279 / 0.267kW
	定格試験条件:JIS B 8616 冷房:室内 27℃DB,19℃WB、外気 35℃DB
	JIS B 8616 暖房 : 室内 20℃DB、外気 7℃DB,6℃WB
	定格機外静圧:100Pa
	ファン電動機出力:0.35kW
	電源:単相 200V
	冷媒配管:液側 φ 9.5、ガス側 φ 15.9mm
	ファン風量(急-強-弱): 39-33-28m³/min
室内ユニット:P05	
機器名称	天井埋込ダクト形
型番	FXYMP71AA
機器仕様	定格冷暖房能力:7.1/8.0kW
	定格消費電力(冷房/暖房):0.134 / 0.122kW
	定格試験条件:JISB8616冷房_室内27℃DB,19℃WB、外気35℃DB
	JIS B 8616 暖房_室内 20℃DB、外気 7℃DB,6℃WB
	定格機外静圧:100Pa
	ファン電動機出力:0.35kW
	電源:単相 200V
	冷媒配管:液側 φ 9.5、ガス側 φ 15.9mm
	ファン風量(急-強-弱): 19.5-17.5-16m ³ /min
室内ユニット:I04	
機器名称	天井埋込ダクト形
型番	FXYMP90AA
機器仕様	定格冷暖房能力:9.0/10.0kW
	定格消費電力(冷房/暖房): 0.184 / 0.172kW
	定格試験条件:JIS B 8616 冷房_室内 27 CDB,19 CWB、外気 35 CDB
	JIS B 8616 暖房_室内 20℃DB、外気 7℃DB,6℃WB
	定格機外静上:100Pa
	ファン電動機出力: 0.35kW
	冷媒配管:液側 ϕ 9.5、ガス側 ϕ 15.9mm
	ファン風量(急-強-弱): 29-25-22m³/min

表 19 室内機仕様
(2) 外調システム

図 61 東京 A ビル外調機設置位置に外調機の配置を記す。(設置位置を青枠)外調機も接続するフレキシブルダクトとアネモによって、室内へ送風を実施している。吸込みは室内機同様に天井内チャンバー内に設置されている。執務室用に述べ9台の外調機を設置している。ただし、右端のバツ印で示す2台の外調機については、執務室の都合上常時停止にて運用している。

本調査においては、二重青枠で示す、2台の換気装置(D02、D04)の能力を測定した。表 20 外 調機仕様に換気装置の詳細仕様を記す。

図 61 東京 A ビル外調機設置位置

水配管レス調湿外気処理器:D02	
機器名称	ヒートポンプデシカント調湿外調機
型式	HDMP50C
機器仕様	定格除湿冷房能力:5.5kW(全熱)、除湿量6.67kg/h
	定格加湿暖房能力:7.1kW(全熱)、加湿量3.78kg/h
	定格試験条件:冷房除湿 室内 27℃DB,19℃WB、外気 33℃DB,28℃WB
	暖房加湿 室内 22℃DB,15.5℃WB、外気 0℃DB,-3℃WB
	定格消費電力(冷房除湿/暖房加湿): 1.1 / 1.54kW
	定格風量:500m³/h
	ファン電動機出力 : 140×2W
	電源:単相 200V
水配管レス調湿タ	补気処理器:D04
水配管レス調湿タ 機器名称	外気処理器 : D04 ヒートポンプデシカント調湿外調機
水配管レス調湿タ 機器名称 型式	N気処理器:D04 ヒートポンプデシカント調湿外調機 HDMP25C
 水配管レス調湿 機器名称 型式 機器仕様 	N気処理器:D04 ヒートポンプデシカント調湿外調機 HDMP25C 定格除湿冷房能力:2.8kW(全熱)、除湿量 3.33kg/h
 水配管レス調湿タ 機器名称 型式 機器仕様 	 木気処理器:D04 ヒートポンプデシカント調湿外調機 HDMP25C 定格除湿冷房能力:2.8kW(全熱)、除湿量 3.33kg/h 定格加湿暖房能力:3.5kW(全熱)、加湿量 1.89kg/h
 水配管レス調湿タ 機器名称 型式 機器仕様 	 木気処理器:D04 ヒートポンプデシカント調湿外調機 HDMP25C 定格除湿冷房能力:2.8kW(全熱)、除湿量 3.33kg/h 定格加湿暖房能力:3.5kW(全熱)、加湿量 1.89kg/h 定格試験条件:冷房除湿 室内 27℃DB,19℃WB、外気 33℃DB,28℃WB
 水配管レス調湿タ 機器名称 型式 機器仕様 	 ▲気処理器:D04 ヒートポンプデシカント調湿外調機 HDMP25C 定格除湿冷房能力:2.8kW(全熱)、除湿量 3.33kg/h 定格加湿暖房能力:3.5kW(全熱)、加湿量 1.89kg/h 定格試験条件:冷房除湿 室内 27℃DB,19℃WB、外気 33℃DB,28℃WB 暖房加湿 室内 22℃DB,15.5℃WB、外気 0℃DB,-3℃WB
 水配管レス調湿タ 機器名称 型式 機器仕様 	 木気処理器:D04 ヒートポンプデシカント調湿外調機 HDMP25C 定格除湿冷房能力:2.8kW(全熱)、除湿量 3.33kg/h 定格加湿暖房能力:3.5kW(全熱)、加湿量 1.89kg/h 定格試験条件:冷房除湿 室内 27℃DB,19℃WB、外気 33℃DB,28℃WB 暖房加湿 室内 22℃DB,15.5℃WB、外気 0℃DB,-3℃WB 定格消費電力(冷房除湿/暖房加湿):0.68/0.79kW
 水配管レス調湿 機器名称 型式 機器仕様 	 木気処理器:D04 ヒートボンプデシカント調湿外調機 HDMP25C 定格除湿冷房能力:2.8kW(全熱)、除湿量 3.33kg/h 定格加湿暖房能力:3.5kW(全熱)、加湿量 1.89kg/h 定格試験条件:冷房除湿 室内 27℃DB,19℃WB、外気 33℃DB,28℃WB 暖房加湿 室内 22℃DB,15.5℃WB、外気 0℃DB,-3℃WB 定格消費電力(冷房除湿/暖房加湿):0.68/0.79kW 定格風量:250m³/h
 水配管レス調湿タ 機器名称 型式 機器仕様 	 木気処理器:D04 ヒートポンプデシカント調湿外調機 HDMP25C 定格除湿冷房能力:2.8kW(全熱)、除湿量 3.33kg/h 定格加湿暖房能力:3.5kW(全熱)、加湿量 1.89kg/h 定格試験条件:冷房除湿 室内 27℃DB,19℃WB、外気 33℃DB,28℃WB 暖房加湿 室内 22℃DB,15.5℃WB、外気 0℃DB,-3℃WB 定格消費電力(冷房除湿/暖房加湿):0.68 / 0.79kW 定格風量:250m³/h ファン電動機出力:(53×2)W

表 20 外調機仕様

外調機は、HDMP50C×6、HDMP25C×3の9台が設置されている。外調機は、それぞれが冷媒配 管で接続されているわけではなく、それぞれが独立で運転している。ただし、2階に設置されている 外調機は2台(HDMP50C×1、HDMP25C×1)が常時運用を停止している。

3.1.3.2 東京 B ビル

建築物概要

東京 B ビルは都内某所に建築された業務用建築物である。表 21 に建築概要、図 62 に平面図を示 す。実測は、2 階で実施した。

用途	事務所
竣工	2013 年
延床面積	7,430.02m ² (2,247.58 坪)
基準階面積	642.91 m ² (194.48 坪)
構造	鉄骨造(一部鉄骨鉄筋コンクリート造)
規模	地上9階、地下1階
基準階天井高	2800mm

表 21 東京 B ビル建築概要

図 62 基準階(2F)平面図

赤点線で示した部分が執務室スペースとなっており(壁で区切られている)、その他部分はエレベ ーターホール、会議室、トイレ、給湯室などの共用部スペースとなっている。尚、執務室は基本的に ドアが閉められている。また、執務者は最大で65人程度が在室している。 (1) 空調システム

図 63 に室内機の配置を記す。東京 B ビルの空調機施工は、天井隠蔽ダクト式になっており、接続 するフレキシブルダクトとアネモによって室内へ送風を実施している。吸込みは天井内空間に設置さ れており、天井空間をチャンバーとして用いている。(天井チャンバー方式)室内機設置位置を赤枠で 記す。執務室用に延べ14 台の室内機を設置している。本事業においては、二重赤枠で示す、2 台の室 内機(I01、P01)の能力を測定した。尚、2 台の室内機は同一の室外機を用いている。表 22、表 23 に室外機と室内機の機器仕様を記す。

図 63 東京 B ビル空調機設置位置

表 22 熱源(室外機)仕様

室外機(形式	式):マルチパッケージ形空気調和機(冷暖房同時形高顕熱形)
機器名称	ビル用マルチ Ve-UPIIIR
型番	REYP615AA
機器仕様	定格冷暖房能力(冷房/暖房): 61.5 / 69.0kW
	定格消費電力(冷房/暖房): 17.7 / 18.6kW
	室外ユニット COP(冷房/暖房): 3.47 / 3.71
	定格試験条件:JIS B 8615 冷房 室内 27℃DB,19℃WB、外気 35℃DB
	JIS B 8615 暖房 室内 20℃DB、外気 7℃DB,6℃WB
	※各室内ユニットまでの配管相当長 7.5m、高低差 0m、全てラウンドフロー室内ユニット 100%接続時の値
	圧縮機電動機出力:1.4+4.5+3.3+4.5kW,ファン電動機出力:0.75+0.75kW
	電源:三相 200V
	冷媒配管:液側φ15.9、吸入ガス側φ28.6、高低圧ガス側φ25.4、均圧側φ19.1mm

室内ユニット: P01		
機器名称	天井埋込ダクト形	
型番	FXYMP45AA	
機器仕様	定格冷暖房能力(冷房/暖房): 4.5 / 5.0kW	
	定格消費電力(冷房/暖房): 0.146 / 0.134kW	
	定格試験条件: JIS B 8616 冷房 室内 27℃DB,19℃WB、外気 35℃DB	
	JIS B 8616 暖房 室内 20℃DB、外気 7℃DB,6℃WB	
	定格機外静圧:100Pa	
	ファン電動機出力:0.14kW	
	電源: 単相 200V	
	冷媒配管:液側φ6.4、ガス側φ12.7	
	ファン風量(急-強-弱): 16-13-11(m³/min)	
室内ユニット:F	P05	
機器名称	天井埋込ダクト形	
型番	FXYMP112AA	
機器仕様	定格冷暖房能力(冷房/暖房): 11.2 / 12.5kW	
	定格消費電力(冷房/暖房): 0.210 / 0.198kW	
	定格試験条件: JIS B 8616 冷房_室内 27℃DB,19℃WB、外気 35℃DB	
	JIS B 8616 暖房_室内 20℃DB、外気 7℃DB,6℃WB	
	定格機外静圧:100Pa	
	ファン電動機出力:0.35kW	
	電源: 単相 200V	
	冷媒配管:液側φ9.5、ガス側φ15.9	
	ファン風量(急-強-弱): 32-27-23(m³/min)	

表 23 室内機仕様

上記に示すシステムは、計測を実施している室外機、室内機を示す。同一室外機に接続される室内 機は、FXYMP45AA×2、FXYMP56AA×1、FXYMP112AA×1、FXYMP140AA×1、換気装置 VKMP100GAM×2の7台が接続されている(計測を実施する2台を含む)。

(2) 外調システム

図 64 に外調機の配置を記す。(設置位置を青枠)外調機も接続するフレキシブルダクトとアネモに よって、室内へ送風を実施している。吸込みは室内機同様に天井内チャンバー内に設置されている。 2階には述べ6台の換気装置を設置しており、測定対象の執務室用に3台の換気装置を設置している。 本研究においては、二重青枠で示す、1台の換気装置(D01)の能力を測定した。表 24 に詳細仕様 を記す。

図 64 東京 B ビル外調機設置位置

表 24 外調機仕様

外気処理タイブ室内ユニット:D01	
機器名称	全熱交換器(加湿器標準装備、冷却暖房コイル付)
型式	VKMP100GAM
機器仕様	定格冷房能力:9.12kW、
	定格暖房能力:10.69kW
	定格試験条件:JIS B 8616 冷房_室内 27℃DB,19℃WB、外気 35℃DB
	JIS B 8616 暖房_室内 20℃DB、外気 7℃DB,6℃WB
	消費電力(特強-強-弱): 0.556-0.506-0.418kW
	風量(特強-強-弱): 950-950-820m ³ /h
	ファン電動機出力 : (0.28×2) kW
	機外静圧(特強-強-弱):110-75-70
	温度交換効率(特強-強-弱): 74-74-76.5%
	エンタルピー交換効率_冷房(特強-強-弱): 62-62-66
	エンタルピー交換効率_暖房(特強-強-弱): 65-65-69
	加湿量:5.4kg/h
	電源: 単相 200V
	冷媒配管:液側φ6.4、吸入ガス側φ12.7、給水配管:φ6.4
	ドレン配管: φ PT 3/4 オネジ

前述した通り、換気装置も室外機 REYP615AA に接続されており、対象執務室に3 台設置している。(計測を実施する1 台を含む)。

図 65 に全熱交換器の機内イメージ図を記す(ダイキン工業カタログ抜粋)。

VKMP100GAM は、冷房時:熱回収+冷却運転、暖房時:熱回収+加熱、加湿運転、中間期:給排気 運転を自動で選択し、運転を実施する。

3.1.3.3 大阪 C ビル

建築物概要

大阪ビルは大阪府内某所に建築された業務用建築物であり、表 25 に概要を、図 66 に平面図を記す。

用途	事務所
基準階面積	$721.5m^2$
規模	地上3階、地下1階
基準階天井高	2800mm

表 25 大阪 C ビル建築概要

図 66 基準階(2F)平面図

赤点線で示した部分が執務室スペースとなっており、その他部分は階段、廊下、会議室、トイレな どの共用部スペースとなっている。尚、執務室に入室する為の、ドアはセキュリティーカードを用い て入室する必要があり、基本的にドアが閉められている。また、執務者は最大で 50 人程度が在室出 来る。

(1) 外調システム

図 66 に外調機の配置を記す。(設置位置を青枠)外調機は接続するフレキシブルダクトとアネモに よって、室内へ送風を実施している。吸込みは東京 A ビル,B ビル同様に天井内チャンバー内に設置 されている。2 階には延べ3台の換気装置を設置しており、測定対象の執務室用に3台の換気装置を 設置している。

本研究においては、二重青枠で示す、3台の換気装置(D01、D02、D03、)の能力を測定した。

表 26 に外調機の機器仕様を記す。

外気処理タイ	イプ室内ユニット : D01、D02、D03
機器名称	全熱交換器(加湿器標準装備、冷却暖房コイル付)
型式	VKMP100GAM
機器仕様	定格冷房能力:9.12kW、
	定格暖房能力:10.69kW
	定格試験条件:JIS B 8616 冷房_室内 27℃DB,19℃WB、外気 35℃DB
	JIS B 8616 暖房_室内 20℃DB、外気 7℃DB,6℃WB
	消費電力(特強-強-弱): 0.556-0.506-0.418kW
	風量(特強-強-弱): 950-950-820m ³ /h
	ファン電動機出力 : (0.28×2) kW
	機外静圧(特強-強-弱): 110-75-70
	温度交换効率(特強-強-弱): 74-74-76.5%
	エンタルピー交換効率_冷房(特強-強-弱): 62-62-66
	エンタルピー交換効率_暖房(特強・強・弱): 65-65-69
	加湿量:5.4kg/h
	電源: 単相 200V
	冷媒配管:液側_φ6.4、吸入ガス側_φ12.7、
	給水配管: ϕ 6.4
	ドレン配管: φ PT3/4 オネジ

表 26 外調機機器仕様

換気装置は室外機 RXUP218BA に接続されており、対象執務室に3台設置している。

3.1.3.4 国立研究開発法人 建築研究所 環境実験棟

建築物概要

国立研究開発法人建築研究所環境実験棟は茨城県つくば市に建築された実験用建築物である。表 27 に建築概要、図 68 に平面図を示し、図 69 に屋上平面図を記す。測定は、4 階で実施した。平成 27 年 2 月 9 日~平成 27 年 2 月 23 日:一期工事、平成 27 年 7 月 6 日~平成 27 年 7 月 31 日:二期 工事を実施して以下の空調機、換気装置を据え付けた。対象の室は模擬オフィスとされ、様々な試験 を実施できるようにしている。本調査で取り付けた空調機、換気装置を図 68、図 69 に据付図面、表 28~表 34 にて据付空調機仕様と計測機器について記す。

用途	模擬オフィス	
基準階面積	72 m ² (21.7 坪)	
規模	地上4階	
基準階天井高	2700mm	

表 27 環境実験棟建築概要

図 68 基準階(2F)平面図

図 69 屋上平面図

(1) 空調システム

室内機の配置を記す。室の運用が模擬オフィスとなっており、様々な試験に対応する為の空調機施 工を実施した。窓面の下から上へ送風するペリメーター空調、窓面の上から下面へ送風するペリメー ター空調、部屋中心部を空調するインテリア空調、換気装置として、全熱交換器(気化式加湿器内蔵) と、ヒートポンプデシカント調湿外調機をそれぞれ据え付けた。表に室外機と室内機の機器仕様を記 す。

表 28 熱源(室外機)仕様

室外ユニット:PAC1		
室外機(形式):マルチパッケージ形空気調和機		
機器名称	ビル用マルチ Ve-upIV	
型番	RXYP160ACA	
機器仕様	定格冷暖房能力(冷房/暖房):16.0/18.0kW	
	定格消費電力(冷房/暖房): 4.31 / 4.02kW	
	室外ユニット COP : (冷房/暖房)3.71 / 4.48	
	定格試験条件:JIS B 8615 冷房_室内 27℃DB19℃WB、外気 35℃DB	
	JIS B 8615 暖房_室内 20℃DB、外気 7℃DB,6℃WB	
	※各室内ユニットまでの配管相当長 7.5m、高低差 0m、ラウンドフロー室内ユニット 100%接続	
	時の値	
	圧縮機電動機出力:2.9kW,ファン電動機出力:0.30kW	
	電源:三相 200V	
	冷媒配管:液側φ9.5、吸入ガス側φ19.1	

室内ユニッ	\vdash : PAC1-A,B,C,D,D,F
機器名称	天井埋込ダクト形
型番	FXYLP28MA
機器仕様	定格冷暖房能力:2.8/3.2kW
	定格消費電力(冷房/暖房): 0.039 / 0.039kW
	定格試験条件:JIS B 8616 冷房:室内 27℃DB,19℃WB、外気 35℃DB
	JIS B 8616 暖房 : 室内 20℃DB、外気 7℃DB,6℃WB
	定格機外静圧:100Pa
	ファン電動機出力:0.015kW
	電源:単相 200V
	冷媒配管:液側φ6.4、ガス側φ12.7mm
	ファン風量(強-弱): 7-6m³/min
室内ユニッ	F: PAC1-G
機器名称	外気処理機(全熱交換器加湿内蔵タイプ)
型番	VKMP50HM
機器仕様	外気負荷冷暖房処理能力(全熱交換換気-普通換気)
	: 4.83(2.03)/ 5.76(2.56)kW
	定格試験条件:JIS B 8616 冷房_室内 27℃DB,19℃WB、外気 35℃DB
	JIS B 8616 暖房_室内 20℃DB、外気 7℃DB,6℃WB
	加湿方式:流下式自然蒸発加湿器
	加湿量:2.9<4.2>kg/h
	※加湿量<>内の数値は全熱交による湿度回収分を含んだ値
	温度交換効率(特強-強-弱): 76-76-77%
	冷房時エンタルピー交換効率(特強-強-弱): 68-68-71%
	暖房時エンタルピー交換効率(特強-強-弱): 72-72-74%
	暖房時エンタルピー交換効率(特強-強-弱): 72-72-74% ファン電動機出力: 0.280×2kW
	暖房時エンタルピー交換効率(特強-強-弱):72-72-74% ファン電動機出力:0.280×2kW 電源:単相 200V
	暖房時エンタルピー交換効率(特強・強・弱):72-72-74% ファン電動機出力:0.280×2kW 電源:単相 200V 冷媒配管:液側φ6.4、ガス側φ12.7mm
	暖房時エンタルピー交換効率(特強-強-弱):72-72-74% ファン電動機出力:0.280×2kW 電源:単相 200V 冷媒配管:液側φ6.4、ガス側φ12.7mm ファン風量(特強-強-弱):500-500-400m ³ /h

表 29 室内機仕様

室外ユニット: PAC5、6	
機器名称	天井埋込ダクト形(ペア)
型番	RZZP80CBT
機器仕様	定格冷暖房能力(冷房/暖房):7.1/8.0kW
	定格消費電力(冷房/暖房): 2.09 / 2.25kW
	室外ユニット COP : (冷房/暖房)3.40 / 3.56
	定格試驗条件:JIS B 8615 冷房_室内 27℃DB19℃WB、外気 35℃DB
	JIS B 8615 暖房_室内 20℃DB、外気 7℃DB,6℃WB
	※各室内ユニットまでの配管相当長 7.5m、高低差 0m、JIS B 8615-1 に準拠
	圧縮機電動機出力:1.62kW,ファン電動機出力:0.094kW
	電源:三相 200V
	冷媒配管:液側φ9.5、吸入ガス側φ15.9

表 30 熱源 (室外機) 仕様

表 31 室内機仕様

室内ユニット: PAC5、6	
機器名称	天井埋込ダクト形
型番	FHMP80
機器仕様	ファン電動機出力:0.35kW
	電源:三相 200V
	冷媒配管:液側φ9.5、ガス側φ15.9mm
	ファン風量(急-強-弱): 18-16.5-15m ^{3/} min

表 32 熱源(室外機)仕様

室外ユニット	\sim : PAC2, 3, 4
機器名称	天井埋込ダクト形(ペア)
型番	RZRP50BT
機器仕様	定格冷暖房能力(冷房/暖房): 4.5 / 5.0kW
	定格消費電力(冷房/暖房): 1.58 / 1.25kW
	室外ユニット COP : (冷房/暖房)2.85 / 4.00
	定格試驗条件:JIS B 8615 冷房_室内 27℃DB19℃WB、外気 35℃DB
	JIS B 8615 暖房_室内 20℃DB、外気 7℃DB,6℃WB
	※各室内ユニットまでの配管相当長 7.5m、高低差 0m、JIS B 8615-1 に準拠
	圧縮機電動機出力:0.85kW,ファン電動機出力:0.064kW
	電源:三相 200V
	冷媒配管:液側φ6.4、吸入ガス側φ12.7

室内ユニット: PAC2、3、4			
機器名称	天井埋込ダクト形		
型番	FHMP50DB		
機器仕様	ファン電動機出力:0.14kW		
	電源:三相 200V		
	冷媒配管:液側φ6.4、ガス側φ12.7mm		
	ファン風量(急·強·弱):16·13·11m³/min		

表 33 室内機仕様

表 34 水配管レス調湿外気処理機

水配管レス調湿外気処理器					
機器名称	ヒートポンプデシカント調湿外調機				
型式	HDMP50C				
機器仕様	定格除湿冷房能力:5.5kW(全熱)、除湿量6.67kg/h				
	定格加湿暖房能力:7.1kW(全熱)、加湿量3.78kg/h				
	定格試験条件: 冷房除湿 室内 27℃DB,19℃WB、外気 33℃DB,28℃WB				
	暖房加湿 室内 22℃DB,15.5℃WB、外気 0℃DB,-3℃WB				
	定格消費電力(冷房除湿/暖房加湿):1.1 / 1.54kW				
	定格風量:500m³/h				
	ファン電動機出力 : 140×2W				
	電源: 単相 200V				

3.1.4 計測概要

3.1.4.1 東京 A ビル

(1) 設置状況

3.1.3 項で述べたように、東京Aビルには、室内機×3台、外調機×2台に計測器を設置し能力を 測定した。図 70 に天井裏設置、図 71 に計測点を番号で記す。

図 70 センサー設置位置(天井裏)

各計測点について詳細内容を以下の表 35 に示す。

番号	場所	計測装置	目的
1	空調機(P01)吸込口		
2	空調機(P01)吹出口※		
3	換気装置(D01)排気口		
4	換気装置(D01)給気口	温湿度センサー	
5	換気装置(D01)外気口	(TESTO	
6	換気装置(D01)還気口	testo6651/	
7	空調機(P05)吸込口	testo6600、	室内機、換気装置能力測定
8	空調機(P05)吹出口※	testo6681/	(空気エンタルピー法)
9	空調機(I04)吸込口	testo 6614)	
10	空調機(I04)吹出口※	⇒※マークが testo6681/	
11	換気装置(D04)給気口	testo6614 を使用	
12	換気装置(D04)還気口		
13	換気装置(D04)排気口		
14	換気装置(D04)外気口		

表 35 計測点詳細

15	室内温湿度1		
16	室内温湿度2		
17	室内温湿度3		
18	室内温湿度 4		
19	室内温湿度 5	TD 70 U	今中1月1月 年1月 今
20	室内温湿度 6	I № 72WI-П	重的価値度例足
21	室内温湿度7		
22	室内温湿度 8		
23	室内温湿度 9		
24	EV ホール温湿度		
25	T1 側空調機-1		
26	T1 側空調機-2		
27	T2 側空調機		
28	换気装置-1		
29	換気装置-2		灾 捆燃 兕 消费重力测定
30	换気装置-3		
31	換気装置-4	池弗電力	
32	換気装置-5	伯貨电刀里	至酮機器伯貨电刀側足
33	換気装置-6		
34	換気装置-7		
35	室内空調機(P01)		
36	室内空調機(P05)		
37	室内空調機(I04)		
38	室外機		
39	室内空調機(P01)		
40	室内空調機(P05)	PAM エータ	運転データ詳細
41	室内空調機(I04)		(単物) シート・加
42	室外機		
サンプリングレート		1~14	6秒
		$15 \sim 24$	600秒
		$25 \sim 38$	60 秒
		39~41	30 秒
		42	20 秒

写真 1~写真 4 に天井裏に設置した各センサーを記す。各室内機、外調機の空気吸込み側と空気吹 出し側にそれぞれセンサーを設置した。

写真 1 室内機吸込みロセンサー設置個所

写真 2 室外機ダクト吹出しロセンサー設置個所

写真 4 外調機吹出しロセンサー設置個所

室内機入口出口にセンサーを付けたイメージを図 72 に示す。空気エンタルピー法を用いて潜熱能力、顕熱能力を算出するため、測定を実施した空調機は全て同様の施工を行った。

図 72 空調機能力測定

外調機能力測定イメージを、図 73 に示す。

外調機は、室内に除加湿(調湿)を行った空気を供給する。また、還気は外に排気をする。よって、 【外気、給気、還気、排気】の値を持ってヒートポンプデシカント調湿外調機の能力を計測する。 尚、執務室に設置した温湿度センサーは執務スペースであり、情報漏えい防止のため写真を撮る事 が不可能な為、弊社で同様にセンサーを設置したイメージ写真を写真 6 に記す。室内に 9 か所設置 し、エレベーターホールに1ヵ所設置した。

写真 5 机脇に設置イメージ

写真 6 計測器設置イメージ

(2) 計測器精度

表 36 に設置したセンサーの精度を記す。

メーカー名	型番	仕様
TESTO	testo6651/testo6600	温度測定範囲: -20~70℃ 精度:±0.2℃(25℃) 湿度測定範囲:0~100%RH 精度:±1.7%RH(0~90%RH) ±1.9%RH(90~100%RH)
	testo6681/testo6614	温度測定範囲:-40~180℃ 精度:±0.15℃(25℃) 湿度測定範囲:0~100%RH 精度:±(1.0%RH+0.007×計測値)
T and D	TR-72wf-H	温度測定範囲: -30~80℃ 精度:±0.3℃(0~50℃) ±0.5℃(その他) 湿度測定範囲:0~99%RH 精度:±2.5%RH(25℃、10~85%RH) ±4.0%RH(25℃、0~10%RH、 85~99%RH) ※25℃以外は上記制度に±0.1%RH/℃を加算 湿度ヒステリシス±1.5%RH
Omron	KM1-PMU2A-FLK(マスタ) KE1-CTD8E(スレーブ) KM20-CTF-50A(CT)	電圧確度:±1.0%FS±1digit 電流確度:±1.0%FS±1digit 有効電力確度:±2.0%FS±1digit 無効電力確度:±2.0%FS±1digit

表 36 センサー精度

(3) データ計測システム

データ計測システム概要を以下に記す。本研究では、実験データを遠隔でモニタリングした。図 74 にシステム概略図を記す。

東京Aビル:PC設置状況

図 74 データ取得システム

3.1.4.2 東京 B ビル

(1) 設置状況

東京 B ビルには室内機×2 台、換気装置×1 台に計測器を設置し能力を測定した。図 75 センサー設置位置(天井裏)に天井裏設置、図 76 センサー設置位置(執務室、EPS)に執務室設置の計測 点を番号で記す。

図 75 センサー設置位置 (天井裏)

図 76 センサー設置位置(執務室、EPS)

各計測点についての詳細内容を表 37 に示す。

番号 場所		計測装置	目的
1	換気装置(D01)排気口	温湿度センサー	
2	換気装置(D01)外気口	(TESTO	
3	換気装置(D01)還気口	testo6651/	室内機、換気装置
4	換気装置(D01)給気口	testo6600、	能力測定
5	空調機(I01)吹出口※	testo6681/	(空気エンタルピー
6	空調機(I01)吸込口	testo 6614)	法)
7	空調機(P01)吹出口※	⇒※マークが testo6681/	
8	空調機(P01)吸込口	testo6614 を使用	
9	室内温湿度1		
10	室内温湿度2		
11	室内温湿度 3		
12	室内温湿度 4		
13	室内温湿度 5		
14 室内温湿度 6		TD-79f-U	会内泪湿 审测 完
15	室内温湿度7		主的価値及例足
16	室内温湿度 8		
17	室内温湿度 9		
18	室内温湿度 10		
19	室内温湿度 11		
20	室内温湿度 12		
サンプリングレート		1~8	6秒
		9~20	600 秒

表 37 計測点詳細

写真 7、写真 8に天井裏に設置した各センサーの設置状態を示す。各室内機、換気装置の空気吸込み側と空気吹出し側にそれぞれセンサーを設置した。

写真 7 室内機吸込みロセンサー設置位置

写真 8 室内機吹出しセンサー設置位置

写真 9、写真 10 に外調機に設置した各センサー設置状態を示す。

写真 9 吸込みロセンサー設置位置

写真 10 外調機吹出しセンサー設置位置

外調機の能力測定イメージを図 77 に示す。

図 77 外調機測定点

VKMP100GAMは熱交換器と、自然蒸発式加湿器が機内に設置されており、全熱回収エレメントの 効率を測定するためには、暖房、加湿、冷却、除湿を実施した後の値が給気口の値になる。従って、 【還気、排気、外気】の値を持って全熱回収エレメント性能を計測する。

尚、執務室に設置した温湿度センサーは執務スペースであり、情報漏えい防止のため写真を撮る事 が不可能な為、弊社で同様にセンサーを設置したイメージ写真を写真 11 に記す。 センサーは室内に 12 か所設置した。

写真 11 執務室センサー取付イメージ

(2) 計測器精度

表 38 にセンサー精度を記す。

メーカー名	型番	仕様		
		温度測定範囲:-20~70℃		
		精度:±0.2℃(25℃)		
	testo6651/testo6600	湿度測定範囲:0~100%RH		
		精度:±1.7%RH(0~90%RH)		
TESTO		$\pm 1.9\%$ RH (90 $\sim 100\%$ RH)		
	testo6681/testo6614	温度測定範囲: -40~180℃		
		精度:±0.15℃(25℃)		
		湿度測定範囲:0~100%RH		
		精度:±(1.0%RH+0.007×計測値)		
	温度測定範囲:-30~80℃			
		精度:±0.3℃(0~50℃)		
		±0.5℃ (その他)		
		湿度測定範囲:0~99%RH		
T and D	TR-72wf-H	精度:±2.5%RH(25℃、10~85%RH)		
		$\pm 4.0\%$ RH (25°C, 0~10%RH,		
		$85\sim99\%$ RH)		
		※25℃以外は上記制度に±0.1%RH/℃を加算湿度ヒス		
		テリシス±1.5%RH		

表 38	センサー精度

(3) データ計測システム

データ計測システム概要を以下に記す。本研究では、実験データを遠隔でモニタリングした。図 78 にシステム概略図を記す。

東京Bビル:PC設置状況

3.1.4.3 大阪 C ビル

(1) 設置状況

大阪Cビルには換気装置×3台に計測器を設置し能力を測定した。

図 79 に天井裏設置、

図 80 に執務室設置の計測点を番号で記す。大阪 C ビルは外気を縦シャフトでまとめて導入している。その為、外気測定点を一点とした。

図 79 センサー位置 (天井裏)

図 80 センサー設置位置(執務室)

各計測点の詳細内容を表 39 に示す。

番号	場所	計測装置	目的	
1	換気装置(D01)給気口			
2	換気装置(D01)還気口			
3	換気装置(D01)排気口	泪泪由おいみ		
4	換気装置(D02)給気口	価値度センサ 一	宝内继	
5	換気装置(D02)還気口	(TESTO	主的機、換入表直 能力測定	
6	換気装置(D02)排気口	(1E510)	(空気エンタルピー注)	
7	換気装置(D03)給気口	testo6600)		
8	換気装置(D03)還気口	(est06600)		
9	換気装置(D03)排気口			
10	換気装置外気ダクト			
11	室内温湿度1			
12	室内温湿度 2			
13	室内温湿度 3			
14	室内温湿度 4	TR-72wf-H	室内温湿度測定	
15	室内温湿度 5			
16	室内温湿度6			
17 室内温湿度 7				
サンプリングレート		1~10	6秒	
サンプリングレート		11~17	600 秒	

表 39 計測点詳細

写真 12 に換気装置 SA 吹出し側センサー設置状況を記す。各室内機、換気装置のダクト接続口に センサーを設置した。

写真 12 換気装置 SA 吹出し側センサー設置状況

尚、執務室に設置した温湿度センサーは執務スペースであり、情報漏えい防止のため写真を撮る事 が不可能な為、弊社で同様にセンサーを設置したイメージ写真を写真 13 に記す。センサーは、室内 に 7 か所設置した。

写真 13 執務室センサー取付イメージ

(2) 計測器精度

表 40 にセンサー精度を記す。

2440 ビング 相反					
メーカー名	型番	仕様			
TESTO	testo6651/testo6600	温度測定範囲:-20~70℃ 精度:±0.2℃(25℃) 湿度測定範囲:0~100%RH 精度:±1.7%RH(0~90%RH) ±1.9%RH(90~100%RH)			
T and D	RTR-53AL	温度測定範囲:0~50℃ 精度:±0.3℃(25℃) 湿度測定範囲:10~95%RH 精度:±5.0%RH(25℃)			

表 40 センサー精度

(3) データ計測システム

データ計測システム概要を以下に記す。本研究では、実験データを遠隔でモニタリングした。図 81 にシステム概略図を記す。

図 81 データ取得システム概要

3.1.4.4 国立研究開発法人 建築研究所 環境実験棟

用いた計測器と据え付けた場所について以下に記す。

図 82 空調機据付場所(4 階)

番号	用途	室内機	データ取得	センサ位置	センサ型番	センサ目的
1	全熱交換器	VKMP50HM	温湿度	OA, SA, RA, EA	TESTO: 6651-6600	温湿度交換量、能力算出
			電力	機器本体	omron:KM1 -PMU2A-FLK	電力量取得、COP
2	調湿換気装置	HDMP50C	温湿度	OA, SA, RA, EA	TESTO: 6651-6600	温湿度交換量、能力算出
			電力	動力盤	omron:KM1 –PMU2A-FLK	電力量取得、COP
			RAMモニタ	プリント基板	自社製品	能力算出
3~4	インテリア空調機	FHMP80CB	温湿度	OA, SA, RA, EA	TESTO: 6651-6600	温湿度交換量、能力算出
			電力	機器本体	omron:KM1 –PMU2A-FLK	電力量取得、COP
			RAMモニタ	プリント基板	自社製品	ファン回転数
5~7	ペリメーター空調機(天井)	FHMP50CB	温湿度	OA, SA, RA, EA	TESTO: 6651-6600	温湿度交换量、能力算出
			電力	機器本体	omron:KM1 -PMU2A-FLK	電力量取得、COP
			RAMモニタ	プリント基板	自社製品	ファン回転数
8~13	ペリメーター空調機(床面)	FXYLP28M	温湿度	OA, SA, RA, EA	TESTO: 6651-6600	温湿度交換量、能力算出
			電力	機器本体	omron:KM1 –PMU2A-FLK	電力量取得、COP
			チェッカー	プリント基板	自社製品	ファン回転数

表 41 空調機型番と据付計測器一覧

図 83 空調機据付場所 (屋上)

表 42 空調機型番と据付計測器一覧

番号	用途	室外機	データ取得	センサ位置	センサ型番	センサ目的
1~3	ペリメーター空調機(天井)	RZZP50CBT	配管温度	吐出管、吸入管、アキューム前、電動弁前後、ガス管、液管	T型熱電対	能力算出
			電力	動力盤	omron:KM1 -PMU2A-FLK	電力量取得、COP
			RAMモニタ	プリント基板	自社製品	能力算出
4 ~5	インテリア空調機	RZZP80CBT	配管温度	吐出管、吸入管、アキューム前、電動弁前後、ガス管、液管	T型熱電対	能力算出
			電力	動力盤	omron:KM1 –PMU2A-FLK	電力量取得、COP
			RAMモニタ	プリント基板	自社製品	能力算出
6	ペリメーター空調機(床面)	RXYP160CA	配管温度	吐出管、吸入管、アキューム前、電動弁前後、ガス管、液管	T型熱電対	能力算出
			電力	動力盤	omron:KM1 –PMU2A-FLK	電力量取得、COP
			チェッカー	プリント基板	自社製品	能力算出

図 84 に EA 経路と OA 経路に補助ファン取付位置を記す。また、風量測定器(ニューエアロアイ) は青色枠の部分に取り付けた。また、取り付けたセンサーや補助ファン、CO2封入位置について下記 に記す。これらの補助ファンには全てインバータが接続されている為、任意に風量と静圧を調整する ことが出来る。

図 84 補助ファン、風量計据付場所(4階)
測定器仕様を以下に記す。

メーカー名	型番	仕様
TESTO	testo6651 A01 B01 C00 D01 E00 F01 G02 H00 K06 testo6600 L04 M03 N02 P14	温度測定範囲:-20~70℃ 精度:±0.2℃(25℃) 湿度測定範囲:0~100%RH 精度:±1.7%RH(0~90%RH) ±1.9%RH(90~100%RH)
横河電機	FP201A-E31-LC0A*B/B1	圧力測定範囲:0~5MPa(abs) 精度:±0.25% 温度特性保障範囲:-25~75℃ 動作温度範囲:-40~80℃ 周囲湿度範囲:5~95%RH(結露しない 事)
omron	KM1-PMU2A-FLK(マスタ) KE1-CTD8E(スレーブ) KM20-CTF-50A(CT)	電圧確度: $\pm 1.0\%$ FS ± 1 digit 電流確度: $\pm 1.0\%$ FS ± 1 digit 有効電力確度: $\pm 2.0\%$ FS ± 1 digit 無効電力確度: $\pm 2.0\%$ FS ± 1 digit
ウエットマ スター	ニューエアロアイ:AE150D	 風速:4.0~25.0m/s 風量:254.5~1590.0m3/h 温度:0~120℃ 湿度:結露しない事 検出圧力:全圧と動圧 精度:±2%R.D.
長野計器	デジタル微差圧計 : GC62	差圧表示精度:±(1.0%F.S.+1digit) at 23℃(0.5kPa 以上) ±(1.5%F.S.+1digit) at 23℃(0.2kPa 以下) 温度係数:±0.1%F.S./℃ ゼロスパン共 使用温度範囲:-10~50℃(凍結・結露無 きこと) 使用湿度範囲:35~85%RH(結露無きこ と)

表 43 測定機器仕様

3.2 エアコンの潜熱処理特性把握および潜熱処理モデルの作成

3.2.1 取組概要

本取組の目的の一つである、潜熱負荷処理メカニズムを考慮した検討を実施するためには、住宅モデ ルと連携させるための、除湿特性を含む簡易なルームエアコンディショナーモデルを作成する必要があ る。簡易なモデル化のためには、特性に影響のある要因の間引き等が必要となるが、そのためにはルー ムエアコンディショナーの除湿特性を含む詳細モデルを作成し、各要因の除湿特性等に与える影響度合 い等を把握する必要がある。また、湿度(潜熱負荷)を考慮した検討を実施する必要があるため、これ までの全熱を対象とした検討に加え、例えば室内機吸込み空気湿度といった新たな解析要素が必要とな ると考えられる。

しかし、これまでは住宅の冷房負荷として全熱に着目して検討していたため、取得済みの実験データ は、室内機の吸込み空気温湿度条件が狭い範囲となっており、湿度要因を検討するために必要と考えて いる温湿度範囲が不足しており、検討のためにはモデル化に必要な実験データの取得が必要となる。

そこで、モデル案の検証に用いる空調機計測データを取得するための実験装置の整備ならびに実験方 法の検討を行い、実験室実験により検証データを取得した。また、一部は解析まで実施した。図 85 に 全体イメージを示す。

図 85 取組全体イメージ

3.2.2 潜熱処理特性把握実験

3.2.2.1 目的と背景

住宅向け空調機の除湿特性を考慮したモデル作成ならびに検証に使用する、ルームエアコンディショ ナーの冷房および除湿モードにおける運転データの取得を目的とした。

3.2.2.2 実験概要

湿度を考慮したモデルの検証に利用することを目的としているため、再現性がありできるだけ高い精度のデータとする必要があった。そこで、ルームエアコンディショナーの運転環境を任意に制御できる、 人口環境装置を用い、機器の潜顕熱能力は空気エンタルピー法を用いて計測するために室内機をチャン バーに接続して計測した。なお、計測装置及び能力等の計測は JIS B 8615-1 に準拠して実施した。図 86 に実験室の概要を、表 44 に計測点の概要、表 45 に供試機の概要をそれぞれ示す。

本実験では、ルームエアコンディショナーの潜熱負荷処理メカニズムを考慮した特性を把握するため に、大きく3つの実験を行った。それぞれの特徴を以下に示す。

図 86 実験室概要

			•
対象	項目	取り付け位置	計測センサー等
空気	温度	室内機吸込	測温抵抗体(Pt100,classA)
		室内機吹出	
		室外機吸込	
		室外機吹出	
	湿度	室内機吸込(WB)	測温抵抗体(Pt100,classA)
		室内機吹出	測温抵抗体(Pt100,classA)
		(WB 及び相対湿度)	高分子薄膜静電容量式センサー
			(VAISALA HMP155)
		室外機吸込	測温抵抗体(Pt100,classA)
		室外機吹出	
	風量	室内機吹出	JISB8615-1 付属書 B による
エネルギー	電力	全体	電力量計 HIOKI 3390
		圧縮機	(圧縮機はクランプ 9272)
ファン	送風ファン回転数	室内機	非接触
冷媒	圧力	圧縮機吸込	圧力計(横河電機 FP-101)
		圧縮機吐出	
	温度	圧縮機吸込	T 熱電対
		圧縮機吐出	
		室外機熱交換器入口	
		室外機熱交換器中央	
		室外機熱交換器出口	
		室内機熱交換器入口	T 熱電対
		室内機熱交換器中央	T 熱電対
		室内機熱交換器出口	T熱電対

表 44 計測項目概要

機種番号	冷房定格能力	冷房定格消費電力	メーカー
機種 1	6.3 kW	$2450~\mathrm{W}$	A社
機種 2	2.2 kW	$450~\mathrm{W}$	A社
機種 3	6.3 kW	1920 W	B 社
機種 4	2.2 kW	450 W	B 社

3.2.2.3 実験内容

(1) 温湿度変化実験

人工環境装置において室内機設置空間を一定の温湿度に保ち行う実験であり、再現性が高く機器特性 を精緻に把握することができる。なお、室外機設置空間の温湿度も人工環境装置で一定に保つ。

除湿特性に影響が大きいと考えられる要因を変化させて実験を行う。変化させるパラメータのイメージを表 46 に、実験に用いた温湿度変化設定の一例を図 87 温湿度変化実験の温湿度設定例に示す。

パラメータ		パターン	
吸込空気温度	高温	定格条件	低温
吸込空気湿度	高湿	定格条件	低湿
風量	最大	中間	最小
運転モード	冷房	除湿	

表 46 運転条件変化概要

図 87 温湿度変化実験の温湿度設定例

(2) 負荷変化実験

981.9822

人工環境装置において室内機設置空間へ一定の潜顕熱負荷を与へ、ルームエアコンディショナーにより温湿度をコントロールさせる実験であり、実際の機器挙動に近い運転状況を確認することができる。 なお、室外機設置空間の温湿度も人工環境装置で一定に保つ。冷房負荷の大きさは機器の最大能力まで を対象とし、潜熱顕熱の割合も機器が処理できる範囲確認と合わせ可能な限り広く変化させた。

実験に用いた負荷設定の一例を図 88 に示す。

	100.0 282	100.0 [11]	75.0 [x]	75.0 Est	75.0 Est	50.0 [10]	500 [X]	50.0 [s]	250 [8]	250 [x]	25.0 [8]	10.0 [8]	100 [8]	10.0 [30]	
<u>2010 6300 (Lond</u>	<u>\$8.6300 [Jw]</u>	<u>288 6300 (Jan)</u>	<u>2010 4 225 (140)</u>	金粮 4.726 【440】	金根 4725 [14]	金粮 3.15 Daw]	金額 3.151 (1.96)	金数 3.150 【wd]	1576 Lund	155 (H)	金額 1576 [48]	2018 0.631 [un]	1042 043 DW2	288 0531 [LH]	
1988 4.705 (Lun) 1888 1.575 (Lun)	1988 4.005 [Lw]	1003 0.005 [Lw]	開き 3 700 [LW] 波和 0 545 [LW]	2001 0.000 (LW)	1988 2.005 [Lw] 波昭 1.890 [Lw]	1000 2.005 [LW]	開始為 2,262 【kw】 満秋為 0,788 【kw】	19885 1.000 [aw]	1410 SW2 1888 0.155 SW2	開新 1,000 [LM] 道教 0,315 [LM]	開始市 1 100 [LW] 波動 0.473 [LW]	3888 0.000 [uw]	1888.0.0007 Divid 1888.0.000 Divid	Max once [rm]	
												<u> </u>			
11101 001101	ar (6) ar (6)	14 (c) 14 (c)	ur (e)	11 (a) 11 (a)	vr (9) - vr (9)	18 (A) 18 (A)	18 F.63 188 F.63	with sector	w (9) 107 (9)	10 feit 10 feit	n (e) - m (e)	w (91 yw (91	- (-)		
1 2	3 4	5 8	7 8	9 10	11 12	18 14	16 16	17 18	19 20	21 22	28 29 29	1 25 29	27 28	29 80 8	1.001
103400h 7/23421 (03444)	0.706 (91	MARINER 7440													
24 TAB		18.19 27.708 THE	_												
·····································	100.0 [68]	1000 Fil	7.0 [1]	70.61	750 fel	son fel	son fai	900 [6]	50 M	one fail		100 54	100 [9]	100 Fe l	
<u>19782, 19784</u> 	1000 [6]	1000 [8]	<u>_720 (x)</u>		_75.0 [8]	_500 [M]	_500 [X]	_500 [8]		_250 [8]	20 (s)	100 [8]	100 [5]	<u> </u>	
9882, 9884 		 	_750 [8]		_750 [6] _001 165 [64]	500_54] 	500 [6]	500 [4]	[2] 020 [2]	_220 [5] 2011 0550 [54] 2011 0450 [54]	20 (2) 200 (20) 200 000 (20)	_100 [8] 	100 [\$3]	_20_00_	
9882, 9884 _020_02_ _020_02_882 _020_02_882 _020_088	<u>1000</u> [8] 全世 2000[84] [1001[84] [1001[84] (1000[84]	_1000 [4] 全部 2.200 [34] 問題 1.200 [34] 課題 0.000 [34]	_70 [0]_ 201 100 [00] 201 100 [00] 201 100 [00] 201 010 [00]	 全相 100 540 開始 100 540 開始 100 540 満載 6413 540	_750 [6]_ jait 100 [an] jait 0.000 [an] jait 0.000 [an]	500_\$4] 24811_504] 2880100_504] 2880110_504]	_ 500 [d] 全計[14] (mh case [cas] (mh case [cas]	_ 500 [4] 201 1 300 [49] 201 2000 [49] 201 2010 [49]	_20_[9] 20 020 [84] 20 020 [84] 20 020 [84]	_20 [6] 28 050 [44] 28 040 [44] 28 040 [44]	80 055 840 055 (145 150 055 (145 150 055 (145 150 055 (145	 	_100 [93] 	00 (d) 201 020 (be) 201 020 (be) 201 020 (be)	
9882, 9884 (20 000 182 (20 00	<u>1000 [4]</u> <u>金田 2000 [64]</u> <u>夏田 1000 [64]</u> <u>夏田 1000 [64]</u>	<u>1000 [5]</u> <u>528 2000 [68]</u> (100 [68] (100 [68] (100 [68]	_750 [5] 201 1050 [540] 201 1050 [540] 201 1050 [540] 201 1050 [540]	_750 [6] 全和 1051 [645] 開始 1050 [645] 調約 0413 [645]	_750 [6] 201 _ 100 [an] 301 0 000 [an] 301 0 000 [an]	500 [4] 全称11.Day] 聞類 0.900 [50] 調難 0.110 [50]	 201	_ 200 [6] 200 1 100 [00] 200 1 000 [00] 200 1 000 [00]	[4] 052_ [40] 0550 集全 [40] 0560 集集 [40] 0560 集集	_20 [5] 28 050 Lei 28 040 Lei 28 040 Lei	200 [8] 284 305 [66] 284 305 [66] 284 305 [66]	_100 [13] 	_100 [5] <u>9</u> 0 022 500] <u>9</u> 00 002 500] <u>9</u> 00 002 500]	 20 200 [49] 20 200 [49] 20 200 [49]	
903, 1993 <u>900 (G.</u> <u>281 (202 (M)</u> 901 (902 (M)) 901 (902 (M))	<u>1000 [4]</u> 288 2000 [545] 788 1050 [545] 388 0550 [545]	<u>1000 [51]</u> <u>548 2200 [549]</u> (100 [549] (100 [549]	<u>_70 (0)</u> <u>2月 100 (04)</u> <u>3月 100 (04)</u> <u>3月 100 (04)</u>	[8] 0년. [94] 101 (14년 [94] 101 (14년 [94] 111 (14년 [94] 111 (14년	_750 [55] 2011 105 [301] 2011 105 [301] 2011 1050 [301] 2011 1050 [301]	_500 [5] _200 _11[50] 	_200 [3] <u>全計 11 [40]</u> 開刊 2010 [40] 調刊 2010 [40]	_ 500 [6] 	_20 [1] [10] 100 (11) [10] 100 (11) [10] 100 [11]	. 20 [9] 20 030 [94] 20 040 [94] 20 040 [94]		100_[5]_ 	_00_001_ ##0_002_00 ##0_000_000_ ##0_000_000_	<u>100</u> [4] <u>280 (200 [40]</u> 380 (200 [40] 380 (200 [40]	
983, 984 500 (5) 981, 200 (46) 981, 200 (46) 981, 200 (46)	<u>2000</u> [4] <u>金融 2000 [44]</u> [100 [44] [100 [44] [100 [44]	1000 [5] 200 (54) 200 (54) 200 (54) 200 (54) 200 (54)		_70 [4] 201 101 [40] 701 102 [40] 701 102 [40]	_76.00 201 100.000 201 200.000 201 2000.000	60 000_ [90]11_982 [90]200999 [90]20099	20 202 200 11 492 200 211 492 200 202 494 200 202 494	_000 [6] 900 1000 [60] 900 1000 [60] 900 1000 [60]	_20 [0] 建 100 [ed 麗 1005 [ed	20 20 20 20 20 20 20 20 20 20 20 20 20 2	20 (14) 201 205 205 201 205 205 201 205 205 201 205	80.000 100 200 100 100 000 100 100 100	300 [4] 200 [200 200 200 2000 200 2000 200 2000	500 [0] 201 (202 [04] 201 (202 [04] 201 (202 [04]	
1000.500 2000.500 2000.500 2000.500 2000.500 2000.500	2000 [5] ## 2000 [640] [880 1000 [640] [880 1000 [640]	100 50] 281 200 543 281 100 543 281 100 543	_700_[0] 201_1000_[00] 201_2000_[00] 201_2000_[000]	_750_00 200_1001_000 000_1001_000 200_000_000	_750_00 2011_100_000 2010_000_001 2010_000_001		_00_500 [00_1160_ [00_200_666	_90_01 500_000 100_000 200_000 200_000 200_000	_0.05 [10] [10] [10] [10] [10] [10] [10] [10] [10] [10] [10] [10]	60 000 88 100 000 88 100 000 88 100 000 88 100 000 98	50 501 552 553 550 555 555 550 555 555 550 555	100_001 200_002_001 200_0002_000 200_0001_000	_00_001_ 200_000_ 200_000_ 200_000_ 200_000_	<u>97 60.</u> 194 005 192 194 005 192 194 005 193	
993, 995 200 50 99, 200 50 99, 200 50 99, 200 50 99, 200 50 90, 200 50	1000 54 248 2000 549 7881 1600 549 288 1500 549	1000 501 288 2000 549 388 0200 549 388 0200 549 388 0200 549 56 021 146 021	_750_00_ 	_70_00_ 281 101_002 001_102_001 281 2012_002 281 2012_002	_70.10 201 105.001 301 105.001 301 105.001 301 105.001 105.001 105.001	_02_50 [0011 #62 [00201 088 [002010 888 [00201 088]	10 200. (00 11 462 (00 11 462 (00 200 600 (00 200 (00 200 (0	10 000. 10 000. 100	_241 org. bed over the bed over the bed over the bed over the bed over the bed over		20.05. 201352.052 201552.052 2010	.100.001 200 002.000 200 0001 000 200 001 000 200 001 000	.102.001 200.0000 200.000 200.000 200.00000 200.0000 200.00000000	38 - 50 38 - 500 - 500 38 - 500 - 500 38 - 500 - 500 39 - 500 - 500	
983.9881 98.0000 98.00000 98.00000 98.00000 98.0000000000	300.05 301.000.000 101.000.000 101.000.000 101.000.000 101.000 101.000 101.000 100.0000 100.0000 100.0000 100.000 100.0000 100.0000 1		_75.09_ <u>281 100.000</u> <u>381 200 000</u> <u>381 200 000</u> <u>381 200 000</u>		_70_10 201 105.001 101.005.001 301.000.001 101.001 106.001 101.001 106.001 101.001 106.001 101.001 106.001	50 502 500 11 502 503 500 504 500 504 500 10 500		- 500 [54] 540 1.00 1.00 1400 1	_21 02. bed 000 Bits bed 000 Bi		80 em. 180 20. #82 200 20. #82 200 2012 #82 200 2012 #82 201 201 201 201 201 201 201 201 201 201 201 201	102 001 100 000 100 000 100 000 100 000 100 000 100 00 100 00 100 1	_00_00_ <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_0000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_000</u> <u>200_0000</u> <u>200_0000</u> <u>200_0000</u> <u>200_0000</u> <u>200_0000</u> <u>200_00000</u> <u>200_0000000000000000000000000000000000</u>	_01 esc. edd stat fills bid	

(3) 室内機内部保水量

実験データの解析を進めたところ、ルームエアコンディショナー室内機内部に除湿によって生じた水 分が残留している可能性があったことから2つの実験により確認を行った。

(I) 空気エンタルピー法による実験

室内機設置空間を一定の温湿度に保ち、ルームエアコンディショナーを任意の運転モードで運転させ、 保留水の状態を定常とするために凝縮水の排出が十分になされたことを確認した後に停止させ、結露水 が自然に排出される時間として 20 分間そのままの状態で放置する。その後、チャンバーの送風ファン により吸気し、室内機内部を乾燥させ、空気エンタルピー法により計測した室内機からの放出水分量を 積算して内部保留水量を確認する実験。

(II) 重量計測による確認実験

空気エンタルピー法による実験と同様に室内機を準備した後、凝縮水が室内機外へ流れ出さないよう にし、ルームエアコンディショナーをチャンバー及び室外機から取外して室内機の重量を測定する。そ の後、凝縮水が排出されるようにした後に 48 時間人口環境装置内の湿度を 40%に保って放置し内部を 乾燥させ、再び室内機の重量を測定して、乾燥の前後における重量差より内部保留水量を確認する実験。 本実験はルームエアコンディショナーをチャンバーから取外すだけでなく冷媒回収も行うことから、室 内の温湿度条件 35 ℃、47%の1回のみ実施した。状況を写真 14 に示す。

写真 14 重量測定状況

(4) フィールド模擬実験

実験室で確認された保水量について、新たに確認された内容であったため実験室特有の事象でないことなどを確認するために、フィールド模擬実験を行った。

(I) 実験概要

実験室実験で計測した計測点のうち、チャンバーに付随する計測以外は同様の計測点とし、追加して、 室内機と室外機の総重量、ならびに室内機からの排水量を計測することにより、重量変化より室内機 内部の保水量を確認する。

(II) 実験装置概要

環境実験室内に設置された、実験住宅の一室を用いて行った。住宅の平面図を以下に示す。図面左側の空間に、エアコン、計測装置、人体を模擬した発湿装置などを設置した。

図 89 実験平面図

写真 15 エアコンの重量計測状況(左:室内機、右:室外機)

3.2.2.4 実験結果

それぞれの実験方法における結果の一部を示す。

(1) 温湿度変化実験

室内温度を 29 ℃一定とし、湿度を変化させた際の時系列データを図 90 から図 93 に機種ごとに示 す。なお、上段にルームエアコンディショナーの吸込吹出温湿度を、下段に潜顕熱処理量と風量を示す。 温度および湿度が変化に合わせ処理熱量が変化していることがわかる。

図 93 機種4の結果例

(2) 負荷変化実験

負荷変化実験の結果例を図 94 に示す。これは、リモコン設定および顕熱負荷量を固定して、潜熱負荷を変化させた際の機器1の実験結果である。単純に目標温度との差で動作していないとみられる動きがあるが、機器制御による影響と考えられる。制御は、メーカーや商品の思想などに依存するため、あくまで今回の実験機種の場合であることに注意が必要である。

図 94 負荷変化実験結果の例

(3) 室内機内部保水量

空気エンタルピー法による実験結果(温度 27 ℃、湿度 47%における冷房運転時)を表 47に、重量による保水量確認結果を表 48に示す。一事例ではあるが、多くの水が室内機内部に残っていることがわかる。

47	エスエンブルロ		小里
	機器番号	保水量	
	機種 1	379 g	
	機種 2	161 g	
	機種 3	621 g	
	機種 4	468 g	

表 47 空気エンタルピー法による保水量確認

表	48	重	量に	よる	る保フ	k量確	認

機種番号	運転終了後	24 時間後	差
機種1	14191 g	13970 g	$221~{ m g}$
機種 2	$15269~{ m g}$	14941 g	$328~{ m g}$
機種 3	$16205~{ m g}$	$15248~{ m g}$	$958~{ m g}$
機種 4	$17605~{ m g}$	$16591~{ m g}$	1014 g

(4) フィールド模擬実験

フィールド模擬実験結果について図 95 から図 97 に示す。

実験室実験と同様の結果が得られており、実使用下においても運転中及び停止後において、室内機 内部に多くの水が排水されずに貯まっていることが確認できた。

なお、機器運転終了後(停止後)放置した場合は24時間でおよそ400g程度が放出され、乾燥する までに2日程度を要することが確認できた。また、機器に搭載されている「内部乾燥運転」(機器停止 後に一定時間送風を行う運転)を使用した場合には、6時間で700g程度放出されるが、一定時間経 過後にも内部は乾ききっていなかった。

これらにより、エアコン内部が高湿度環境となりカビ等の発生が、また室内への再放湿により室内 が高湿度になることによる影響が想定される。ただし、水の供給源は除湿によるものであり室内環境 に影響を受けるなど、今回確認した4機種でも数値にばらつきがあったことなど取り扱いについては 注意が必要である

図 95 室内機の保水量と保水速度

図 96 室内機の放湿速度(内部乾燥運転なし)

(5) 【参考】ルームエアコンディショナーの風量に室内機熱交換器の結露が及ぼす影響確認

風量低下実験の一例(温度 27 ℃、湿度 47 %における冷房運転時)として時系列データを図 98 に、 同条件で実施した際の全機種の結果例を表 49 に示す。

時系列データより、室内機のファン回転数が一定であるが、結露により風量が徐々に減少していることがわかる。また、低下割合の表よりすべての機種において 10%以上の風量低下が共通して発生していることがわかる。

だだし、実験室実験では内部の結露状態(量)がわからないため、参考データとし今後の課題とする。

				—— 風量(体積) GaA m3/min		一供試機室內側送風機回転数 NFA RPM		
9.0	T			1				
1.00	1							
£ ***	T							
8 7.0	- ÷-		 					
Q								
\$ 6.0	+		 					
15								
📮 5.0	+							
8								
N 4.0	- tr	····/+	 1		 			
÷		- 11						11
3 20	+t							
- T		- 11						
- <u>-</u> - ~ ~	T	··· T/						
310	н.	· · · [/				1		
		11						
0.0	+	_1						
	0.0	10		1.00	99		199	

図 98 除湿時の風量低下例

继话来只		風量 [m³/min]					
成性钳方	max	210 分後	差	割合			
機種 1	7.66	6.71	0.95	12%			
機種 2	5.29	4.54	0.75	14%			
機種 3	6.90	5.83	1.07	16%			
機種 4	5.69	4.98	0.71	12%			

表 49 風量の低下割合例

3.2.3 潜熱処理モデルの作成

3.2.3.1 実験データの解析

取得したデータを用いて、ルームエアコンディショナーの冷房除湿特性について確認した。

一例として、図 99 から図 103 に室内温湿度を 27℃ 60%とした時の冷房運転と除湿運転の違いを示 す。冷房運転は主に顕熱を処理し、除湿運転は潜熱を処理するが同時に顕熱も処理する運転であった。

また、この際の室内機熱交換器表面温度は、冷房運転では全体がほぼ一定の温度であったのに対し、 除湿運転では熱交換器の温度に分布があった。

除湿運転において処理させる負荷を時間的に変化させた場合に、熱交換器の温度分布がない(冷房と 同様の状態)も見られた。

本結果をもとに、代表的な動作状況について空気線図上の動きを図 104~106 に示す。

図 102 モードによる処理熱量の比較

図 103 冷房負荷による熱交換器表面温度の変化

図 105 小能力の冷房を想定した空気線図例

図 106 熱交換器面積による弱冷房除湿を想定した空気線図例

3.2.3.2 除湿モデル因子

実験結果をもとにルームエアコンディショナー特性に関わる因子関連イメージ案を図 107 に示す。 本モデルは、これまでと同様に任意の運転状態におけるエネルギー消費量を出力とするだけでなく、 住宅モデルと連携させるための、室内機熱交換器表面温度(ヒートポンプサイクルにおける冷媒蒸発温 度)を出力としている。

さらに、これまで検討してきたモデルでは冷房負荷を直接入力(与条件)していたが、住宅モデルと 連携させるために、吸込み空気の温湿度ならびに目標温度を入力とする必要がある。

ここで用いるバイパスファクターとは、熱交換器の特性(空気と熱交換器の接触率、熱交換器表面温度 と接触空気の温度差など)を包括する補正係数である。

これらの因子の関連を受けより具体的に図 108 に示すような、バイパスファクターを用いたモデル とした。バイパスファクターは、例えば熱交換器の固定や風路により死に面となってしまう比率であっ たり、熱交換器の熱交換特性であったり複数の意味を持つが、本モデルでは建築分野において従来から 用いられてきたバイパスファクターと同意の熱交換器効率を包括するものとして扱った。

なお、熱交換器表面温度と接触空気の温度差を考慮した方がより細かな計算に対応できるが、本モデ ルでは壁掛けのルームエアコンを対象としており室内機の大きさなどがおおむね共通であり、実際に計 算と実測が良く一致したことから、バイパスファクターに包括することとした。

図 108 モデルイメージ

3.2.3.3 計算モデルの作成

実験結果より、冷媒の温度変化を計算することで熱交換器表面温度分布を考慮し、条件に応じた顕熱・ 潜熱処理量および室内機内部保水量を算出することを目的とした、モデル概要を示す。

(1) モデルの概要

今回構築するモデルの目的は室内側熱交換器の入口温度と冷媒流量を入力値として、冷媒の温度変化 を計算し熱交換器表面の温度分布を考慮することで、室内および外気条件に応じた顕熱・潜熱処理量、 室内機内部保水量を算定することである。

モデル化にあたり以下の仮定を与える。

- ① 熱交換器でのバイパスファクター (BF) を導入する。
- ② 熱交換器におけるバイパスファクターは一定とする。
- ③ 熱交換器表面温度は冷媒温度に等しいとする
- ④ 熱交換器を二つの領域に分けて、室内機に吸い込まれた空気は一定の割合で分配され、それぞれを通過する空気は途中で混合されない。
- ⑤ 熱交換器の各列での吹き出し空気は完全混合され次の列の吸い込み空気となる。
- ⑥ 熱交換器表面に付着する結露水は上限値を超えると流下し、それ以外は保水される。
- ⑦ 蒸発器では冷媒が気液混合領域において、冷媒が受け取る熱量は相変化にのみ使われ、冷媒の 温度変化は圧力低下による温度低下のみを考える。

図 109 室内側熱交換器の計算モデル

- (2) 基礎理論
- (I) 空気側の熱・水分収支モデル

(i) 顕熱、潜熱、全熱能力の算定

$$Qsh(x,t) = Mrin(1 - BF) \{Ca(Tevin - T(x,t)) + Cv(Xevin * Tevin - Xsat(T(x,t))T(x,t))\}$$

式 7

$$Qlh(x,t) = Mrin * (1 - BF) * Lo * (Xevin - Xsat(x,t))$$

式 8

$$Qth(x,t) = Qsh(x,t) + Qlh(x,t)$$

(ii) 吹出し空気温湿度の算定

$$Tevo(x,t) = BF * Tevin + (1 - BF) * T(x,t)$$

式 9

式 10

式 11

$$Xevo(x,t) = BF * Xevin + (1 - BF) * Xsat(T(x,t))$$

記号

Qsh,Qlh,Qth	: 顕熱、潜熱、全熱処理量	kW
Mrin	: 吸込み空気の質量流量	kg/s
Ca	: 乾燥空気の定圧比熱	kJ/kg•K
Cv	:水蒸気の定圧比熱	kJ/kg•K
Lo	:水の蒸発潜熱	kJ/kg
Xsat(T)	:温度Tに対する飽和絶対湿度	kg/kg'
Т	: 熱交換器表面温度	°C
Tevin	: 蒸発器の吸い込み空気温度	°C
Tevo	: 蒸発器の吹き出し空気温度	°C
Xevin	: 蒸発器の吸い込み空気絶対湿度	kg/kg'
Xevo	: 蒸発器の吹き出し空気絶対湿度	kg/kg'
BF	: バイパスファクター	-

(iii) 室内機内部保水量の算定

図 111 室内機内部保水量算定モデルの概要

場合分けによる

i) Xevin > Xsat(T(x,t)) かつ Wcap(x,t) < Wcapmax : 除湿されるかつ最大保水量以下
$$\frac{\partial W cap}{\partial t} = Mrin * (1 - BF) * \{Xevin - Xsat(T(x,t))\}$$
式 12

$$Wcap(i,t+1) = Wcap(i,t) + Mrin * (1 - BF) * \{Xevin - Xsat(T(x,t))\} * \Delta t$$

式 13

ii) Xevin > Xsat(T(x,t)) かつ Wcap(x,t) = Wcapmax : 除湿されるかつ最大保水量 $Wcap(x,t + \Delta t) = Wcapmax$

式 14

記号

Wcap:室内機内部保水量kg

(II) 冷媒側の熱・水分収支モデル

図 112 冷媒の計算モデル

(i) 熱収支式

$$\rho C \frac{\partial T}{\partial t} = -\frac{\partial q}{\partial x} + Qth(x,t)$$

式 17

ここで、定常時には左辺が0なので

$$H_{re}(x + \Delta x, t) = H_{re}(x, t) + \frac{Qth(x, t)}{m_{re}}$$

$$\vec{x} \quad 18$$

(ii) 冷媒の温度変化について
i)
$$H_{re}(x + \Delta x, t) < H_{ev}$$
 冷媒が気液混合時:仮定⑦より次式となる
 $T(x + \Delta x, t) = T(x, t) - \Delta T_P$

ii)
$$H_{re}(x,t) < H_{ev} < H_{re}(x + \Delta x, t)$$
 冷媒が途中で蒸発しきる時
 $T(x + \Delta x, t) = T(x,t) + \frac{Qth(x,t) - Q_{relh}(x,t)}{m_{reg}C_g} - \Delta T_P$
式 20

$$Q_{relh}(x,t) = (H_{ev} - H_{re}(x,t)) * m_{rel}$$

式 21

式 22

式 19

iii)
$$H_{ev} < H_{re}(i)$$
 冷媒が蒸発しきった後 $T(x + \Delta x, t) = T(x, t) + \frac{Qth(x, t)}{m_{reg}C_g} - \Delta T_P$

記号

Hre	: 冷媒の比エンタルピー	kJ/kg
mre	: 冷媒流量	kg/s
$\Delta \mathrm{Tp}$: 圧力損失による温度低下	°C

(III) 冷媒の圧力低下に伴う温度低下について

冷媒は気液混合領域では相変化により熱交換を行うため、理想的には温度変化は起きないが、実際に は温度は一定ではなく、熱交換器の後半になるほど温度が低くなっている。この傾向は能力が大きくな るほど顕著であった。これは配管での圧力損失によって冷媒圧力が低下することが原因であると考えら れる。そこで以下のように圧力損失による温度低下を推定する。

式 24 を用いて冷媒の入口温度から冷媒圧力を求める。冷媒の圧力低下は摩擦による圧力損失である とし、式 23 を用いて計算する。式 26 を用いて冷媒圧力から冷媒温度を計算する。

$$\Delta P = \lambda * \frac{l}{d} * \frac{\rho}{2} V^2$$

 $P(x,t) = 0.000002 * T(x,t)^3 + 0.0003 * T(x,t)^2 + 0.0254 * T(x,t) + 0.7989$

式 24

式 25

式 23

$$P(x + \Delta x, t) = P(x, t) - \Delta P$$

 $T(x + \Delta x, t) = -2.8348P(x + \Delta x, t)^4 + 22.459P(x + \Delta x, t)^3 - 67.426P(x + \Delta x, t)^2 + 111.63P(x + \Delta x, t) - 56.029$

式 26 $\Delta T_P = T(x + \Delta x, t) - T(x, t)$

H [kJ/kg]

図 113 圧力損失による温度低下のイメージ図

3.2.4 モデルの検証

機種4を対象として詳細なモデル検討を行った。図114のように熱交換器の列数を考慮したモデル化 を行う。対象機器の構造に合わせて熱交換器Aを4列、Bを2列とした。

実測結果と解析結果の比較によりモデルの妥当性を検証する。モデルの検証にあたり入力値として表 50 入力条件の値を用いる。弱冷房除湿モデルでは冷媒流量および蒸発器の入口における冷媒の比エン タルピーが不明であり、再熱除湿モデル冷媒流量、再熱器入口の冷媒比エンタルピー、冷却器入口の冷 媒比エンタルピーが不明である。

そこでそれらについては実測値を用いた計算により決定した。

図 114 弱冷房除湿機の計算モデル

Trin	°C	吸い込み空気温度	実測値
Xrin	kg/kg'	吸い込み空気絶対湿度	実測値
Tout	°C	外気温度	実測値
Xout	kg/kg'	外気絶対湿度	実測値
Texpin	°C	膨張弁入口温度	実測値
V	m³/min	風量	実測値
Tin	°C	冷媒入口温度	実測値
Hin	kJ/kg	冷媒入口比エンタルピー	計算
Mre	g/s	冷媒質量流量	計算
BF	-	バイパスファクター	仮定
φ	-	風量の流入割合	仮定

表 50 入力条件

3.2.4.1 弱冷房除湿モデルの解析結果

(I) 温湿度固定実験

温湿度固定実験の結果より冷房モード、除湿モードの中で運転が安定した全 82 条件について解析値 と実測値の結果の比較を行いモデルの妥当性を検証する。入力値と出力値を表 51 入力値、表 52 に 示す。

Trin	°C	吸い込み空気温度	実測値	$25 \sim 28.97$
RHrin	%	吸い込み相対絶対湿度	実測値	35~90
Tout	°C	外気温度	実測値	冷房 35、除湿 27
RHout	%	外気相対湿度	実測値	冷房 40、除湿 60
V	m³/min	風量	実測値	0.24~9.18
Tin	°C	冷媒蒸発器入口温度	実測値	$7.24 \sim 26.99$
Hin	kJ/kg	冷媒入口比エンタルピー	計算	
Mre	g/s	冷媒質量流量	計算	
BF	-	バイパスファクター	仮定	0.15
φ	-	風量の流入割合	仮定	0.55

表 51 入力值

表 52 出力値 空気温度

Trout	°C	吹き出し空気温度	
Xrout	kg/kg'	吹き出し空気絶対湿度	
Т	°C	熱交換器表面温度	
Qcl	kW	冷房能力	
Qsh	kW	顕熱能力	
Qcl	kW	潜熱能力	
Wcap	g	室内機内部保水量	

(II) 熱交換器表面温度

図 115 に出力点と計測点の対応関係を示す。今回の計算では各列 200 分割、計 1200 分割した計算を 行った。出力した点は1、50、100、150、200 のように 50 刻みで行った。

熱交換器表面温度の計算値と実測値の比較を図 116~118 に示す。2~3 列目については実測値がな いため不明であるが、その他の部分については計算と実測の結果は大略再現されている。除湿モードで は冷媒は1列目の途中で蒸発しきり温度が上がり、2列目では1列目の吹き出し温度との熱交換により 温度が決まる。3、4列目についても同様であり5列目は室内温度に近づく。

冷房モードでは列の後半なるほど温度が下がっており、圧力低下を考慮することで再現出来た。 また、吸込み温度によらず熱交換器表面温度は大略再現された。

うるさら7 4パス No.2

図 115 熱交換器表面温度出力値と計測点の対応関係

(III) 吹出空気温湿度

図 119 に吹き出し空気の乾球温度と絶対湿度の実測値と計算値の比較結果を風量ごとに色分けして 示す。

風量が1以下のように非常に小さい場合には乾球温度、絶対湿度ともにずれが大きくなる傾向にある が、それ以外の領域では計算値と実測値はよく一致した。

左:乾球温度、右:絶対湿度

(IV) 顕熱・潜熱能力

図 120 に顕熱能力・潜熱能力の実測値と計算値の比較結果を風量ごとに色分けして示す。また、実施 した温湿度固定実験の条件を表 53 に示す。

顕熱・潜熱能力は全領域において計算値と実測値はよく一致しており、上記結果より、モデルの妥当 性が示された。

室内機設定モード	冷房or除湿	室内機設定温度	27°C
室内機設定湿度	除湿:50%	風量	自動
外気温度	冷房35℃、除湿27℃	外気相対湿度	冷房40%、除湿60%
室内温度	13~29°C	室内相対湿度	35~90%

表 53 実験条件

比較 左:顕熱能力、右:潜熱能力

(2) モデルを用いた室内機内部保水量の解析

熱交換器の場所によって温度が異なるため場所によって除湿量が異なると考えられる。そこで各出力 点における除湿量を図 121 から図 123 に示す。

除湿モードでは熱交換器の1列目でのみ除湿されているのに対し、冷房モードでは熱交換器全体で除 湿していることが分かる。また1列目で除湿された空気が2列目の吸い込み空気となるため除湿量は1 よりも2列目、2よりも3列目といったように減少していることが分かる。

また吸込空気温度が 29℃の時は 28℃と同様の傾向を示した。27℃の時は冷房モードでは熱交換器表 面が露点温度以下にならず除湿されていないことが分かる。

図 122 除湿量分布(27℃60%) 左:除湿、右:冷房

3.2.4.2 負荷固定実験

負荷固定実験の結果について計算値と解析値の比較を示す。表 54表 55 に入力値と出力値を示す。

Trin	°C	吸い込み空気温度	実測値	
RHrin	%	吸い込み相対絶対湿度	実測値	
Tout	°C	外気温度	実測値	27
RHout	%	外気相対湿度	実測値	60
V	m³/min	風量	実測値	
Tin	°C	冷媒蒸発器入口温度	実測値	
Hin	kJ/kg	冷媒入口比エンタルピー	計算	
Mre	g/s	冷媒質量流量	計算	
BF	-	バイパスファクター	仮定	0.15
φ	-	風量の流入割合	仮定	0.55

表 54 入力值

表 55 出力値

Trout	°C	吹き出し空気温度	
Xrout	kg/kg'	吹き出し空気絶対湿度	
Т	°C	熱交換器表面温度	
Qcl	kW	冷房能力	
Qsh	kW	顕熱能力	
Qcl	kW	潜熱能力	
Wcap	g	室内機内部保水量	

(I) 熱交換器表面温度

熱交換器の表面温度の比較を図 124 に、熱交換器表面温度分布の実測値(上)と計算値(下)の比較 を図 125 に示す。

測定点⑦でずれがみられるものの他の部分については全範囲について実測値と計算値はよく一致している。

冷房除湿時の冷媒の挙動をよく再現されている。

(II) 吹き出し空気乾球温度、絶対湿度

図 126 に吹き出し空気温湿度の計算値と実測値の比較を示す。

冷房除湿時の吹き出し温度で最大 4℃程度のずれが見られるが、吹き出しの乾球温度、絶対湿度とも に大略再現されているといえる。

3.2.4.3 顕熱·潜熱能力

顕熱、潜熱能力はよく再現された。
3.2.4.4 【参考】モデルによる室内機内部保水量の推定

計算により室内機内部保水量の推定を行った。保水量の最大値は保水量確認実験より得られた値を用 いた。

弱冷房除湿時には冷却面積が小さく除湿可能部分が少ないため、内部保水量は少ないが、冷房除湿では熱交換器全体で冷却・除湿を行うために内部保水量も大きくなっている。

運転停止後の室内機からの再放湿は冷房除湿終了後に大きくなると考えられる。

3.2.5 計算プログラムへの実装

作成したモデルは、室内機熱交換を細分化して、さらに繰り返し計算をするため計算量が非常に多い。 そこで、省エネ法のWebプログラムで計算できる程度に、計算量を削減することを目的として、冷房モ デルの簡易化を行った。

詳細計算結果を用いて、室内の設定温度と室内機の空気温と湿度をパラメータとして、潜熱および顕 熱処理量テーブルを作成し、テーブル間については線形補完することとした。

なお、今回の簡易プログラムでは計算前の時間について値を保持しないため、内部保水量については 扱わないこととした。

3.2.5.1 簡易計算モデルの作成

作成した簡易計算モデルについて説明する。

なお、エアコンが OFF の場合は、エアコンでの負荷処理は行われないため、ここでは、エアコンが ON 判定となっている場合についての、処理熱量等計算方法について説明する。

エアコンの処理では、以下の条件を必要とする。

(1) エアコン自体の持つ特性

q_{C.max}:エアコンの冷房最大能力[kW]

BF:バイパスファクターー (無単位)。0.15とする。

また、表 56のような表に対応する形で

- $\bar{L}_{s,i,i}$: 顕熱処理量[W]
- $\bar{L}_{l,i,i}$: 潜熱処理量[W]

を持つ。実際の値については、表 57 に示す値とした。

吸い込み空気 温度(添字i)	23 (j=0)	27 (j	j=1)	31 (j=2)		35 (j=3)	
吸い込み空気 相対湿度 (添字j)	顕熱 処理量 [W]	潜熱 処理量 [W]	顕熱 処理量 [W]	潜熱 処理量 [W]	顕熱 処理量 [W]	潜熱 処理量 [W]	顕熱 処理量 [W]	潜熱 処理量 [W]
0.45(i=0)	Ls[0,0]	LI[0,0]	Ls[0,1]	LI[0,1]				•••
0.55(i=1)	Ls[1,0]	LI[1,0]					•••	
0.65(i=2)								
0.75(i=3)							Ls[3,3]	LI[3,3]

表 56 テーブルイメージ

ここで添字iは吸い込み空気の相対湿度の水準 \bar{h}_{RM} 、添字jは吸い込み空気の温度の水準 $\bar{\theta}_{RM}$ を表し、

 $\bar{h}_{RM,i} = (0.45, 0.55, 0.65, 0.75)$ (i = 0~3)

 $\bar{\theta}_{RM,j} = (23, 27, 31, 35) \quad (j = 0 \sim 3)$

とする。

温度→	24		27		30		33	
湿度↓	顕熱	潜熱	潜熱	顕熱	潜熱	顕熱	潜熱	顕熱
50	0.300	0.000	1.011	0.000	1.943	1.357	1.864	1.436
60	0.300	0.000	0.848	0.000	1.658	1.642	1.569	1.731
70	0.300	0.000	0.688	0.154	1.399	1.901	1.304	1.996
80	0.300	0.000	0.524	0.349	1.162	2.138	1.062	2.238

表 57 潜顕熱処理量テーブル [kW]

(2) 人体から(リモコン操作で)渡される値

ON/OFF(継続を含む):以下の処理は ON の場合に行う。
 θ_{DSG}:設定温度[℃] 当面 27.0℃とする。
 V_{AC}:吹出し風量[m³/s] 当面 12.8m³/min(768m³/h)とする。

(3) 顕熱・潜熱処理量の算出

パラメータとして θ_{RM} :吸込み空気温度(前時刻の室空気温度)[\mathbb{C}] h_{RM} :吸込み空気相対湿度(前時刻の室空気相対湿度)[%] が渡された場合、実際の顕熱処理量 L_s 、潜熱処理量 L_l (単位[W])は以下の手順で求める。

(I) $\bar{\theta}_{RM,0} \leq \theta_{RM} \leq \bar{\theta}_{RM,3}$ かつ $\bar{h}_{RM,0} \leq h_{RM} \leq \bar{h}_{RM,3}$ の場合 温度・湿度とも表の範囲内におさまる場合にあたる。

$$L_{s,low} = (L_{s,i,j+1} - L_{s,i,j}) \times \frac{(\theta_{RM} - \bar{\theta}_{RM,j})}{4} + L_{s,i,j}$$

$$\vec{x} \ 28$$

$$L_{s,high} = (L_{s,i+1,j+1} - L_{s,i+1,j}) \times \frac{(\theta_{RM} - \theta_{RM,j})}{4} + L_{s,i+1,j}$$
\$\tilde{\text{t}} 129

$$L_s = \left(L_{s,high} - L_{s,low}\right) \times \frac{\left(h_{RM} - \bar{h}_{RM,i}\right)}{0.1} + L_{s,low}$$

式 30

$$L_{l,low} = (L_{l,i,j+1} - L_{l,i,j}) \times \frac{(\theta_{RM} - \bar{\theta}_{RM,j})}{4} + L_{l,i,j}$$

$$\vec{x} \quad 31$$

$$L_{l,high} = \left(L_{l,i+1,j+1} - L_{l,i+1,j}\right) \times \frac{\left(\theta_{RM} - \bar{\theta}_{RM,j}\right)}{4} + L_{l,i+1,j}$$

$$L_{l} = (L_{l,high} - L_{l,low}) \times \frac{(h_{RM} - \bar{h}_{RM,i})}{0.1} + L_{l,low}$$

$$\vec{x} \quad 33$$

として求める。

(II) $\bar{\theta}_{RM,0} \leq \theta_{RM} \leq \bar{\theta}_{RM,3}$ かつ $\bar{h}_{RM,3} \leq h_{RM}$ の場合

吸込み相対湿度が表の定義範囲を高い方に超過している場合にあたる。

$$L_{s} = (L_{s,3,j+1} - L_{s,3,j}) \times \frac{(\theta_{RM} - \bar{\theta}_{RM,j})}{4} + L_{s,3,j}$$

$$L_{l} = (L_{l,3,j+1} - L_{l,3,j}) \times \frac{(\theta_{RM} - \bar{\theta}_{RM,j})}{4} + L_{l,3,j}$$

$$\vec{x} 35$$

(III) $\bar{\theta}_{RM,0} \leq \theta_{RM} \leq \bar{\theta}_{RM,3}$ かつ $h_{RM} \leq \bar{h}_{RM,0}$ の場合 吸込み相対湿度が表の定義範囲を低い方に超過している場合にあたる。

$$L_{s} = (L_{s,0,j+1} - L_{s,0,j}) \times \frac{(\theta_{RM} - \bar{\theta}_{RM,j})}{4} + L_{s,0,j}$$

$$L_{l} = (L_{l,0,j+1} - L_{l,0,j}) \times \frac{(\theta_{RM} - \bar{\theta}_{RM,j})}{4} + L_{l,0,j}$$

$$\vec{L} = (L_{l,0,j+1} - L_{l,0,j}) \times \frac{(\theta_{RM} - \bar{\theta}_{RM,j})}{4} + L_{l,0,j}$$

式 41

(IV) $\bar{\theta}_{RM,3} \leq \theta_{RM}$ かつ $\bar{h}_{RM,0} \leq h_{RM} \leq \bar{h}_{RM,3}$ の場合 吸込み空気温度が表の定義範囲を高い方に超過している場合にあたる。

$$L_{s} = (L_{s,i+1,3} - L_{s,i,3}) \times \frac{(h_{RM} - \bar{h}_{RM,i})}{0.1} + L_{s,i,3}$$

$$\vec{x} \ 38$$

$$L_{l} = (L_{l,i+1,3} - L_{l,i,3}) \times \frac{(n_{RM} - n_{RM,i})}{0.1} + L_{l,i,3}$$

$$\vec{x} \quad 39$$

(V) $\theta_{RM} \leq \bar{\theta}_{RM,0}$ かつ $\bar{h}_{RM,0} \leq h_{RM} \leq \bar{h}_{RM,3}$ の場合

吸込み空気温度が表の定義範囲を低い方に超過している場合にあたる。

$$L_{s} = (L_{s,i+1,0} - L_{s,i,0}) \times \frac{(h_{RM} - \bar{h}_{RM,i})}{0.1} + L_{s,i,0}$$

$$I_{l} = (L_{l,i+1,0} - L_{l,i,0}) \times \frac{(h_{RM} - \bar{h}_{RM,i})}{0.1} + L_{l,i,0}$$

$$I_{l} = (L_{l,i+1,0} - L_{l,i,0}) \times \frac{(h_{RM} - \bar{h}_{RM,i})}{0.1} + L_{l,i,0}$$

(VI) $\bar{\theta}_{RM,3} \leq \theta_{RM}$ かつ $\bar{h}_{RM,3} \leq h_{RM}$ の場合

温度・湿度とも高い方に超過している場合にあたる。

$$L_s = L_{s,3,3}$$

$$L_l = L_{l,3,3}$$

式 42

式 44

式 45

(VII) $\bar{\theta}_{RM,3} \leq \theta_{RM}$ かつ $h_{RM} \leq \bar{h}_{RM,0}$ の場合

温度が高い方に、湿度が低い方に超過している場合にあたる。

$$L_s = L_{s,0,3}$$

$$L_l = L_{l,0,3}$$

(VIII)
$$\theta_{RM} \leq \bar{\theta}_{RM,0}$$
かつ $\bar{h}_{RM,3} \leq h_{RM}$ の場合

温度が低い方に、湿度が高い方に超過している場合にあたる。

$$L_s = L_{s,3,0}$$
式 46
 $L_l = L_{l,3,0}$

(IX) $\theta_{RM} \leq \bar{\theta}_{RM,0}$ かつ $h_{RM} \leq \bar{h}_{RM,0}$ の場合

温度・湿度とも低い方に超過している場合にあたる。

$$L_s = L_{s,0,0}$$
式 48

$$L_l = L_{l,0,0}$$
式 49

(4) 消費電力量の計算

パラメータとして L_s:顕熱処理量[W] L_l:潜熱処理量[W] θ_{RM}:吸込み空気温度(前時刻の室空気温度)[℃] h_{RM}:吸込み空気相対湿度(前時刻の室空気相対湿度)[%] θ₀:外気温[℃] を用いる。

(5) 吹出し温湿度の算出

吹出し空気温度θour[℃]、吹出し空気絶対湿度Xour[kg/kg']を次式で求める。

$$\theta_{OUT} = \theta_{RM} - \frac{L_s}{c_{air} \cdot \rho_{air} \cdot V_{AC}}$$
式 50
 $X_{OUT} = X_{RM} - \frac{L_l}{r_L \cdot \rho_{air} \cdot V_{AC}}$ 式 51

 c_{air} :空気比熱[J/kgK]。定数とする(1006)。 r_L :水の蒸発熱[J/kg]。定数とする(2460×10³)。 ρ_{air} :空気密度[kg/m³]。定数とする(1.2)。 X_{RM} :吸込み空気絶対湿度(前時刻の室空気相対湿度)[kg/kg']

 X_{RM} は、 θ_{RM} と h_{RM} から以下の手順で求める。

- ① 温度 θ_{RM} [\mathbb{C}]の空気の飽和水蒸気 $EP_{s,RM}$ [Pa]を求める(温度→飽和水蒸気圧の計算式参照)。
- ② 飽和水蒸気圧P_{s,RM}に対応する飽和絶対湿度X_{s,RM}[kg/kg]を求める(水蒸気圧→絶対湿度の計算式 参照)。
- ③ $X_{RM} = X_{s,RM} \times h_{RM}$ とする。

(6) 蒸発温度の算出

エアコンの蒸発温度*θevp*[℃]を以下の関係から求める。

$$\theta_{evp} \cdot (1 - BF) + \theta_{RM} \cdot BF = \theta_{OUT}$$
式 52
$$\therefore \theta_{evp} = \frac{\theta_{OUT} - \theta_{RM} \cdot BF}{1 - BF}$$

(7) 凝縮温度の算出

ある時点におけるエアコンの凝縮温度*θcnd*[℃]は外気温に等しいとする。

$$\theta_{cnd} = \theta_0$$
式 53

なお、従来算出していたヒートポンプサイクルの過熱度・過冷却度は0とする。

(8) 理論効率の算出

エアコンの理論効率e_{AC}を次式で求める。

$$e_{AC} = \frac{h_{evp,out} - h_{evp,in}}{h_{cmp,out} - h_{cmp,in}}$$

 If 54

分母は圧縮機前後のエンタルピーの変化量、分子は蒸発器前後のエンタルピーの変化量である。 各変数は以下のように求める。

(I) *h_{cmp,in}*の算出

まず、圧縮機入口温度θ_{cmp,in}[℃]は蒸発温度に等しいとする。

$$\theta_{cmp,in} = \theta_{evp}$$

式 55

式 57

次に、蒸発圧力Pevp[MPa]を以下で求める。

$$P_{evp} = f_{P,sgas}(\theta_{evp})$$

式 56

関数*f_{P,sgas}(θ*)は後述する。 圧縮機入口圧力*P_{cmp,in}*[MPa]は*P_{evp}*に等しいとする。

$$P_{cmp,in} = P_{evp}$$

以上の値を用いて、圧縮機入口エンタルピーh_{cmp,in}[kJ/kg]を次式で求める。

$$h_{cmp,in} = f_{cmp,in}(P_{cmp,in}, \theta_{cmp,in})$$
式 58

関数 $f_{cmp,in}(P, \theta)$ は後述する。

(II) *h_{cmp,out}*の算出

まず、圧縮機入口エントロピーS_{cmp,in}[kJ/kgK]を次式で求める。

$$S_{cmp,in} = f_{S,gas}(P_{cmp,in}, h_{cmp,in})$$

$$\vec{x} 59$$

関数*f_{s,gas}(P,h*)は後述する。

圧縮機出口エントロピーS_{cmp,out}[kJ/kgK]はS_{cmp,in}に等しいとする。

$$S_{cmp,out} = S_{cmp,in}$$
式 60

凝縮圧力P_{cnd}[MPa]を以下で求める。

$$P_{cnd} = f_{P,sgas}(\theta_{cnd})$$

 $heta_{cnd}$ は前述の凝縮温度である。関数 $f_{P,sgas}(\theta)$ は蒸発圧力 P_{evp} を求める関数と同じ関数である(後述)。 圧縮機出口圧力 $P_{cmp,out}$ [MPa]は P_{cnd} に等しいとする。

$$P_{cmp,out} = P_{cnd}$$

これらから、圧縮機出口エンタルピー $h_{cmp,out}$ [kJ/kg]を次式で求める。

$$\therefore h_{cmp,out} = f_{cmp,out}(P_{cmp,out}, S_{cmp,out})$$

$$\vec{x} \ 63$$

関数*f_{cmp,out}(P,S*)は後述する。

(III) *h_{evp,in}*の算出

まず、凝縮器出口温度 $\theta_{cnd,out}$ [\mathbb{C}]は凝縮温度に等しいとする。

$$\theta_{cnd,out} = \theta_{cnd}$$

凝縮器出口エンタルピーh_{cnd.out}[kJ/kg]を以下で求める。

$$h_{cnd,out} = f_{liq}(P_{cnd}, \theta_{cnd,out})$$

式 65

式 64

式 61

式 62

 P_{cnd} は前述の凝縮圧力である。関数 $f_{liq}(P, \theta)$ は後述する。 蒸発器入口エンタルピー $h_{evp,in}$ [kJ/kg]は、凝縮器出口エンタルピー $h_{cnd,out}$ に等しいとして求める。

$$\therefore h_{evp,in} = h_{cnd,out}$$
式 66

(IV) h_{evp,out}の算出

蒸発器出口エンタルピーhevp.out [kJ/kg]は、圧縮機入口エンタルピーhcmp.inに等しいとして求める。

:.

$$h_{evp,out} = h_{cmp,in}$$

なお、 $e_{AC} > 10$ となる場合は $e_{AC} = 10$ とする。

(9) 冷媒状態の計算

各関数は次式で定義する。

図 129 に冷凍サイクルのイメージを示す。

図 129 冷凍サイクルイメージ

(I) $f_{P,sgas}(\theta)$

飽和蒸気の温度θ[℃]から圧力[MPa]を求める。

$$\begin{split} f_{P,sgas}(\theta) &= & 2.758 579 269 509 01 \times 10^{-17} \times \theta^8 \\ &+ 1.493 820 579 117 53 \times 10^{-15} \times \theta^7 \\ &+ 6.520 016 872 670 15 \times 10^{-14} \times \theta^6 \\ &+ 9.141 530 349 999 75 \times 10^{-12} \times \theta^5 \\ &+ 3.183 146 165 003 61 \times 10^{-9} \times \theta^4 \\ &+ 1.607 035 666 630 19 \times 10^{-6} \times \theta^3 \\ &+ 3.062 789 840 195 13 \times 10^{-4} \times \theta^2 \\ &+ 2.544 619 929 920 37 \times 10^{-2} \times \theta^1 \\ &+ 7.980 864 551 547 75 \times 10^{-1} \end{split}$$

式 68

式 67

(II) $f_{cmp,in}(P,\theta)$

圧縮機入口において蒸気の圧力P[MPa]および温度θ[℃]から比エンタルピー[kJ/kg]を求める。

```
\begin{split} f_{cmp,in}(P,\theta) &= -1.001 \ 103 \ 55 & \times 10^{-1} \times P^3 \\ &-1.184 \ 450 \ 639 & \times 10^1 & \times P^2 \\ &-2.052 \ 740 \ 252 & \times 10^2 & \times P^1 \\ &+3.203 \ 91 & \times 10^{-6} \times T^3 \\ &-2.246 \ 85 & \times 10^{-3} \times T^2 \\ &+1.279 \ 436 \ 909 & \times 10^0 & \times T^1 \\ &+3.127 \ 123 \ 8 & \times 10^{-2} \times P^2 & \times T^1 \\ &-1.415 \ 359 & \times 10^{-3} \times P & \times T^2 \\ &+1.055 \ 539 \ 12 & \times 10^0 & \times P^1 & \times T^1 \\ &-1.949 \ 505 \ 039 & \times 10^2 \end{split}
```

式 69

ただし、 $T = \theta + 273.15$ である。

(III) $f_{cmp,out}(P,S)$

圧縮機出口において蒸気の圧力*P*[MPa]とエントロピー*S*[kJ/kgK]から比エンタルピー[kJ/kg]を求める。

```
f_{cmn,out}(P,S) = -1.869\ 892\ 835\ 947\ 070 \times 10^{-1}\ \times P^4
                    +8.223 224 182 177 200 \times 10^{-1} \times P^3
                                                                 \times P^2
                    +4.124 595 239 531 860 \times 10^{\circ}
                    -8.346\ 302\ 788\ 803\ 210 \times 10^{1}
                                                                 \times P
                    -1.016\ 388\ 214\ 044\ 490 \times 10^{2}
                                                                 \times S^4
                                                                 \times S^3
                    +8.652 428 629 143 880 \times 10^{2}
                                                                 \times S^2
                    -2.574 830 800 631 310 \times 10^{3}
                    +3.462\ 049\ 327\ 009\ 730 \times 10^{3}
                                                                 \times S
                    +9.209 837 906 396 910 × 10^{-1} × P^3 × S
                    -5.163 \ 305 \ 566 \ 700 \ 450 \times 10^{-1} \ \times P^2 \ \times S^2
                    +4.076\ 727\ 767\ 130\ 210 \times 10^{0}
                                                                 \times P \times S^3
                    -8.967\ 168\ 786\ 520\ 070 \times 10^{0} \times P^{2} \times S
                    -2.062\ 021\ 416\ 757\ 910 \times 10^{1}
                                                                 \times P \times S^2
                    +9.510\ 257\ 675\ 728\ 610 \times 10^{1}
                                                                 \times P \times S
                    -1.476 914 346 214 130 × 10<sup>3</sup>
```

式 70

(IV) $f_{S,gas}(P,h)$

蒸気の圧力P[MPa]と比エンタルピーh[kJ/kg]からエントロピー[kJ/kgK]を求める。

$$\begin{split} f_{S,gas}(P,h) &= +5.823 \ 109 \ 493 \ 752 \ 840 \times 10^{-2} \ \times P^4 \\ &-3.309 \ 666 \ 523 \ 931 \ 270 \times 10^{-1} \ \times P^3 \\ &+7.700 \ 179 \ 914 \ 440 \ 890 \times 10^{-1} \ \times P^2 \\ &-1.311 \ 726 \ 004 \ 718 \ 660 \times 10^0 \ \times P \\ &+1.521 \ 486 \ 605 \ 815 \ 750 \times 10^{-9} \ \times h^4 \\ &-2.703 \ 698 \ 863 \ 404 \ 160 \times 10^{-6} \ \times h^3 \\ &+1.793 \ 443 \ 775 \ 071 \ 770 \times 10^{-3} \ \times h^2 \\ &-5.227 \ 303 \ 746 \ 767 \ 450 \times 10^{-1} \ \times h \\ &+1.100 \ 368 \ 875 \ 131 \ 490 \times 10^{-4} \ \times P^3 \ \times h \\ &+5.076 \ 769 \ 807 \ 083 \ 600 \times 10^{-7} \ \times P^2 \ \times h^2 \\ &+1.202 \ 580 \ 329 \ 499 \ 520 \times 10^{-8} \ \times P \ \times h^3 \\ &-7.278 \ 049 \ 214 \ 744 \ 230 \times 10^{-4} \ \times P^2 \ \times h \\ &-1.449 \ 198 \ 550 \ 965 \ 620 \times 10^{-5} \ \times P \ \times h^2 \\ &+5.716 \ 086 \ 851 \ 760 \ 640 \times 10^{-3} \ \times P \ \times h \\ &+5.818 \ 448 \ 621 \ 582 \ 900 \times 10^1 \end{split}$$

(V) $f_{liq}(P,\theta)$

過冷却液の圧力P[MPa]と温度θ[℃]から比エンタルピー[kJ/kg]を求める。

```
\begin{split} f_{liq}(P,\theta) &= +1.790\ 291\ 5 &\times 10^{-2}\times P^3 \\ &+7.968\ 303\ 22 &\times 10^{-1}\times P^2 \\ &+5.985\ 874\ 958\ \times 10^1\ \times P \\ &+9.866\ 77 &\times 10^{-4}\times T^4 \\ &+9.805\ 167\ 7 &\times 10^{-1}\times T \\ &-3.586\ 45 &\times 10^{-3}\times P^2\ \times T \\ &+8.231\ 22 &\times 10^{-4}\times P &\times T^2 \\ &-4.426\ 391\ 15 &\times 10^{-1}\times P &\times T \\ &-1.415\ 490\ 404\ \times 10^2 \end{split}
```

式 72

ただし、 $T = \theta + 273.15$ である。

(10) 消費電力の算出

ある時点におけるエアコンの消費電力E_{AC}[kW]は以下の手順で求める。

(I) 圧縮機の消費電力*E*_{cmp}[kW]の算出

まず、圧縮機の圧縮効率ηを次式で求める。

$$\eta = -0.1255 \times (q_c)^2 + 0.6902 \times q_c + 0.0104$$

式 73

なお、本式の係数は実験結果の重回帰より求めた。データを図 130 圧縮機効率示す。

図 130 圧縮機効率

これと前項で求めた理論効率 e_{AC} から、次式で圧縮機の消費電力 E_{cmp} を求める。

$$E_{cmp} = \frac{q_C}{\eta \cdot e_{AC}}$$

式 74

なお、デフロスト係数および熱源機内の放熱損失項は省略した。

(II) 補機の消費電力*E_{aux}*[kW]の算出

補機の消費電力は次式で求める。

$$E_{aux} = 0.0451$$

式 75

これらより、エアコンの消費電力E[kW]は次式となる。

$$E_{AC} = E_{cmp} + E_{aux}$$
 \vec{x} 76

なお、消費電力を積算する際は、 E_{AC} に($\Delta t/3600$)を乗じて単位を[kWh]としておく。

3.2.5.2 簡易計算モデルの検証

計算プログラム用の簡易モデルにおける計算結果と実測結果を図 131 から図 133 に示す。 よく一致しているといえる。

図 131 顕熱処理量の比較(簡易モデル)

図 132 潜熱処理量の比較(簡易モデル)

3.2.6 まとめと課題

本研究で明らかになったことを以下に示す。

人工環境実験室実験より、ルームエアコンディショナーの除湿特性を明らかにするとともに、室内 機熱交換器の状態を確認した。

また、確認した除湿特性と熱交換器状態などから、熱交換器の温度分布やルームエアコン室内機内 部の保水量を考慮したモデルを作成し、実験に用いた機種において実測値と計算値が良く一致するこ とを確認した。

さらに、作成したモデルによる計算結果から、室内機吸込み空気の温湿度と室内の冷房目標到達温 度と顕潜熱量の関係を明らかにし、関係をテーブルとして持ち線形補完することで、計算速度の向上 を図った簡易計算モデルを構築し、実験結果を再現することを確認した。

その他、実験中に当初は検討対象としていなかった、内部保水量について検討を進めることで、内 部保水量の確認実験方法を構築した。その結果、室内機内部の保水量がエアコンの設置されている空 間に対して影響を与えるに十分な量に達することを明らかにした。

一方で本結果の取り扱いについては、以下のような注意が必要である。

まず、ルームエアコンディショナーは日本国内だけでも多くのメーカーより、多数のラインナップが 市場に出回っておりさらに、同じラインナップにおいても居住空間の広さ等に対応するために、機器定 格能力が複数存在するが、モデルによる計算結果が検証できているのはあくまで、今回実験した機種の みであり、市場に存在するすべての機種について同様のモデルや同じパラメータが利用できるかについ ては未確認である。よって、省エネ法の計算モデルとするなど、機器を一般化する際は機器差について 追加検証が必要である点に注意が必要である。

また、内部保水量については、機器差が大きいことや、水の供給源はあくまで潜熱負荷であることか ら、どのような状態でも今回確認されたような多量の内部保水量を有するわけではない点に注意が必要 である。ただし、再放湿については課題が確認されたところであり、住宅特性や外部環境、内部発湿等 の影響が大きいと考えられることから、評価に導入する前にさらなる確認が必要である。

なお、冷媒の冷凍サイクル中の圧力損失についても同様である。

以下については今回の研究では検討が不十分でありさらなる確認や検討が必要である。

今回実験に用いた機器においては、バイパスファクターなど同一の値を用いることができたが、この 理由として、メーカーや定格性能は異なるが、市場に存在する機器のうち壁掛けタイプかつ、寸法規定 のある機種であったため機器サイズが同様であったことなどのほかに、ラインナップのうち省エネ性を 重視し選定したことから、上位機種であったことが影響している可能性は否定できない。今後の一般化 においては、エネルギー消費効率の低い側の機器を確認する必要がある。この際今回は種々の影響を包 括し多値として用いたバイパスファクターについては再度分解して検討する必要がある。

また、室内機風量の問題がある。これは、機器の設計思想等による制御の違いもあるが、除湿による 室内機熱交換器への結露により風量が低下することが分かった。さらなる精緻化では、風量が機器省エ ネルギー性能に与える影響は大きいことから、制御によらない風量の取り扱いについてはさらなる検討 が必要といえる。

3.3 ビルマルチエアコンの潜熱処理特性の把握

3.3.1 潜熱処理特性を含むビルマルチエアコン特性式

従来のビルマルチエアコンでは、冷房時の蒸発温度は固定制御を行っており、室内機吸込み空気温 湿度条件が決まると、室内機のSHF (Sensible Heat Factor: 顕熱比) は概ね一定であった。しか し蒸発温度を変化させた場合、室内機のSHF (およびLHF: Latent Heat Factor) は大きく変動 する (図 134 参照)。ここでは、より難易度の高い蒸発温度可変制御を導入したビルマルチエアコン の計算モデルを構築することで、潜熱処理量の変動が大きい場合にも適用可能なビルマルチエアコン の計算モデルを作成することで、より汎用的に潜熱処理量を予測可能なビルマルチエアコンの特性式 を提案する。

3.3.1.1 冷媒温度可変方式のビルマルチエアコンの性能計算モデル検討

蒸発温度固定制御方式のビルマルチエアコンについては、既存の計算モデルが存在するが蒸発温度可 変制御方式のビルマルチエアコンに同じ計算モデルを用いた場合、図 135 に模式的に示したように最 も負荷が高いゾーンに設置された室内機の能力がゾーンで発生する負荷を処理できる冷媒温度を決定 する。即ち、最も負荷率が大きい室内機に合わせた蒸発温度で空調システム全体が運転されるため、ゾ ーン毎に分割した計算モデルが必要となる。

図 135 冷媒温度可変制御方式模式図

そこで、今回新たに室内機-配管-室外機に分割した計算モデルを作成した。

当該計算モデルによる、冷房運転時の計算構成を図 136 に示す。図に示すように、室内機,枝配管, 主配管,室外機にシステムを分割して計算を行う。必要負荷に併せて各室内機の冷媒蒸発温度を仮決定 した後に配管合流部で最も蒸発温度が低圧となる室内機を選定するとともに、各室内機ファン風量およ び冷媒循環量を算出し、各室内機で必要とされる冷媒循環量の合計をシステム全体の冷媒循環量とする。

3.3.1.2 室内機計算モデル

空調機の潜熱処理(除湿)を行うのは冷房時の室内熱交表面における結露であるため、潜熱処理を

モデル化するためには、室内熱交換器のモデルが重要な役割を果たす。

3.2 のエアコンのモデル化に際しては、フィンコイル熱交換器の冷媒流に沿って、伝熱管を微小区間に分割して計算する方法を採用した。エアコンの室内機はほとんどが壁掛け型であり、多少計算時間が長くなっても、壁掛け型のラインナップに合わせて機器性能計算を実施し、性能特性を表にすることでシミュレーションに組込むことが出来る。しかしビルマルチ空調機に接続される室内機は種類・容量ともに多岐にわたる為、詳細計算を元にしたモデルで計算を行うのは現実的ではない。そこで、ビルマルチ用の室内機モデルとして、既存の国交省LCEMツールなどに用いられているバイパスファクターモデルをベースに検討を行った。

(1) 既存のバイパスファクターモデル

ビルマルチエアコンの技術資料に記載されているバイパスファクターを用いて、室内機の吹出し空 気温湿度を予測し、室内機吸込み空気温湿度と吹出し空気温湿度のエンタルピー差と風量から室内機 の能力を算出している。図 137 に空気線図上の動きを示す。

温度(℃) 図 137 室内機の動作 3.2.3.3 項のエアコンの熱交換器モデルでは、熱交換器を多数の微小領域に分割して計算しているため、各微小領域の計算中には空気物性の変化を無視できるものと考え、比熱などの値を用いた計算を行っているが、当ビルマルチエアコンのモデルでは熱交換器を分割することなく評価しようとしているため、比熱などは用いずに熱交換器入口・出口の空気のエンタルピーから、潜熱能力・顕熱能力を算出している。

図に示すように、入力値として

- 空調機に流通する冷媒の蒸発温度
- ・ コイル表面と冷媒蒸発温度の温度差
- ・ バイパスファクター

を与える。

AH (T,RH)	: 絶対湿度	[g/kg]	
Те	: 冷媒蒸発温度	[°C]	
Tc	: 冷媒凝縮温度	$[^{\circ}C]$	
$\Delta\mathrm{T}$:コイル表面温度差	[°C]	
Hlim	: コイル表面絶対湿度限界値	[kg/kg] : Te+ΔT における相対湿度 95%の絶対港	記
		度	
BPF	: バイパスファクター		
Tin	:吸込み温度	[°C]	
Hin	:吸込み湿度	[g/kg]	
Tout	: 吹出し温度	[°C]	
Hout	: 吹出し湿度	[g/kg]	
<冷房時>			
Tout=Tin	$-$ (Tin $-$ (Te $+\Delta$ T)) \times (1-1)	3PF)	
		式 7	7

|--|--|

<暖房時>

Tout=Tin+ $((Tc - \Delta T) - Tin) \times BPF$

Hout=Hin

式 79

式 78

式 80

本調査では、実測データとシミュレーション結果を比較した結果として、コイル表面温度差を 4℃に 設定している。

また、従来のビルマルチエアコンの冷媒蒸発温度は 6℃、高顕熱形ビルマルチエアコンの冷媒蒸発温 度は 11℃に設定している。

(2) 室内機計算モデルの作成

上記既存の室内機モデルでは、コイル表面空気温度と冷媒温度(蒸発温度、凝縮温度)の差(以下 Δ T)とバイパスファクター(以下 BPF)の二つの固定値から給気の状態を計算し、給気温度と室温 の差から要求顕熱負荷を満たすように室内機風量を決定している。一方、 Δ T と BPF からの能力予 測では、室内機の過熱度(以下 SH)、過冷却度(以下 SC)の変化による能力変化が考慮されていな かった。

そこで、

・ SH、SC の変化による能力変化を補正する方式の確立

• ΔT と BPF の機種ごとの差分の分析とデータ作成のための試験項目の検討 を行うために実測試験を行った。

(I) 試験装置

試験装置の概要を図 138 に示す。

本試験装置は JISB8616 の Air-Enthalpy (AE) 法に基づき、室内空気(吸込空気)と室内機熱交換器を通過した空気(吹出空気)の温度・湿度変化(顕熱・潜熱変化)と空気重量の積で室内機能力を求める。

室外温調室と室内温調室は任意の温度・湿度条件に設定可能であり、室内機・室外機の吸込空気の 温度・湿度を一定に制御している。

室内機取付けは、室内機を受風チャンバーに接続して吹出空気をAE チャンバーに導くように設置 し、室内機吹出空気の温湿度と体積風量を測定する。AE チャンバーでは、誘引ファンにより室内機 の吹出圧力を設定した。(天カセ室内機、壁掛機では 0Pa、ダクト機では 50Pa)

また受風チャンバーから AE チャンバーまでに生じる熱損については、予め能力校正機を使った能 力測定で冷房・暖房毎に係数を決定し、室内空気温度と吹出空気温度の差との積で補正量を求めてい る。

室外機は風量測定等実施しないため解放状態で設置し、室内機と室外機の連絡配管は各試験とも長さ 20mの断熱配管を使用している。

また装置外には大気圧計があり、大気圧変化による空気密度の補正を行なう。

(II) 試験方法

空調機能力の測定は以下の手順で行う。本試験では冷媒蒸発温度(Te)が室内空気露点近くまたは それ以上になる条件での測定も行った。

- ① 室内機を受風チャンバーに取り付ける。
- ② 室外温調室に室外機を設置し、室内機と連絡配管で接続する。
- ③ 空調機システムを真空排気後、室外機初期充填量+液管長補正の冷媒を充填する。
- ④ 室内温調室、室外温調室の空気条件を目標値に設定する。
- ⑤ 空調機の運転を開始する。そのとき下記が目標値になるよう機器を制御する。
 - ・ 室内機風量
 (室内機ファン回転数)
 - ・ 冷房時冷媒蒸発温度 (室内機熱交入口サーミスタ)
 - 熱交出口 SCH (室内機熱交出口サーミスタ)
 - ・ 室内機吹出抵抗 (AE チャンバー静圧)
 - 室外機圧縮機回転数
 - ・ 圧縮機吸入 SH (吸入サーミスタ)
 - ・ 室外機過冷却後冷媒温度 (冷房時のみ)
 - ・ 圧縮機吐出圧 (凝縮温度、暖房時のみ)
- ⑥ 機器の安定運転を20分程度継続した後、室内機吹出温湿度が一定の状態で15分程度能力測定 を行う。室内機能力はこの時間平均値とする。ただし、冷房条件で冷媒蒸発温度が室内空気露 点と近い条件では熱交フィン表面及びドレンパンに残ったドレン水の再蒸発が潜熱能力に影 響を与えるので安定運転の時間を1時間程度と長めにとるようにした。
- ⑦ ⑤の目標値設定を変更し、能力測定を繰り返す。

測定で得られたデータから室内機能力の計算は以下の手順で行う。

- 室内機吸込空気および吹出空気の温度・湿度から顕熱エンタルピー変化ΔHsと潜熱エンタルピー変化ΔHLを求める。
- ② 室内空気と吹出空気の温度差から能力補正値 Qhoを求める。
- ③ AE チャンバーでは、ノズル前後差圧から体積流量 Qvを、温度・湿度から密度 ρ を求める。そ れらの積に大気圧補正を加えて吹出空気の質量流量 Qmを求める。
- ④ 空調機顕熱能力 Q を顕熱能力 Qsと潜熱能力 QLの和で求める。計算式は下記のようになる。

$\mathrm{Q_s} = \Delta \mathrm{H_s} \cdot \mathrm{Q_m} \! + \! \mathrm{Q_{ho}}$	÷ 04
$Q_{L} = \Delta H_{L} \cdot Q_{m}$	ц δ1
	式 82
$Q = Q_{ m s} + Q_{ m L}$	式 83

(III) 室内機冷房・暖房能力測定条件

特性式の係数は基本的には実機の能力測定から求める。 必要な能力測定条件を表 58 に示す。

冷房時は蒸発温度の範囲によって潜熱処理の有無が変わるため、それによる挙動の変化が予測される。そこで、Te条件は定格(潜熱顕熱ともに処理)・主に顕熱を処理・顕熱のみ処理するそれぞれの範囲の値を選定した。逆に暖房時はその必要が無いため、Tcは2条件としている。

また、SCH(熱交換器出口冷媒の過冷却度・過熱度)の影響は計測結果より二次式で表す必要性があったため、最小でも3条件での計測が必要となった。

運転 モード	室内空気条件 D.B./W.B	風量 タッフ [°]	T _{ec} 温度	SCH	特性	試験 番号
		Н	6	3	定格条件	1
		Н	11	3	Tec 特性把握	2
冷房	97 / 10	Н	20	3	Tec 特性把握	3
(6 点)	20/13.5	Н	6	5	SCH 特性把握	4
		Н	6	10	SCH 特性把握	5
		L	6	3	風量特性確認	6
		Н	46	5	定格条件	$\overline{\mathcal{O}}$
暖房 (5 点)		Н	38	5	T _{ec} 特性把握	8
		Н	46	12	SCH 特性把握	9
		Н	46	20	SCH 特性把握	10
		L	46	5	風量特性確認	(1)

表 58 特性式用能力測定条件

これらの試験はAE装置を備えた試験設備で行い、風量・吹出し温湿度も計測するものとする。AE装置の機外静圧条件は室内機毎の定格条件に合わせた。

工数上全点の測定ができない場合、あるいは旧型機の特性式を作成するにあたっては、必要に応じ てシミュレーションによる補外、補間を行う。また同一の熱交換器、筐体を有する室内機(称呼能力、 風量違いの機種)では SCH 特性や風量特性も相似であり、精度上問題なければ係数を共有すること も可能と考えられるが、試験結果の蓄積による検証が必要である。

今回試験を行った室内機、室外機の組合せを表 59 に示す。

	被試験機タイプ	室内機型式	室外機型式
	王カヤ(ラウンドフロー)	FXYFP71MC	
2		FXYFP56MC	
3	ダクト	FXYMP71A	KAIP140AA
4	壁掛	FXYAP71M	(3111)
5	天カセ(ダブルフロー)	FXYCP71M	

表 59 供試機型式

(IV) 特性式の形式

能力特性式は室内機の顕熱能力および潜熱能力を室内機の状態変数を用いて算出する。また室内機 の全熱能力は顕熱能力と潜熱能力の和に等しい。

なるべくエアネット・RAMモニタで取得できる変数を選定し、表 60 に示す状態変数を計算に用いる。

状能变数	取得方法
吸込み空気温度[℃]	
	これのみ既存センサーで計測不可
吸込み空気絶対湿度[g/kg]	運転中の能力を予測するためには、
	別途湿度センサーの設置などの検討が必要
冷媒飽和温度[℃]	室内機センサー『TH2』で計測
SH∕SC[℃]	室内機センサー『TH3』と『TH2』の差分
質量風量[kg/s]	ファン回転数から風量[m³/min]を、 吸込み空気温湿度から空気密度[kg/m³]を算出して乗算

表 60 各種データの取得方法

SH、SCの影響については、蒸発温度制御の導入により、SH、SCの制御目標値が運転条件によって変わる制御になっていることから、その分の熱交換能力補正項が必要と考え、実機計測の結果を元にSH/SCの値の式で表される補正値をコイル表面空気温度の算出時に加えるものとした。

Q	: 全熱能力	[kW]
$\mathbf{Q}_{\mathbf{s}}$: 顕熱能力	[kW]
\mathbf{Q}_{l}	: 潜熱能力	[kW]
$\Delta \mathrm{H}$:入口出口エンタルピー差	[kJ/kg]
$\DeltaH_{\rm s}$:入口出口顕熱エンタルピー差	[kJ/kg]
Δ H1	:入口出口潜熱エンタルピー差	[kJ/kg]
G_{va}	: 質量風量	[kg/sec]
G_{f}	: 体積風量	[m ³ /sec]
ρ (T,AH)	: 空気密度	[kg/m ³]
f(T,AH)	: 空気エンタルピー	[kJ/kg]
T_{out}	: 吹出し温度	[°C]
T_{in}	:吸込み温度	[°C]
$\mathrm{T}_{\mathrm{surf}}$: コイル表面空気温度	[°C]
AH_{out}	: 吹出し絶対湿度	[g/kg]
AH_{in}	:吸込み絶対湿度	[g/kg]
$\mathrm{AH}_{\mathrm{surf}}$: コイル表面空気絶対湿度	[g/kg]
BPF	: バイパスファクター	
T_{e}	: 冷媒蒸発飽和温度	[°C]
T_{c}	:冷媒凝縮飽和温度	[°C]
T_{const}	: コイル表面温度差基準値	[°C]
AH (T,RH)	: 絶対湿度	[g/kg]

	$Q=G_{va} \times \Delta H$	_`	0.4
	$Q_s = G_{va} imes \Delta H_s$	エ	84
	$\mathbf{Q}_l {=} \mathbf{G}_{va} {\times} \Delta \mathbf{H}_l$	式	85
	$\mathrm{G_{va}}{=}\mathrm{G_{f}}{\times}~ ho~(\mathrm{T_{in}}{,}\mathrm{AH_{in}})$	式	86
	$\Delta H = \Delta H_s + \Delta H_l$	式	87
	$\Delta H_s = f(T_{out}, AH_{out}) - f(T_{in}, AH_{out})$	式	88
	Λ H]=f(T _{in} AH _{out})-f (T _{in} AH _{in})	式	89
	$T_{\text{out}} = T_{\text{in}} \times \text{BPE} + T_{\text{out}} \times (1 \text{-BPE})$	式	90
	$AH = AH \times PDE + AH \approx (1 - PDE)$	式	91
	$\operatorname{AHout} = \operatorname{AH}_{\operatorname{in}} \wedge \operatorname{DI} \mathbf{F} + \operatorname{AH}_{\operatorname{surf}} \wedge (\mathbf{I} - \operatorname{DI} \mathbf{F})$	式	92
【蒸	発器】 一 (GII)		
	$T_{surf} = T_e + T_{const} + g(SH)$	式	93
	$g(SH) = a \times SH^2 + b \times SH$	式	94
	$AH_{surf} = min (AH_{in}, AH (T_{surf}, 98))$	式	95
【凝	縮器】		
	$T_{surf} = T_c - T_{const} - g(SC)$	式	96
	$g(SC) = a \times SC^2 + b \times SC$	式	97
	$AH_{surf} = AH_{in}$	ر بل	98

ここで、

これらの内、室内機の特性を表すパラメータは、

BPF: バイパスファクターT_{const}: コイル表面温度差基準値

a,b : SH,SC の影響を表す式の係数

であり、且つ試験結果に照らした結果、冷房と暖房は共用不可である。よって熱交特性を表すパラ メータ数は、冷房4、暖房4の計8個必要となる。

[°C]

特性式の係数を表 61~表 65に示す。

	コイル表面	バイパス	コイル表面温度-冷媒温度 ΔT=a×SCH ² +b×SCH+c			
	相对征度上限	1599	а	b	с	
冷房	98%	0.291	0	0.329	1.914	
暖房	_	0.262	0	0.455	0	

表 61 壁掛 7.1kW 係数

表 62 天埋ダクト 7.1kW

	コイル表面	バイパス	コイル表面温度 – 冷媒温度 ΔT=a×SCH ² +b×SCH+c		
	相刈徑及上胶	ノテクタ	а	b	с
冷房	98%	0.161	0	0.597	0
暖房	—	0.136	0	0.484	0

表 63 天埋カセットラウンドフロー型 5.6kW

	コイル表面 相対湿度上限	バイパス ファクタ	コイル表面温度 – 冷媒温度 ΔT=a×SCH ² +b×SCH+c		
			a	b	с
冷房	98%	0.188	0	0.478	0.026
暖房	—	0.160	0	0.326	0.231

表 64 天埋カセットラウンドフロー型 7.1kW

	コイル表面 相対湿度上限	バイパス ファクタ	コイル表面温度-冷媒温度 ΔT=a×SCH ² +b×SCH+c		
			а	b	с
冷房	98%	0.050	0.0853	0	0
暖房	_	0.131	0	0.213	0

表 65 天埋カセットラウンドフロー型 14.0kW

	コイル表面 相対湿度上限	バイパス ファクタ	コイル表面温度-冷媒温度 ΔT=a×SCH ² +b×SCH+c		
			a	b	с
冷房	98%	0.210	0.088	-0.769	5.769
暖房	—	0.072	0	0.487	0.072

(V) 実測値と計算モデルの比較

実測値と計算モデルの比較を図 139~図 147 に示す。

155

図 142 天埋カセットラウンドフロー型 7.1kW (冷房運転)

中・大型のラウンドフローで特に SH が大きい領域(10℃以上)では乖離が見られるが、概ね計算モ デルと実測結果は良好に合致している。

暖房運転においては、計算モデルと実測結果は良好に一致した。

3.3.1.3 連絡配管計算モデル

連絡配管の圧力損失・熱損失の計算には一般的な理論式を用い、以下のモデルを採用した。

Flux	: 質量流量	[kg/m ² /sec]
Gr	: 冷媒循環量	[kg/h]
D	:連絡配管外径	[m]
Din	:連絡配管内径	[m]
Dins	: 断熱材厚さ	[m]
Р	: 圧力	[MPa]
Н	:エンタルピー	[kJ/kg]
η	: 冷媒粘性係数	[Pa · s]
Ср	: 冷媒比熱	$[kJ/kg \cdot K]$
λ	: 熱伝導率	[W/m • K]
ρ	: 冷媒密度	[kg/m ³]
α	:表面熱伝達率	$[W/m^2 \cdot K]$

(添え字)

- ave :平均值
- in : 流入冷媒
- out :流出冷媒
- ins : 断熱材

$$Flux = \frac{Gr}{0.25 \times \pi \times Din^2 \times 3600}$$

$$P_{ave} = \frac{P_{in} + P_{out}}{2}$$

$$H_{ave} = \frac{H_{in} + H_{out}}{2}$$

Re=
$$\frac{Flux + D_{in}}{\eta_{ave}}$$
 式 101

$$\Pr = \frac{\eta_{ave} \times Cp_{ave}}{\lambda_{ave}}$$
 102

式 104

式 105

式 99

式 100

$$\Delta h = \frac{\pi \times L \times \Delta T}{\left(\frac{1}{Nu \times \lambda} + \frac{D_{ins}}{\lambda_{ins}(D + D_{ins})} + \frac{1}{(D + 2 \times D_{ins}) \times \alpha}\right)} \times \frac{3600}{Gr}$$

$$\vec{x} \ 106$$

$$\Delta P = \left(\frac{0.3164}{Re^{0.25}} \times \frac{L}{D_{in}} \times \frac{Flux^2}{2 \times \rho} \times 2.11676 \pm \bar{\beta} \pounds \pounds (m) \times \rho \times 9.80665\right) \times \frac{1}{10^6}$$

$$\vec{x} \ 107$$

$$P_{out} = P_{in} - \Delta P$$
式 108

 $h_{out}{=}h_{in}{+}\,\Delta\,h$

式 109

3.3.1.4 室外機の計算

室外機は室外熱交換器や圧縮機といった複数のコンポーネントから成る。現行のビルマルチ空調機の動作を模擬するための計算フローを図 148~図 149 に示す。

図 148 室外機計算フロー(冷房時)

図 149 室外機計算フロー(暖房運転)

(1) 室外熱交換器の計算モデル

室外熱交換器は室内機と同等の計算モデルによる予測が可能である。バイパスファクターモデルによる予測と試験室実験における実測結果との比較を図 150、図 151 に示す。

	コイル表面 相対湿度上限	バイパス ファクタ	コイル表面温度-冷媒温度 ΔT=a×SCH ² +b×SCH+c		
			а	b	с
冷房	_	0.00163	- 0.0862	0.8870	0.2270
暖房	98%	0.3444	0	0.1548	0

表 66 室外熱交換機パラメータ例 (10HP 機)

図 150 冷媒凝縮温度予測値と実測値の比較

図 151 冷媒蒸発温度予測値と実測値の比較

よってバイパスファクターモデルを用いて室外熱交換器の挙動を予測し、冷媒飽和圧・ファン風量の 計算が可能となる。

(2) 圧縮機動力の算出

圧縮機消費電力を、試験結果から凝縮圧力、蒸発圧力、回転数から算出する特性式を作成した。

Wfre	: 圧縮機回転数	[rps]
Gr	: 冷媒循環量	[kg/h]
ρ ref	:吸入冷媒密度	[kg/m ³]
Vcys	: シリンダ容積	[cm ³]
Effvol	: 容積効率	
Wcomp	: 圧縮機消費電力	[kW]
Pc	: 凝縮圧力	[MPa]
Pe	: 蒸発圧力	[MPa]

Wfre =
$$\frac{Gr}{3600} \div \left\{ \rho ref \times \frac{V cys}{10^6} \times Effvol \right\}$$

式 110

 $Wcomp = \{WcComp1 \times Pc + WcComp2 \times Pe + WcComp3\} \times Wfre$

式 111

表 67 10HP 至外機の係数						
WcComp1	WcComp2	WcComp3	Vcys	Effvol		
0.0416	-0.0380	0.00625	53.1	0.95		

ここで、表 67 で示した係数には、圧縮機に付随するインバータ損失による消費電力増大効果分の影響も含まれている。

また、圧縮機動力の計算に関しては、下記のような簡易式でもある程度予測することが可能である。

Wfre : 圧縮機回転数 [rps] [kg/h] \mathbf{Gr} : 冷媒循環量 :吸入冷媒密度 [kg/m³] ρ ref :シリンダ容積 $[cm^3]$ Vcys Effvol : 容積効率 Wcomp : 圧縮機消費電力 [kW] [MPa] Pc :凝縮圧力 Pe :蒸発圧力 [MPa] $H_{ps}(,)$:比エンタルピー(圧力、比エントロピ)の関数 : 比エンタルピー(温度、圧力)の関数 $H_{tp}(,)$ $S_{tp}(,)$: 比エントロピ(温度、圧力)の関数 :インバータ損失 η inv : 圧縮効率 η comp

 $Gr = \frac{Vcys}{10^6} \times Wfre \times \rho ref \times Effvol \times 3600$

Wcomp =
$$\frac{1}{\eta_{inv}} \times \frac{\left[H_{ps}\left\{Pc, S_{tp}\left(T_{s}, Pe\right)\right\} - H_{tp}\left(T_{s}, Pe\right)\right]}{\eta_{comp}} \times \frac{Gr}{3600}$$

式 113

式 112
尚、圧縮機の挙動については、より詳細な特性データが開示されている圧縮機を用いる場合にはその 特性データに沿った計算を行うことが可能である。その場合には、インバータ損失は別途インバータの 性能特性を元に想定する必要があることに留意が必要である。

(3) 冷房運転時の冷媒流出温度の算出

多くのメーカーのビルマルチ空調機は、冷房時に室外熱交から流出した冷媒をさらに冷却するため の過冷却熱交を備えている。これは連絡配管中に冷媒が圧力損失により液単相流から二相流に遷移す るのを防止するためである。

過冷却熱交を持たない室外機の場合、室外機出口冷媒温度は室外熱交出口冷媒温度とほぼ同等の値 となるため、高圧冷媒飽和温度と設計・制御上で設定された室外熱交出口過冷却度から容易に求める ことが可能であるが、過冷却熱交を持つ場合には過冷却熱交による冷媒温度変化を求める特性式が必 要となる。実験室でのビルマルチ挙動試験から得られたデータを元に作成した特性式を以下に示す。

:液管内フラッシュ防止のために	こ必要な SC	[°C]
:液管内フラッシュ防止のために	こ必要な出口冷媒温度	[°C]
:通常運転時の液管出口冷媒温度	度目標値=25℃	
:通常制御(保護なし)時の到達	室 SC	[°C]
: 室外機からの出口冷媒温度	[°C]	
: 凝縮温度	[°C]	
: 蒸発温度	[°C]	
: 外気温度	[°C]	
: 冷媒循環量	[kg/h]	
: 高低差対応差圧	[kg/cm ²]	
:過冷却熱交バイパス出口 SH	[°C]	
	 : 液管内フラッシュ防止のために : 液管内フラッシュ防止のために : 通常運転時の液管出口冷媒温度 : 通常制御(保護なし)時の到達 : 室外機からの出口冷媒温度 : 凝縮温度 : 蒸発温度 : 外気温度 : 冷媒循環量 : 高低差対応差圧 : 過冷却熱交バイパス出口 SH 	 : 液管内フラッシュ防止のために必要な SC : 液管内フラッシュ防止のために必要な出口冷媒温度 : 通常運転時の液管出口冷媒温度目標値=25℃ : 通常制御(保護なし)時の到達 SC : 室外機からの出口冷媒温度 [℃] : 凝縮温度 [℃] : 蒸発温度 [℃] : 外気温度 [℃] : 冷媒循環量 [℃] : 高低差対応差圧 [kg/m] : 過冷却熱交バイパス出口 SH [℃]

$\text{NTLSC=NTL}_{\text{tc}} \times \text{Tc} + \text{NTL}_{\text{te}} \times \text{Te} + \text{NTL}_{\text{gr}} \times \text{Gr} + \text{NTL}_{\text{ph}} \times \text{ph} + \text{NTL}_{\text{c}}$	
NTI = min (NTI tract To = NTI SC)	式 114
$\mathbf{T}_{\mathbf{T}} = \mathbf{T}_{\mathbf{T}} + $	式 115
$Toutr = Tout_{dt} \times (Tc - Ta) + Tou_{sh} \times BoutSH + Tout_{gr} \times Gr + Tout_{c}$	式 116
Tout=max (NTL, $Tc-ToutF$)	

式 117

表 68 10HP 室外機の係数

$\mathrm{NTL}_{\mathrm{tc}}$	NTL _{te}	$\mathrm{NTL}_{\mathrm{gr}}$	NTLph	NTLc	$Tout_{dt}$	$\operatorname{Tout}_{\operatorname{sh}}$	$\operatorname{Tout}_{\operatorname{gr}}$	Toutc	BoutSH
0.071	-0.178	0.006	1.514	3.269	0.646	-0.333	0.017	-2.448	5

(4) 暖房運転時の冷媒流出温度の算出

暖房運転時の冷媒出口温度は圧縮機吐出冷媒が室外機から流出するまでにどの程度放熱されるか で決まる。運転状況によって、室外機出口でどの程度放熱されているのか特性を把握した。

ToutSH	: 室外機出口における過熱度	[°C]
Tout	: 室内機出口冷媒温度	[°C]
Те	: 蒸発温度	[°C]
Gr	: 冷媒循環量	[kg/h]

 $ToutSH {=} Tout_{te} {\times} Te {+} Tout_{gr} {\times} Gr {+} Tout_c$

Tout=Te+ToutSH

式 118

式 119

表 69 10HP 室外機の係数				
$Tout_{te}$	$\operatorname{Tout}_{\operatorname{gr}}$	Tout _c		
-0.453	0.037	-3.872		

(5) 室内機の空調ゾーン毎の個別発停による影響予測

室内機がサーモオン、サーモオフすることによって稼働台数が変化することに伴って運転効率が影響を受ける。そこで、性能予測計算にゾーン毎の発停によって圧縮機最小循環量以下になった場合の 冷媒圧力変化の影響の検討を行った。冷房運転時の模式図を図 153~図 154 に示す。図に示すよう にゾーン内の負荷が小さく最小容量を下回るとゾーン内空調機の発停が発生する。この場合、発停に よって冷媒循環量が大きく変動するため運転状況が大きく変動する。

図 153 圧縮機最小循環量制約による低圧低下の模式図

図 154 室内ゾーン個別発停影響予測

室内ゾーン個別発停に併せた冷媒循環量の変動を性能計算に直接組み込むと、計算負荷が何倍にも増加するため、下記のように簡易化して計算モデルの構築を行った。

<計算手順>

1. システム全体の計算は平均冷媒循環量を用いて行う。

(冷房時)

- 2. その後、発停の状況による低圧の低下幅を算出する。
- 3. 上記発停による低下も含めた平均低圧を算出する。
- 4. 低圧のみ3項で計算した値を用いて、システムの消費電力を算出する。

(暖房時)

- 2. その後、発停の状況による高圧の上昇幅を算出する。
- 3. 上記発停による上昇も含めた平均高圧を算出する。
- 4. 高圧のみ3項で計算した値を用いて、システムの消費電力を算出する。

すなわち、発停に伴う循環量変化で上下に変動する分は平均値で計算するが、圧縮機動力下限を下回 ることによる圧力変化分は別途計算・補正する。

(I) 発停発生状況(組合せの算出)

各ゾーン計算部から室外機計算部へ、平均冷媒循環量だけでなく、発停率・稼働時冷媒循環量を送 る。

OFi	:ゾーンiの発停率
GRi	:ゾーンi運転中の冷媒循環量

- GRi_{ave} : ゾーンの平均冷媒循環量
- Li : ゾーン i の要求負荷

Qimin : ゾーンiの風量最小時に出力される能力

GRiave=OFi×GRi

$$OFi = \frac{Li}{Qi_{min}}$$
式 121

各ゾーンの発停による発停率(発停の組合せ)の出現率は、

OFj : ある発停状況時の発生率(jはある発停状況を示す添え字とする)

$$OFj = \prod_{I}^{\underline{w} \underline{w} + \mathcal{O} \underbrace{\mathcal{Y}} - \mathcal{Y}i} OFi \times \prod_{I}^{\underline{\beta} \underline{w} + \mathcal{O} \underbrace{\mathcal{Y}} - \mathcal{Y}i} (1 - OFi)$$

式 122

式 120

(II) 発停発生状況による冷媒温度(蒸発温度、凝縮温度)の計算

最低循環量による限定により、冷媒温度が変化する量(冷房時の蒸発温度低下、暖房時の凝縮温度 上昇)を計算する。

 GRR
 : 循環量率(最小循環量を割り込む比率)

 Gr_{min}
 : 圧縮機最小冷媒循環量

稼働中のゾーン i

$$GRj = \sum_{1}^{稼働 + O \lor - > i} GRi$$
式 123
$$GRRj = \frac{GRj}{Gr_{min}} (但 \cup 0 \le GRRj \le 1)$$
式 124

(冷房運転時)			
Tr	: 室内乾球温度	[°C]	
Тр	: 室内露点温度	[°C]	
$\Delta\mathrm{H1}$: 室内露点温度における	的和空気と冷媒蒸発温度における飽和空気のエンタルピ	° —
	差	[kJ/kg]	
$\Delta \mathrm{HS1}$: 室内露点温度における	・飽和空気と冷媒蒸発温度における飽和空気の顕熱エンタ	リル
	ピー差	[kJ/kg]	

$$R = \Delta HS1 / \Delta H1$$

$$Tr - \frac{Tr - Te}{GRRj} > Tp 時Tej = Tr - \frac{Tr - Te}{GRRj}$$
式 126
それ以外
Tej = Tp - $\left\{ \frac{Tr - Te}{GRRj} - (Tr - Tp) \right\} \div R$
式 127
(暖房運転時)

$$Tcj=Ta+rac{Tc-Ta}{GRR j}$$
式 128

(III) 冷媒温度(蒸発温度、凝縮温度)平均値の計算

冷媒温度(蒸発温度、凝縮温度)の平均値を算出し、圧縮機動力の計算に用いる。

(冷房時)

$$Te_{ave} = \sum_{1}^{j} (OFj \times Tej)$$

(暖房時)

房時)
$$Tc_{ave} = \sum_{1}^{j} (OFj \times Tcj)$$

式 130

式 129

式 125

3.3.2 ビルマルチエアコンの特性式妥当性検証結果

3.3.2.1 室内機特性式の評価(冷房:時間平均データを使用した場合)

前述したように、ビルマルチエアコンの潜熱処理量を評価するためには、室内機の運転予測が重要 である。そこでまず、室内機特性式の精度評価を行う。

Aビルで室内機の吸込み・吹出し温湿度実測結果から算出した実測能力と、運転中の冷媒状態(蒸発飽和温度、SH)をもとに特性式を用いて算出した室内機能力の比較により、特性式の精度評価を行った。

精度評価の対象としては、全熱能力と顕熱能力比(SHF: Sensible Heat Factor)を用いる。ここで SHF とは以下の式で表される値である。

$$SHF = \frac{Q_{sen}}{Q_{total}}$$

式 131

(1) FXYMP71AA (天井埋め込みダクト型、7.1kW 機)

当該室内機については、以前試験室にて行った実測結果から作成した特性式パラメータを用いて精 度評価を実施した。

表 /0 ►XYMP/1AA の特性ハラメータ(冷房)				
\mathbf{BF}	а	b	с	
0.1608	0	0.5973	0	

従来のバイパスファクターモデルで予測した結果を以下に示す。

図 155 従来のバイパスファクターモデルによる全熱能力予測精度

図 156 従来のバイパスファクターモデルによる SHF 予測精度

次に、修正バイパスファクターモデルを用いた場合の予測結果を以下に示す。

図 158 修正バイパスファクターモデルによる SHF 予測精度

図 155, 図 157 から明らかなように、従来のバイパスファクターモデル、修正バイパスファクター モデルともに、全熱能力を概ね予測出来ているが、両図を比較すると、従来のバイパスファクターモデ ルの方が予測値とばらつきが多少大きく、一部ではマイナスの能力を予測している。ばらつきの縮小は 熱交表面温度を SH の二次式で表したことの効果であり、マイナス値を予測するような全体傾向として の乖離は特性式パラメータが室内機によらず共通であることに起因すると思われる。

今回の試験機では、制御仕様上室内機の SH 目標値を大きく変化させるような制御を導入していない 為、従来のバイパスファクターモデルと修正バイパスファクターモデルの差異は小さいが、制御仕様に よっては SHF も大きく変化させて制御する場合も想定され、そういった場合には修正バイパスファク ターモデルの採用による精度改善は重要なポイントであると考える。

次に図 156, 図 158 に示す SHF の予測精度であるが予測モデルによって大きな差は見られなかった。一方で、予測と実測で大きく乖離のあるデータが多数生じている。この乖離の原因に関しては、1 時間分のデータを平均して収集していることが原因であると考えられる。1 時間平均を行うことで、蒸発 温度が実運転上よりも高いものとして計算されており、除湿性能が無い(即ち SHF=1)という予測値 を算出しているものと思われる。

そこで、収集データのうち、膨張弁開度データから連続稼働していると思われるポイントのみを抜出 し、予測値と実測値を比較したデータを下記に示す。

図 159 修正バイパスファクターモデルによる全熱能力予測精度(連続稼働時)

図 160 修正バイパスファクターモデルによる SHF 予測精度(連続稼働時)

図 160 からわかるように、稼働時のデータでは SHF も高い精度で予測出来ている。

(2) FXYMP90AA (天井埋め込みダクト型、9.0kW 機)

当該室内機に関しては事前に実測・作成した特性式パラメータが存在しないため、本試験のデータ から特性式パラメータを作成した。

表 / T FXTMP90AA の特性ハフメーダ(市房)			
\mathbf{BF}	А	b	с
0.055	0	0.71	0.44

表 71 FXYMP90AA の特性パラメータ(冷房)

従来のバイパスファクターモデルで予測した結果を以下に示す。

図 161 従来のバイパスファクターモデルによる全熱能力予測精度

図 162 従来のバイパスファクターモデルによる SHF 予測精度

0 ℓ 0.2 0.4 0.6 0.8 1 SHF実測値

図 164 修正バイパスファクターモデルによる SHF 予測精度

図 161、図 163 の比較から、本 9.0kW 室内機においても、先述の 7.1kW 室内機同様に全熱能力を 概ね予測出来ており、従来のバイパスファクターモデルの方が予測値とばらつきが多少大きく、一部で はマイナスの能力を予測している。上述の通り、修正バイパスファクターモデルの特性式パラメータは 今回の試験データを元に作成しているが、図 163 の結果から、室内機が変わっても特性式パラメータさ え入れ替えれば、室内機特性を表すことが可能なモデルとなっていることが確認できる。

次に図 162、図 164 に示す SHF の予測精度に関しても、7.1kW 室内機と同様に、予測と実測で大き く乖離のあるデータが多数生じている。ここでも、収集データのうち、膨張弁開度データから連続稼働 していると思われるポイントのみを抜出し、予測値と実測値を比較したデータを下記に示す。

図 165 修正バイパスファクターモデルによる全熱能力予測精度(連続稼働時)

図 166 修正バイパスファクターモデルによる SHF 予測精度(連続稼働時)

図 166 からわかるように、稼働時のデータでは SHF も高い精度で予測出来ている。

(3) FX YMP140AA (天井埋め込みダクト型、14.0kW 機)

当該室内機に関しても事前に実測・作成した特性式パラメータが存在しないため、本試験のデータ から特性式パラメータを作成した。

衣 / 2 「	FXTMP140AAの特性ハリメージ(市房)			
\mathbf{BF}	А	b	С	
0.22	-0.048	0.67	1.18	

イトロク イントン うたま しょうしょう しょうしょう ト/ふ 二、

従来のバイパスファクターモデルで予測した結果を以下に示す。

図 167 従来のバイパスファクターモデルによる全熱能力予測精度

図 168 従来のバイパスファクターモデルによる SHF 予測精度

図 170 修正バイパスファクターモデルによる SHF 予測精度

図 167、図 169 の比較から、本 14.0kW 室内機においても、先述の 7.1kW 室内機同様に全熱能力を 概ね予測出来ており、従来のバイパスファクターモデルの方が予測値とばらつきが多少大きく、特に低 負荷領域でマイナスの能力を予測している。上述の通り、修正バイパスファクターモデルの特性式パラ メータは今回の試験データを元に作成しているが、図 169 から、室内機が変わっても特性式パラメータ さえ入れ替えれば、室内機特性を表すことが可能なモデルとなっていることが確認できる。

次に図 168、図 170 に示す SHF の予測精度に関しても、7.1kW 室内機と同様に、予測と実測で大き く乖離のあるデータが多数生じている。ここでも、収集データのうち、膨張弁開度データから連続稼働 していると思われるポイントのみを抜出し、予測値と実測値を比較したデータを下記に示す。

図 171 修正バイパスファクターモデルによる全熱能力予測精度(連続稼働時)

図 172 修正バイパスファクターモデルによる SHF 予測精度(連続稼働時)

図 172 からわかるように、予測値に多少のばらつきは見られるものの、稼働時のデータでは SHF も 概ね予測出来ている。

上記のように、修正バイパスファクターモデルを用いた計算により室内機の全熱能力特性・SHF 特性 を比較的高精度に予測できることが分かった。

また本評価による重要な知見として、全熱能力は1時間平均データを用いて計算してもほぼ正確に予 測可能であるのに対し、SHF は発停している時間帯のデータを平均して計算すると実測値と予測値の 間に大きな乖離が生じる傾向が見られた。除湿量は蒸発冷媒飽和温度に大きく影響されるので当然では あるが、計測されたデータを用いてシミュレーションを行う場合、そのデータが瞬時値か、ある時間範 囲の平均値かに留意して計算することが必要であるものと考える。

3.3.2.2 室内機特性式の評価(暖房:時間平均データを使用した場合)

ここでは、Bビルに導入した室内機: FXYMP45AA (天井埋め込みダクト型、4.5kW 機)、 FXYMP112AA (天井埋め込みダクト型、11.2kW 機) についてそれぞれ精度評価を実施する。

Bビルで室内機の吸込み・吹出し温湿度実測結果から算出した実測能力と、運転中の冷媒状態(蒸発飽和温度、SC)をもとに特性式を用いて算出した室内機能力の比較により、特性式の精度評価を行った。

精度評価の対象としては、全熱能力を用いる。

(1) FX YMP45AA (天井埋め込みダクト型、4.5kW 機)

当該室内機に関しては事前に実測・作成した特性式パラメータが存在しないため、本試験のデータ から特性式パラメータを作成した。

衣 /3 FX1MP45AA の特性ハフメータ(冷房)				
\mathbf{BF}	А	b	с	
0.136	0	0.4844	0	

表 73 FXYMP45AA の特性パラメータ(冷房)

従来のバイパスファクターモデルで予測した結果を以下に示す。

図 173 従来のバイパスファクターモデルによる全熱能力予測精度

次に、修正バイパスファクターモデルを用いた場合の予測結果を以下に示す。

図 174 修正バイパスファクターモデルによる全熱能力予測精度

図 173、図 174 から明らかなように、従来のバイパスファクターモデル、修正バイパスファクター モデルともに、全熱能力を概ね予測出来ているが、両図を比較すると、従来のバイパスファクターモデ ルの方が予測値のばらつきが多少大きく、修正バイパスファクターモデルの導入による効果が確認され た。

尚、修正バイパスファクターモデルによる冷房と暖房の能力予測精度確認結果である図 169 と図 174 を比較すると冷房時の方が、収束性が良い。この傾向は試験室にて室内機を運転した場合の特性式 精度評価結果と逆になっている(試験室データで特性式精度評価を行うと、暖房時の方が、収束性が良 い)。試験室による評価では、冷房は潜熱能力と顕熱能力の両方が存在し、特に潜熱能力が運転条件に影 響されやすいため、予測が難しいものと考えられる。一方で今回のような実測評価においては、暖房時 の室内機がサーモオフ時でも冷媒が少量は流れており、若干ながら暖房能力も出力していることや、運 転中の除霜運転や連絡配管中にたまった冷媒の回収運転などが冷房時と異なり一旦逆サイクル(冷房サ イクル)で運転を行っていることにより、今回のようにある程度の時間平均データを用いた評価ではど うしてもデータそのもののバラつきが大きくなってしまうものと考えられる。

また、図 174 に示したように、今回の特性式精度評価においては一部 SC がついていない状態での運転データが混入しており、適正な能力予測が出来ていない場合があった。このような状態は冷媒充填量が不足していると発生しやすいため、適正な評価のためには適正な施工も重要であることが分かる。 収集データのうち、膨張弁開度データから稼働率が高いと思われるポイントのみを抜出し予測値と実測値を実測値を実満

図 175 修正バイパスファクターモデルによる全熱能力予測精度(連続稼働時)

稼働率が高い状態での評価では、収束性に大幅な改善が見られ、発停などによる影響が予測精度に大きな影響を与えることがわかる。

(2) FX YMP112AA (天井埋め込みダクト型、11.2kW 機)

当該室内機に関しては事前に実測・作成した特性式パラメータが存在しないため、本試験のデータ から特性式パラメータを作成した。

衣 /4 1	4 FXYMP45AA の特性ハブメーダ(冷房)			
BF	А	b	с	
0.08	0	0.30	0.04	

表 74 FXYMP45AA の特性パラメータ(冷房)

従来のバイパスファクターモデルで予測した結果を以下に示す。

図 176 従来のバイパスファクターモデルによる全熱能力予測精度

次に、修正バイパスファクターモデルを用いた場合の予測結果を以下に示す。

図 176、図 177 から明らかなように、従来のバイパスファクターモデル、修正バイパスファクター モデルともに、全熱能力を概ね予測出来ているが、両図を比較すると、従来のバイパスファクターモデ ルの方が予測値のばらつきが大きく、修正バイパスファクターモデルの導入による効果が確認された。 尚、ここでも図 177 からわかるように、暖房時の特性式精度は冷房時よりも低い。

また、図 177 においても、今回の特性式精度評価においては一部 SC がついていない状態での運転デ ータが混入しており、適正な能力予測が出来ていない場合があった。

収集データのうち、膨張弁開度データから稼働率が高いと思われるポイントのみを抜出し、予測値と 実測値を比較したデータを下記に示す。

図 178 修正バイパスファクターモデルによる全熱能力予測精度(連続稼働時)

稼働率が高い状態での評価では、収束性に大幅な改善が見られ、発停などによる影響が予測精度に大きな影響を与えることがわかる。

3.3.2.3 室内機特性式の評価(1分毎の瞬時データを使用した場合)

3.3.2.1 では室内機特性式の妥当性を時間平均データを用いて評価した。その結果、平均した時間 (1時間)の間運転が継続している状態ではほぼ正確に予測出来ているが、発停などで停止時間が含 まれた場合には、全熱能力は予測できるもののSHFは適切に予測できなかった。

そこで、Aビルのデータ収集システムにより短時間間隔でのデータ収集装置を増設し、瞬時データ を用いた評価における室内機特性式の有効性を確認した結果を以下に示す。

図 179 室内機全熱能力予測精度(冷房、瞬時データ使用、Aビル7.1kW機)

図 180 室内機SHF予測精度(冷房、瞬時データ使用、Aビル7.1kW機)

図 158 で示したように、時間平均データでは、発停時に蒸発温度が鈍るため、SHF を正確に予測出 来ない場合があるが、図 179、図 180 からわかるように、冷房時に瞬時データを元にした予測では機 器能力、SHF (顕熱比)ともに正確に予測出来ているため、特性式としてはこれで完成とする。

図 181 室内機全熱能力予測精度(暖房、瞬時データ使用、Aビル 14.0 kW機)

次に暖房運転の瞬時データによる評価であるが、室内機サーモオン中の瞬時データで比較すると図 181からわかるようにかなり予測値の方が大きな値を算出している。この時の室外機の運転状態を詳細 に確認すると、暖房継続時間5~6分の発停運転を繰り返していることがわかった。

図 182 からわかる様に、暖房運転時は室内機がサーモオンし、冷媒が流れてもすぐに吹き出し温度が 上がらず、また運転後にサーモオフした場合でも、室内機に残った熱が室内に供給され続けるため、サ ーモオン時間中だけの比較評価では実際の挙動を模擬出来ない。

しかし、この結果を踏まえて、1日の運転時間全体の能力を実測と予測で比較したところ、表 75 に 示したように十分な精度で評価できていることがわかった。このことから、サーモオフ中に室内機が出 力している能力はデータ上の機器挙動から把握することは出来ないため、今回作成した特性式を用いて サーモオン中に"空調機としては"能力を出しているとして計算することでシステムの消費電力を正し く評価できるものと考える。

表 75 暖房能力予測の1日積算値評価

実測能力積算値	予測能力積算値	誤差
9.27kWh	10.46kWh	13%

よって暖房についても特性式としてはこれで完成とする。

3.3.2.4 システム予測の評価(冷房:時間平均データを使用した場合)

次に、3.3.1 で作成したビルマルチエアコン全体の計算モデルの妥当性を評価する。 まず、Aビルにおける1時間毎の平均データを用いた評価結果を以下に記す。

(1) ビルマルチエアコンの能力算出

ビルマルチエアコンの計算モデルは入力として空調負荷データを必要とする。そこでまず運転デー タから能力を算出する必要がある。

室外機の空調能力をコンプレッサーカーブ法(CC法)を用いて算出した。

CC 法は室内機入口・出口間の冷媒エンタルピー差と圧縮機特性から算出された冷媒循環量を積算 して室外機能力を求めるものである。

図 183 冷凍サイクルの冷媒状態遷移図(モリエル線図)

図 183 のモリエル線図で、点 C-D 間が冷房時室内機における冷媒の比エンタルピー変化を表している。よって。C-D 間の比エンタルピー差と冷媒循環量の積を算出することで室外機の冷房能力を算出することが可能となる。

室外機で把握しているサーモオンしている室内機容量と、上記CC法によって算出された空調能力を 比較した。

実際にすべての室内機の能力計測を行った上での比較ではなく、サーモオン中室内機の定格能力の積 算値に過ぎないため、ある程度ばらついた結果になっている。全体的な傾向としては、サーモオンして いる室内機が全数定格能力を出力していたとしても CC 法にて算出した空調能力の方が大き目になって いる。これは室内機特性式の精度評価でも述べたように、発停しているデータの平均値をもとにしてい る影響であると考えられる。すなわち、CC 法による計算では、運転データを平均することによって、 実際の稼働時よりも低圧を高めに想定してしまい、圧縮機吸入冷媒密度が実際よりも高く算出され、結 果的に同じ圧縮機回転数でも冷媒循環量を過大に算出してしまうことで、実際よりも高い空調能力を予 測している。

しかしながら、全体的に高めの値を算出しつつも、定性的には空調負荷の変動をある程度予測出来て いると考えられる。室外機特性式精度評価に際しては、CC法による能力を正として、消費電力予測精 度の確認を行う。

(2) ビルマルチエアコンシステム消費電力予測精度評価

シミュレーションを用いて、前項で算出した空調能力と計測された室内・室外の温湿度条件をもとに電力消費量を予測し、実測値と比較を行った。

部分毎に比較すると乖離もあるが、全体のトレンドとしては電力消費量の変動をうまく予測出来てい るものと考える。

図 186 のように実測値と予測値の比較を散布図で示すと、全体の傾向として消費電力を過大に予測 していることが分かる。これは図 184 で示したように、空調負荷の予測値が上振れしており、その負荷 を満たすようにシミュレーションを行った結果、消費電力も過大に予測されたものと考えられる。

また、予測値の方が大きいという全体の傾向とは別に、予測値よりも実測値の方が大きいデータが少数ながら含まれている。データを詳細に確認した結果、シミュレーション上はすべての室内機が均等に 運転しているとして計算しているが、実測結果では必ず室内機の何台かが停止しており、その結果稼働 中の室内機の負荷率が上昇し、運転時の低圧が低下することにより消費電力が増大してしまっている。 尚、夏季全体では、シミュレーションによる消費電力予測値は実測値よりも約16%大きかった。

3.3.2.5 システム予測の評価(暖房:時間平均データを使用した場合)

冷房の場合と同じく、Aビルにおける暖房時のシステム予測の妥当性を評価する。

(1) ビルマルチエアコンの能力算出

暖房の場合は冷房の場合とは逆に、図 183 の点A-B間が暖房時室内機における冷媒の比エンタル ピー変化を表している。よって。A-B間の比エンタルピー差と冷媒循環量の積を算出することで室外 機の暖房能力を算出することが可能となる。

図 187 CC法による空調能力評価結果(暖房)

図 187 から、暖房の場合も能力はCC法から大まかに予測可能であることが確認された。ここで図 184 と図 187 を比較して、暖房時の方がデータのバラつきが小さいのは、Aビルに導入したビル用マル チ空調機がヒートポンプデシカント調湿外調機との連携に配慮した高顕熱仕様となっており、冷房時の 蒸発温度を負荷に合わせて変更する機能を有しているがゆえに、単純にサーモオンしている室内機容量 からでは空調能力が推定しづらいことが要因と考えられる。

室外機特性式精度評価に際しては、CC法によって算出された空調能力を正として、消費電力予測精度の確認を行う。

(2) ビルマルチエアコンシステム消費電力予測精度評価

シミュレーションを用いて、CC 法で算出した空調能力と計測された室内・室外の温湿度条件をも とに電力消費量を予測し実測値と比較を行った。

ただし、今回評価したビル用マルチ空調機は冷房・暖房同時運転が可能な機種であり、冬季データ の中にも同時運転を行っているデータが含まれていたが、冷暖同時運転時を模擬するためのシミュレ ーションは未完成であるため、ここでは全室内機が暖房設定になっているデータのみを用いて評価を 行っている。

部分毎に比較すると乖離もあるが、全体のトレンドとしては電力消費量の変動をうまく予測出来ている。

図 189 電力消費量予測精度検証

図 189 のように実測値と予測値の比較を散布図で示すと、全体の傾向として消費電力を過大に予測 していることが分かる。特に低負荷(低消費電力)領域での乖離の原因は、暖房運転時にはサーモオフ した室内機はファン風量を低下させるため、ファン動力が大幅に低下するが、シミュレーション上では 室内機個別の発停は無いものとして計算しているため、その効果が反映されていないことが原因だと考 えられる。

逆に、高負荷(高消費電力)領域での乖離の原因は、当該運転時の負荷率が高く且つ外気温度も低い ことにより、低圧が低下しており、シミュレーションに用いた圧縮機特性データ作成時の運転条件から は外挿になっているため、予測精度が低いものと考えられる。

尚、冬季全体では、シミュレーションによる消費電力予測値は実測値よりも約41%大きかった。上記 のようにいくつかの課題はあるが、図188からわかるように、定性的なビル用マルチの挙動自体はかな り高い精度で再現出来ている。

3.3.2.6 システム予測の評価(1分毎の瞬時データを使用した場合)

図 186、図 189 で、システム消費電力の予測値が実測値よりも、特に高負荷側で大きい傾向が見 られた。値に誤差はあるものの、その誤差にはある一定の傾向があるため、特性式の形自体ではなく、 特性パラメータに要因があると考えられる。前項までのシミュレーションに用いていた室外熱交のデ ータは、計測に用いている機種に近しい機種の試験データをもとに作成したものであったが、上記の 課題に鑑み、計測に用いている機種自体の試験データを新たに入手し、特性パラメータを新たに作成 した。

Aビルに用いている室外機は、12HP機と16HP機の外マルチ接続による28HP機である。 性能評価試験時の計測データを元に作成した外熱交のパラメータは 表 76のようになる。

	冷房		暖房	
	12HP機	16日P機	12HP機	16日P機
ΒF	0.383	0	0.586	0.551
А	0.0289	0	0	1.85
В	0	0.297	0	0
С	0	2.39	0	0

表 76 Aビルに導入した室外機の熱交パラメータ

図 184 に見られるような、一時間平均データを用いて予測したことによる空調負荷計算のばらつ きも排して特性式を評価するため、1 分毎の瞬時データを用いて試算を行った。

瞬時データを元に算出した結果を、単純に表示するとかなりばらつきのあるデータとなるため、図 190、図 191 においてはそれぞれ 10 分平均、1 時間平均の値を表示している(暖房時の方が前述のと おり発停の多い運転である為、平均時間を長くとらないと有意なデータにならなかった)。

以上より、瞬時データと適切な特性パラメータを使用することで、今回作成した計算モデルはかなり 正確に消費電力を予測可能であることが確認された。

3.4 全熱交換機の熱交換能力特性の把握

3.4.1 実測による全熱交換機の熱交換能力特性の把握

顕熱潜熱交換効率評価

実際に据え付けられた全熱交換器の顕熱回収能力、潜熱回収能力を測定したが、それぞれで異なる 能力を記した。また、カタログ性能と乖離した測定結果となった。これは、本体据付条件の影響で機 外静圧が個々で異なり、その影響で内部漏れが発生し、有効換気量率が変化する事で能力がそれぞれ で異なると考えられる。図 192 図 193、表 77 に平成 26 年度にて報告した交換効率資料を記す。

図 192 大阪 C ビル冬期エレメント温度交換効率

図 193 大阪Cビル冬期エレメント絶対湿度交換効率

得られた結果より、効率を算出した。称呼値と実測値比較を以下の表に記す。D01 から D03 で能 力にばらつきがみられる。

表	77	効率一覧
10	11	- 初十 見

		称	呼	実測(〔大阪 C)》	冬季のみ
		夏季	冬季	D01	D02	D03
必与	乾球温度[℃]	30.0	18.2	15.7	16.0	15.2
和天	絶対湿度[g/kg・DA]	12.0	6.39	6.50	6.19	6.17
エレメン	エレメント温度交換効率[%]		76.9		60.0	54.3
温度交換効率[%]		62.0	86.0	67.2	69.2	63.5
湿度交換効率[%]		61.8	31.0	34.6	25.0	24.4
エンタルピー交換効率[%]		62.0	65.0	54.7	52.3	48.5

3.4.2 全熱交換機内部漏れ原因

上記結果より、OA 機外静圧(ダクトの長さ、ダクトの曲がり、ダクトの径、外気取り込みグリル等) より RA 機外静圧(ダクトの長さ、ダクトの曲がり、ダクトの径、還気取り込みグリル等)が小さい場 合は、主に機械内部で排気系統から給気系統へ空気が漏れると考えられる。ただし、外気側と排気側 に至っても、圧力差が存在した場合は、同様に給気系統から排気系統に空気が漏れると考えられる。 図 194 に漏れイメージを記す。内部漏れのパターンは2種類存在する。RA 機外静圧<OA 機外静圧 の場合と RA 機外静圧>OA 機外静圧の場合である。RA 機外静圧<OA 機外静圧の場合は、主に排気 が給気に漏れて、RA 機外静圧>OA 機外静圧の場合は、主に外気が排気に漏れると考えられる。図 195 に換気装置機械内部の圧力推移イメージを記す。機械入口段階で既に負圧となっており、フィル ター、エレメント等によって更に内部が負圧となる。その際に、反対側の換気経路と圧力差が生じた 場合に空気が漏れると考えられる。

上記の事より、機械内部の漏れが圧力差によって発生していると考えられ、その内部漏れによって 能力が可変すると考えられる。よって、実際の据付状態を調査した。

3.4.2.1 実際のダクトの設置状況

図 196、図 197 に東京 B ビルと大阪 C ビルの図面を記す。それぞれにて全く異なるダクト経路となっており、ビル毎に取り回しが異なる事が良くわかる。また、東京 B ビルは建屋縦シャフトに外気 取入れ用ダクトが据え付けられているので、計算を行うことが出来なかった為、大阪 C ビルの OA、 RA の機外静圧を『国土交通省:建築設備設計基準』に準じて算出した。表 78 計算によって求めた 機外静圧一覧に記す。

図 196 東京 B ビル (赤色給気、青色排気、桃色外気)

図 197 大阪 C ビル (赤色給気、青色排気、桃色外気)

	OA 経路[Pa]	RA 経路[Pa]
D01	80	99
D02	85	9
D03	84	9

表 78 計算によって求めた機外静圧一覧

表では D02 と D03 では数値上の変化がないが、結果としては異なる結果が出ている。これは、図面と実際に施工する際の差(曲げや縦方向ヘダクト施工等)が影響していると考えられる。

上記の事も踏まえ、内部漏れが原因で顕熱回収効率、潜熱回収効率に個体差が発生する事もわかった。しかし、実際に据え付けられた状態の内部漏れ量について測定した知見がないため、東京 B ビル にて実際に有効換気量の測定を実施した。実際の能力を記すため、平成 26 年度報告の東京 B ビルの 顕熱回収効率、潜熱回収効率を図 198、図 199 に記す。

図 198 東京 B ビル通年エレメント温度交換効率

図 199 東京 B ビル通年エレメント絶対湿度交換効率

得られた結果より、効率を算出した。称呼値と実測値比較を以下の表 79 に記す。カタログ性能と 比較して顕熱回収効率は概ね達成していたが、冬期における潜熱回収効率は未達となっていた。カタ ログ値 31.0%に対して、実測値 8.7%である。本事象となった原因を明らかにするために、有効換気 量率を測定した。

		称呼		実測(東京 B)	
		夏季	冬季	夏季	冬季
必与	乾球温度[℃]	30.0	18.2	30.6	17.3
而又	絶対湿度[g/kg・DA]	12.0	6.39	12.4	5.67
エレメント温度交換効率[%]		76.9		70.0	
温度交換効率[%]		62.0	86.0	55.1	79.2
湿度交換効率[%]		61.8	31.0	49.3	8.7
エンタルピー交換効率[%]		62.0	65.0	52.0	52.2

表 79 称呼値と実測結果

3.4.3 東京 B ビル有効換気量試験

有効換気量試験については、JIS B 8628 全熱交換器と JRA4056 全熱交換器有効換気量試験方法 に準拠して試験を実施した。表 80 に計測装置の仕様一覧と、試験内容と結果を 3.4.3.1~3.4.3.6 に 記す。

メーカー名	型番	仕様		
TSI	Model8371	測定範囲 風量: 42 - $4,250m^{3}/h$ 差圧: $\pm 3,735Pa$ 圧力 256 - $1,016mmHg$ 湿度: $0-95\%RH$ 温度: $-40^{\circ}C \sim 121^{\circ}C$ 精度 風量: 読み値の $\pm 3\%$ 差圧: 読み値の $\pm 3\%$ 圧力: 読み値の $\pm 2\%$ 湿度: $\pm 3\%RH$ 温度: $\pm 0.3^{\circ}C(0 \sim 71^{\circ}C)$ $\pm 1.2^{\circ}C(-40 \sim 0^{\circ}C,71 \sim 121^{\circ}C)$ 分解能 風量: $1m^{3}/h$ 差圧: $0.001Pa$ 圧力: $1mmHg$ 湿度: $0.1^{\circ}C$		
コーナー札幌	KNS-二酸化炭素	測定方法:非分散型赤外線吸収方式 (NDIR) ポンプ吸引式 測定範囲:0~5000ppm 分解能:1ppm 精度:±50ppm、または測定値の5% (25℃において)		

表 80 計測装置仕様表
3.4.3.1 現状据え付けられている状態の機外静圧測定、SA 風量測定

全熱交換器の内部漏れは設置条件により異なる為、吹出し口、吸込み口の機外静圧が内部漏れに影響を与える。よって、現状の据付状態の機外静圧を測定する。具体的には、吹出し口、吸込み口に測定用ダクトを設置し、微差圧計にて機外静圧を測定する。また、有効換気量を測定する為に、SA 吹出し口に風量測定装置を設置し、風量を実測する。尚、対象の全熱交換器はSA 吹出し口が4ヵ所だったので、全ての箇所にて測定を実施した。図 200 に設置イメージ図、図 201 に機外静圧測定結果(時系列)、表 61 に機外静圧測定結果、図 202 に SA 口の図面、写真 16 SA 風量測定様子に風量測定時の写真、表 82 に風量測定結果を記す。

図 201 機外静圧測定(時系列)

表 81	機外静圧測定結果
10 25	做外前工则上和未

機外静圧	OA	SA	RA	EA
1回目[Pa]	133.1	122.8	38.4	79.4
2回目[Pa]	132.5	121.9	38.1	80.7
平均[Pa]	132.8	122.3	38.2	80.0

図 202 図面 SA 口吹出し位置

写真 16 SA 風量測定様子

+	00	同旦测白处田
衣	ŏΖ	風軍測正結果

風量	SA1	SA2	SA3	SA4	合計
1回目[m³/h]	388	$21^{(i)}$	$21^{(i)}$	260	690
2回目[m³/h]	398	$21^{(i)}$	$21^{(i)}$	256	696
平均值[m ³ /h]					693

※ 風量系表示部はゼロを表示したが、手で感じる程度の風は明らかに出ていたので、測定レンジの下 限値以下だと考えられる。計算上では、最低測定レンジの5割[21 m³/h]とした。

3.4.3.2 二酸化炭素濃度測定の為に、ダクト、補助ファン取付

天井リターン方式にて換気装置が据付けられている為、効果的に二酸化炭素を散布する事が出来ない。よって、RA 測定用ダクトにフレキシブルダクトと、静圧調整用の補助ファンを取り付ける事で、 十分に攪拌した空気を機械内部へ送る。より撹拌する為に、補助ファンの上流に二 U 酸化炭素封入口 を設置する。図 203 設置イメージ図、写真 17、写真 18 に RA 吸込みロダクト接続写真、写真 19 に補助ファン設置写真を記す。

図 203 設置イメージ図

写真 17 既存 RA 吸込み口

写真 18 RA 吸込み口に補助ダクトとフレキシブルダクトを追加

写真 19 補助ファン設置

3.4.3.3 機外静圧調整作業

既設の全熱交換器にフレキシブルダクト、補助ファンを取り付けたため、実際に据え付けられていた状態から異なる据付状況になっている。よって、補助ファンを任意に可変運転出来る為にインバータ装置を取り付けて、ファン回転数を調整し、実際の据付状態の機外静圧を達成する。図 204 に設置イメージ図、表 83 に調整後の機外静圧を記す。概ね、元々の据付条件の機外静圧を満足することが出来た。

図 204 INV を用いて機外静圧調整

表	83	機外静圧調整結果
---	----	----------

機外静圧	OA	SA	RA	EA
元々の据付条件値[Pa]	132.8	122.3	38.2	80.0
補助ファンにて据付条件再現結果[Pa]	133.9	124.5	36.7	81.5
差[Pa]	1.1	2.2	▲1.5	1.5

3.4.3.4 RA 風量測定

インバータ装置による機外静圧調整作業にて静圧を整えたので、実際の据付条件と同等条件になっている。全熱交換器は風量比によっても、性能が異なる。そこで、対象吸込み口にて風量を測定する。 図 205 に設置イメージ図、写真 20 に RA 吸込み口、表 84 に風量測定結果を記す。

図 205 設置イメージ図

写真 20 RA 風量測定

表	84	RA 風量測定結果
---	----	-----------

	1回目	2回目	3回目	平均值
RA 風量[m ³ /h]	795	785	790	790

3.4.3.5 二酸化炭素散布、二酸化炭素濃度サンプリング実施

有効換気量を測定する状況が整ったので、実測を行う。尚、JIS B 8628 全熱交換器とJRA4056 全 熱交換器有効換気量試験方法に準拠して、RA 二酸化炭素濃度を 5000ppm 近傍に調整し、SA と OA の二酸化炭素濃度を測定し、二酸化炭素移行率を測定し、漏えい量、有効換気量、有効換気量率を求 める。図 206 に設置イメージ図、計算式、図 207、図 208 にサンプリング結果(時系列)、表 85 にサ ンプリング結果、表 86 に有効換気量結果を記す。

図 206 二酸化炭素散布、二酸化炭素濃度サンプリング実施

計算式を下記に記す。

a. 二酸化炭素移行率

$$E_0 = \frac{C_{SA} - C_{OA}}{C_{RA} - C_{OA}} \times 100$$
 It 132

b. 漏えい量

$$q = Q_s \times \frac{E_0}{100}$$

式 133

c. 有効換気量

 $Q_E = Q_s - q$

式 134

d. 有効換気量率

 $E = 100 - E_0$

式 135

E ₀	: 二酸化炭素移行率	[%]
C_{SA}	: 給気二酸化炭素濃度	[ppm]
C _{OA}	: 外気二酸化炭素濃度	[ppm]
C_{RA}	: 還気二酸化炭素濃度	[ppm]
9	: 漏洩量	[m³/h]
Q_S	: 給気量	[m³/h]
Q_E	:有効換気量	[m³/h]
Ε	:有効換気量率	[%]

図 207 CO2 濃度サンプリング(時系列)

図 208 CO2 濃度サンプリング(時系列)

表 85 サンプリング結果

二酸化炭素濃度	OA	RA	SA	EA
1 回目[ppm]	456	4908	747	4527
2 回目[ppm]	452	4832	712	4502
平均值[ppm]	454	4870	730	4515

表 86 有効換気量率

有効換気量	E ₀	q	Q_E	E
1回目	6.5[%]	$45.0[m^{3}/h]$	648.0[m ³ /h]	93.5[%]
2回目	5.9[%]	40.9[m ³ /h]	652.1[m³/h]	94.1[%]
平均值	6.2[%]	43.0[m ³ /h]	650.0[m³/h]	93.8[%]

3.4.3.6 内部漏れ量を考慮した冬期湿度交換効率

有効換気量率は 93.8%となった。本結果を踏まえて、冬期に実測した湿度交換効率 8.7%と同等であるかを検討する為に、実際の計測値を図 209 に記す。

昨年度の測定結果(昨年度報告内容と同等の効率時の性能(一部抜粋))を表 87 に記す。

				10 01	叶牛皮肉	こうして				
実測値		温度	€[°C]		効率		絶対湿	变[g/kg]		効率
測定日	OA	SA	RA	EA	$\frac{EA - RA}{OA - RA}$	OA	SA	RA	EA	$\frac{EA - RA}{OA - RA}$
2/5 11:00	10.3	16.4	24.5	15.6	62.6	1.43	7.16	6.28	5.84	9.1

表 87 昨年度測定結果

エレメントにおける絶対湿度交換効率は9.1%であり、SA側にどれだけ漏れているかを検討する。

検討① 水分量の整理

給気する水分量 = 外気湿度流入分+エレメントによる回収分+内部漏れ湿度

式 136

水分計算式 = 絶対湿度×風量×密度 …
$$\left[\frac{g}{h}\right] = \left[\frac{g}{kg} \times \frac{m^3}{h} \times \frac{kg}{m^3}\right]$$
式 137

外気流入分 = 外気絶対湿度
$$1.43 \times$$
質量流量 $777 = 1111.1 \begin{bmatrix} \underline{g} \\ h \end{bmatrix}$

式 138

内部漏れ = 還気絶対湿度 $6.28 \times$ 質量流量 $51.6 = 324.2 \begin{bmatrix} g \\ b \end{bmatrix}$

式 139

エレメント移動分 = (還気絶対湿度 – 外気絶対湿度)× 実測湿度回収効率
エレメント移動分 = (還気絶対湿度 6.28 – 外気絶対湿度 1.43)×0.091 = 0.44 [
$$\frac{g}{h}$$
]
式 140

エレメント湿度回収 = エレメント移動絶対湿度
$$0.44 imes$$
質量流量 $879 = 386.8 \left[rac{g}{h}
ight]$

式 141

給気空気絶対湿度 =
$$(1111.1+324.2+386.8)$$
÷ 827 = $2.20 \left[\frac{g}{h} \right]$

式 142

内部漏れを見込んだ給気側湿度交換効率 Xo₄ - Xs₄ 1.43 - 2.20

$$\eta = \frac{X_{OA} - X_{SA}}{X_{OA} - X_{RA}} \times 100 = \frac{1.43 - 2.20}{1.43 - 6.28} \times 100 = 15.9 \, [\%]$$

$$\vec{x} \ 143$$

内部漏れを含んだ絶対湿度交換効率は15.9%となった。

次に、カタログ条件の測定方法と、本測定方法について比較を実施した。測定機種のカタログを抜粋 し、測定方法を赤線にて記す。

機種名		VKMP50HM								
電源		単相200V								
換気モード		全熱交換換気			普通換気					
ノッチ		特強	強	弱	特強	強	弱			
外気負荷	冷房時★1(kW)			4.83 (4.83 (2.03)					
処理能力	暖房時★2(kW)			5.76 (2.56)					
送風機	電動機出力(kW)			0.28	0×2	×1	14.			
	風量(m3/h)	500/500	500/500	400/390	500/500	500/500	400/390			
	機外静圧(Pa)	225/225	170/140	125/85	225/225	170/140	125/85			
フレッシュアップ運転 給気過剰		1. <u></u>	1.08:1/1.11:1	1.22:1/1.28:1	1	1.08:1/1.11:1	1.22:1/1.28:1			
風量比率(給気	(誘気) 排気過剰	6 7 1	1:1.08/1:1.11	1:1.22/1:1.28		1:1.08/1:1.11	1:1.22/1:1.28			
	加湿方式			流下式自然	蒸発加湿器					
4n:0 88	,加湿量 2.9/		/2.9							
川川小亚名臣	(kg/h) ★3	(4.2	4.2							
	給水圧力(MPa)		0.02~0.49	0.02~0.49						
消費電力	ታ(W)	560/655	505/570	415/440	560/655	505/570	415/440			
温度交换	効率(%)★4	76/76	76/76	77/77.5						
エンタルピ	冷房時★1	68/68	68/68	71/71.5	-					
交換效率(%	6)★4 暖房時★2	72/72	72/72	74/74.5						
運転音	★5 (dB)	37.5/37.5	36/33	33/29	38.5/37.5	36/33	33/29			
製品質量	(満水時)(kg)	102 (105)								
★1.空気条	件:室内側27C	DB·19℃WB、室外值	則35°CDBによる値で	す。 ★2.空気条件:	室内側20℃DB、室外	側プCDB·6℃WBに	よる値です。 ★3.空			
気条件:室P	気条件:室内側20°CDB・15°CWB、室外側7°CDB・6°CWBによる値です。加湿量< >内の数値は全熱交による湿度回収分を含んだ値です。 ★4.効率									
個を示します	<u>測定にのたつては、走恰切機外押圧を至外期と至凶期の比を/対1の割合でつけた状態で測定しています。なお、温度交換効率は</u> 冷房時、暖房時の平均 値を示します。 ★5.連転音はJIS-B-8628に準拠した無響室換算値です。実際に据え付けた状態で測定すると、間囲の騒音や反射を受け表示値より大き									
くなるのが聖	なるのが普通です。 ※外気負荷処理能力、加湿量は、特強および強ノッチ定格風量時のものです。数値内())は、全熱交による熱回収分を内数で示									
しています。	っています。 ※電流、消費電力、効率は上記風量時の値です。 ※温度交換効率、エンタルビ交換効率、加湿量は、給気と排気の風量比や空気条件に									
量を維持す	るため、送風機	*1+は一般店室の場	一日でめり、温度差の7 出口からのドラフトが!	へきな/市風/単寺では、3 懸念される場合は 吹	民記録個内でのつく	51史用でさません。	※味相理転中も探え の注意事項、空気条			
住にトス加い	思量の質出交	物动家 執交換男(副	ち膨っイル)能力の質	山 運転会 使田周田	冬性の詳細け 技術	編D 180なご覧ください				

11による加速量の算血、又換効率、熟又換益(直載コイル)能力の算血、運転音、使用向曲案件の評 ※ビル用マルチ室外ユニットとの接続容量を計算する時には、3.5kWとして計算してください。

図 210 カタログ抜粋

赤線抜粋:「効率測定にあたっては、定格の機外静圧を室外側と室内側の比を7対1の割合でつけた 状態で測定しています。なお、温度交換効率は冷房時、暖房時の平均値を示します。」カタログ値と同 等条件にするために、実測値の静圧比を算出した。現状の比は3.65対1となっており、差圧は97.2Pa、 漏れ量は51.6kg/h である。本条件を模擬的に7対1に変換した場合、静圧比1.54倍となり漏れ量は 77.7kg/h となり、カタログ条件の空気条件と、実際の温湿度条件によって、交換量は可変し(20℃ DB,15℃DB⇒10.3℃DB,2.7℃WB)、風量比によっても能力は変更するので本条件では能力1.06倍と なり、諸条件を考慮すると能力は26.1%の効率となる。また、エレメント表面に付着する微細粉末の 影響によっても性能は低下すると考えられる。カタログ値31.0%に対して、少し乖離があるが、経年 劣化の影響も加味されて、31.0%から少し回収効率が低下して26.1%程度の効率になったのではない かと考えられる。よって、実測した冬期の絶対湿度回収効率8.7%は妥当であると考えられる。

上記有効換気量率試験によって、内部漏れの影響がある事が良くわかった。

3.4.4 国立研究開発法人 建築研究所 環境実験棟 有効換気量試験

3.4.4.1 設置環境、試験条件

東京 B ビルでの有効換気量率試験によって、内部漏れの影響が有効換気量率に大きく寄与する事が 判明したので、機外静圧を任意に変更した場合の漏れ影響を国立研究開発法人建築研究所環境実験棟 にて評価した。

図 211 全熱交換器据付位置

PAC1-G 外気処理機(全熱交換器加湿内蔵タイプ)VKMP50HM にて機外静圧を任意に変更し、有効 換気量を測定する。しかし、対象の室は模擬オフィスであり、定常的にダクトを取回すことが出来な い為、室内側の RA ロ、SA ロに取り外し可能なダクトシステムを取り付けた。外気と繋がる OA ロ と EA ロに関しては、外壁に同等のシステムを据付することが出来ないので、ダクト経路に追加で補 助ファンと操作する為のインバータを取り付けた。尚、既存の RA ロ、SA ロに取り付ける為、ボッ クスを加工してフレキシブルダクトと接続した。写真 21、写真 22 に記す。

写真 21 RA 側補助ファン、補助ダクト取付位置

写真 22 SA 側補助ファン、補助ダクト取付位置

各種様々な計測器と補助ファンを取り付けたので、まとめたイメージを図 212 に記す。

図 212 全熱交換器試験時、測定内容まとめ

内部漏れ量を評価する為に表 88の試験条件に設定した。

云 00									
	機外静圧[Pa]		機外静圧差[Pa]	風量[m ³ /h]					
No.	OA	RA	RA - OA	SA	EA				
1	112.5	172.5	- 60	500	500				
2	112.5	142.5	- 30	500	500				
3	112.5	112.5	0	500	500				
4	112.5	82.5	30	500	500				
5	112.5	52.5	60	500	500				
6	145	145	0	400	400				

表 88 試験条件一覧

試験を実施する事で、排気経路から給気経路へ漏れる量と、給気経路から排気経路へ漏れる量が明確になり、風量を変えた場合の影響も評価する事が出来る。

3.4.4.2 試験結果

(1) 測定值一覧

	機外静圧[Pa]		機外静圧差[Pa]	風量[m³/h]					
条件	OA	OA RA		SA	EA				
1	123	49 -74		485	502				
2	115	82	-33	497	496				
3	106	112	6	502	497				
4	108	141	33	504	507				
5	113	176	63	501	506				
6	140	150	10	394	404				

表 89 測定結果

表 90 測定結果より有効換気量率算出

	CO2濃度[ppm]			漏れ率	漏洩量	有効換気量	有効換気量率
条件	OA	SA	RA	[%]	[kg/h]*	[kg/h]*	[%]
1	445	1479	4838	23.6	134	435	76.4
2	438	1108	4478	16.6	98	494	83.4
3	448	882	4596	10.5	62	531	89.5
4	445	774	4715	7.7	46	549	92.3
5	446	642	4535	4.8	29	565	95.2
6	444	854	4481	10.2	$\overline{47}$	416	89.8

※ 本試験においては、模擬オフィスにて実験を実施している為、OA、SA、RA、EA それぞれの空調 条件を同等にすることが出来ない為、質量流量にて評価を実施した。

- (2) 時系列機外静圧、風量、質量流量
- (I) <条件 1>

図 213 条件1:機外静圧

(II) <条件 2>

図 215 条件2:機外静圧

図 217 条件 2: 質量流量

(III) <条件 3>

図 218 条件3:機外静圧

図 219 条件 3: 風量

条件3:質量流量

(IV) <条件 4>

図 222 条件4:風量

(V) <条件 5>

図 224 条件 5: 機外静圧

図 225 条件 5: 風量

図 226 条件 5: 質量流量

(VI) <条件 6>

図 227 条件6:機外静圧

(3) 時系列 CO2 濃度

以下に測定時の CO2 濃度推移をそれぞれ示す。

(I) <条件 1>

図 229 条件1:CO2濃度の推移

(II) <条件 2>

(III) <条件 3>

図 231 条件 3: CO2 濃度の推移

(IV) <条件 4>

図 232 条件4:CO2濃度の推移

(V) <条件 5>

図 233 条件 5: CO2 濃度の推移

(VI) <条件 6>

(4) 機械内部漏れ量の把握

上記データより、風量が 500m³/h 時の吸込み口機外静圧差 RA-OA と有効換気量率を明確にした。 以下にグラフを記す。想定した通り、吸込み口機外静圧差が RA<OA になるほど機械内部での漏れ 量が増えた。

図 235 有効換気量率(500 m³/h)

図 236 機外静圧と漏れ量の関係(RA⇒SA漏れ)

上記機外静圧と漏れ量のグラフより近似式を求めた。

RA⇒SA 漏れ量[kg/h] y = 0.001824 x² - 0.760524 x + 68.831334

式 144

上記機外静圧と漏れ量のグラフより近似式を求めた。

RA⇒SA 漏れ量[kg/h] y = 0.001676 x² - 0.656359 x + 60.749704

式 145

また、漏れ量は風量にかかわらず、吸込み側機外静圧差によって漏れる事から、風量が異なる場合 の有効換気量率を求めた。以下に記す。風量が増えるほど、漏れ量の比率が低下する為、有効換気量 率が高くなる傾向となった。したがって、風量が減れば減るほど、漏れ量の比率が増加する為、有効 換気量率が低下する結果となった。

(5) 風量比がもたらす温度交換能力変動の把握

本プログラムは Ver.05 (住宅・住戸の省エネルギー性能の判定プログラム Ver.01.15) を参照する。 Ver.05(住宅・住戸の省エネルギー性能の判定プログラム Ver.01.15)

2015.10

付録 A 熱交換型換気設備

熱交換型換気設備の補正温度交換効率n(は、式(1)により表される。

$$\eta'_{t} = \eta_{t} \times C_{tol} \times C_{eff} \times C_{bal} \times C_{leak}$$
(1)

227.

η_t: 熱交換型換気設備の補正温度交換効率

- nt :熱交換型換気設備の温度交換効率(%)
- Ctol :カタログ表記録差による温度交換効率の補正係数
- Ceff : 有効換気量率による温度交換効率の補正係数
- Cbal :給気と排気の比率による温度交換効率の補正係数
- Cleak :排気過多時における住宅外皮経由の漏気による温度交換効率の補正係数

である。

A.1 熱交換型換気設備の温度交換効率

温度交換効率η_tは、JIS B 8628「全熱交換器」に規定された温度交換効率とする。顕熱交換型換気設備の 場合も、JIS B 8628「全熱交換器」に規定された試験方法及び計算方法に則って計算することとする。いずれの 場合も、温度交換効率の測定空気条件は暖房時とする。また、温度交換効率の値は、100 分の1 未満の端数 を切り下げた小数第二位までの値とする(パーセントを単位とする場合は、小数未満の端数を切り下げた整数 の値とする)。ただし、温度交換効率η_tが0.4を下回る場合、又は、定格条件における給気風量が定格条件に おける還気風量の半分未満、若しくは 2 倍より大きい場合は、熱交換型換気設備による暖房負荷の削減効果 を見込むことはできない。また、温度交換効率η_tが0.95を上回る場合は、温度交換効率η_tを0.95とする。

A.2 カタログ表記誤差による温度交換効率の補正係数

カタログ表記誤差による温度交換効率の補正係数Ctolは、0.95とする。

A.3 有効換気量率による温度交換効率の補正係数

有効換気量率による温度交換効率の補正係数C_{eff}は、式(2)により表される値とし、100分の1未満の端数 を切り下げた小数第二位までの値とする。有効換気量率による温度交換効率の補正係数C_{eff}が0未満の値と なる場合は、有効換気量率による温度交換効率の補正係数C_{eff}は0に等しいとする。

$$C_{eff} = 1 - \frac{\left(\frac{1}{\sigma} - 1\right)\left(1 - \eta_t\right)}{\eta_t} \tag{2}$$

ここで、

e :全般換気設備の有効換気量率

η_t :熱交換型換気設備の温度交換効率

である。全般換気設備の有効換気量率eは、5章「換気設備」に規定される値とする。

A.4 給気と排気の比率による温度交換効率の補正係数

給気と排気の比率による温度交換効率の補正係数Cbalは0.90を用いるか、以下に示す方法に依ることができる。

給気と排気の比率による温度交換効率の補正係数Cbalは、式(3)により表され、100 分の 1 未満の端数を切

り下げた小数第二位までの値とする。

$$C_{bal} = \frac{\eta_{t,d}}{\eta_t}$$
(3)

ここで、

η_{t,d}:当該住戸における補正設計風量比での熱交換型換気設備の温度交換効率

η_t :熱交換型換気設備の温度交換効率

である。

当該住戸における設計補正風量比での熱交換型換気設備の温度交換効率ntaは、式(4)により表される。

$$\eta_{t,d} = \begin{cases} \eta_d & (V_{d,RA} > V_{d,SA}) \\ \eta_d \times R'_{vnt,d} & (V_{d,RA} \le V_{d,SA}) \end{cases}$$
(4)

227.

η_d:当該住戸における補正設計風量比での熟通過有効度

R'unt.4 :当該住戸における補正設計風量比

Va.sa :当該住戸における設計給気風量(m³/h)

V_{d,RA} :当該住戸における設計還気風量(m³/h)

である。

当該住戸における補正設計風量比での熱通過有効度naは、直交流型熱交換器の場合は式(5a)、向流-直 交流複合型熱交換器の場合は式(5b)により表される。

$$\eta_d = 1 - e^{\left[\frac{e^{\left(-N_d^{0.70,R_{fynt,d}}\right)} - 1}{N_d^{-0.22,R_{fynt,d}}}\right]}$$
(5a)

$$\eta_{d} = \frac{1 - e^{\left[-(1 - R_{lymt,d})\left(1 + \frac{b}{1.00457143N_{d}^{2} + 0.0691429N_{d} + 0.9954286}\right)N_{d}\right]}}{1 - R_{lymt,d}' \cdot e^{\left[-(1 - R_{lymt,d})\left(1 + \frac{b}{0.0457143N_{d}^{2} + 0.0691429N_{d} + 0.9954286}\right)N_{d}\right]}$$
(5b)

ここで、

Na :当該住戸における設計風量比での伝熱単位数

b :向流-直交流複合型熱交換器の向流部の幅(m)

1 :向流-直交流複合型熱交換器の向流部の長さ(m)

α :向流-直交流複合型熱交換器の向流部と直交流部の接続角度(°)

図A.1 向流・直交流複合型熱交換器の幅、長さ、及び向流部と直交流部の接続角度 である。ただし、向流-直交流複合型熱交換器の向流部の幅bが0.01(m)以上2.0(m)以下、かつ向流部の長さl が0.01(m)以上3.0(m)以下、かつ向流部と直交流部の接続角度αが15°以上60°以下を満たしていない場合 は熱交換型換気設備による暖房負荷の削減効果を見込むことはできない。

当該住戸における補正設計風量比R'mtdは、式(6)により表される。

$$R'_{vnt,d} = \begin{cases} 1 - 10^{-8} & (向流-直交流複合型かつR_{vnt,d} = 1) \\ R_{vnt,d} & (それ以外) \end{cases}$$
(6)

ここで、

である。

当該住戸における設計風量比Rmtdは、式(7)により表される。

$$R_{vnt,d} = \begin{cases} \frac{V_{d,SA}}{V_{d,RA}} & (V_{d,RA} > V_{d,SA}) \\ \frac{V_{d,RA}}{V_{d,SA}} & (V_{d,RA} \le V_{d,SA}) \end{cases}$$
(7)

ここで、

Va.s.4 :当該住戸における設計給気風量(m³/h)

V_{4.RA} :当該住戸における設計運気風量(m³/h)

である。

当該住戸における設計風量比での伝熱単位数Naは、式(8)により表される。

$$N_d = N_{rtd} \times \frac{V_{rtd,min}}{V_{d,min}}$$
(8)

227,

 N_{rtd}
 :定格条件における風量比での伝熱単位数

 V_{rtd.min}
 :定格条件における最小風量(m³/h)

 V_{d.min}
 :当該住戸における設計最小風量(m³/h)

である。

定格条件における最小風量Vrtd.minは、式(9)により表される。

$$V_{rtd,min} = \min(V_{rtd,SA'}V_{rtd,RA})$$
(9)

当該住戸における設計最小風量Vaminは、式(10)により表される。

$$V_{d,min} = \min(V_{d,SA}, V_{d,RA})$$
(10)

式(11a)および式(11b)は、それぞれ直交流型熱交換器および向流-直交流型熱交換器における熱交換型 換気設備の定格条件における補正風量比での熱通過有効度ŋ、定格条件における補正風量比R'vnt.rtd及び 定格条件における風量比での伝熱単位数Nrtdの関係式である。この関係式を満たすように、熱交換型換気設 備の定格条件における補正風量比での熱通過有効度ŋ及び定格条件における補正風量比R'vnt.rtdから定格 条件における風量比での伝熱単位数Nrtdを定めることとする。

$$\eta = 1 - e^{\left[\frac{e^{\left(-N_{rtd}^{0.70,R'_{out,d}}\right)_{-1}}}{N_{rtd}^{-0.22,R'_{out,d}}}\right]}$$
(11a)

$$\eta = \frac{1 - s \left[-1(1 - R_{r_{mt,rtd}}) \left(1 + \frac{b}{l \sin \alpha \cos \alpha} + \frac{b}{l \sin \alpha \cos \alpha} \right) N_{rtd} \right]}{1 - R_{r_{mt,rtd}}^{\prime} + s \left[-1(1 - R_{r_{mt,rtd}}) \left(1 + \frac{b}{l \sin \alpha \cos \alpha} + \frac{b}{l \sin \alpha \cos \alpha} \right) N_{rtd} \right]}$$
(11b)

227.

である。

定格条件における補正風量比での熱交換型換気設備の熱通過有効度7は、式(12)により表される。

$$\eta = \begin{cases} \eta_t & (V_{rtd,RA} > V_{rtd,SA}) \\ \frac{\eta_t}{R'_{vnt,rtd}} & (V_{rtd,RA} \le V_{rtd,SA}) \end{cases}$$
(12)

ここで、

である。

定格条件における補正風量比R'mt,rtdは、式(13)により表される。

$$R'_{vnt,rtd} = \begin{cases} 1 - 10^{-8} & (n流-直交流複合型かつR_{vnt,rtd} = 1) \\ R_{vnt,rtd} & (それ以外) \end{cases}$$
(13)

定格条件における風量比Runt,rtdは、式(14)により表される。

$$R_{int,rtd} = \begin{cases} \frac{V_{rtd,SA}}{V_{rtd,RA}} & (V_{rtd,RA} > V_{rtd,SA}) \\ \frac{V_{rtd,RA}}{V_{rtd,SA}} & (V_{rtd,RA} \le V_{rtd,SA}) \end{cases}$$
(14)

定格条件における給気風量V_{rtd,SA}及び還気風量V_{rtd,RA}の代わりに、定格条件における外気風量V_{rtd,OA}及 び排気風量V_{rtd,EA}を用いることができる。

定格条件における給気風量V_{rtd,SA}及び還気風量V_{rtd,RA}、又は定格条件における外気風量V_{rtd,OA}及び排気 風量V_{rtd,EA}は、JIS B8628「全熱交換器」に定める値とする。

当該住戸における設計給気風量V_{d,SA}及び設計還気風量V_{d,RA}の代わりに、当該住戸における設計外気風 量V_{d,OA}及び設計排気風量V_{d,EA}を用いることができる。

当該住戸における設計給気風量V_{d,SA}及び設計還気風量V_{d,RA}、又は当該住戸における設計外気風量V_{d,OA} 及び設計排気風量V_{d,SA}は、第五章「換気設備」において求めることとする。

A.5 排気過多時における住宅外皮経由の漏気による温度交換効率の補正係数

排気過多時における住宅外皮経由の漏気による温度交換効率の補正係数Cleakは、式(15)により表される値 とし、100分の1未満の端数を切り下げた小数第二位までの値とする。ただし、給気と排気の比率による温度交 換効率の補正係数Cbalに0.90を用いた場合は、Cleak = 1.00とする。

$$C_{leak} = \begin{cases} \frac{V_{d,SA}}{V_{d,RA}} & (V_{d,RA} > V_{d,SA}) \\ 1 & (V_{d,RA} \le V_{d,SA}) \end{cases}$$
(15)

227.

V_{d.54} :設計給気風量(m³/h)

Vd.RA :設計運気風量(m3/h)

である。設計給気風量及び設計還気風量のかわりに設計外気風量及び設計排気風量を用いてもよい。設計 給気風量、設計還気風量、設計外気風量及び設計排気風量は、5章「換気設備」に規定される値とする。

(6) 絶対湿度交換効率の把握

上記資料により、風量比がもたらす温度交換能力への影響を評価できた。続いて、絶対湿度交換能 力を算出する為に、物質移動速度を説明する。

a. 物質移動速度:ルイス数

ルイス数とは、熱と物質の移動速度の比を表す無次元の物性値である。熱と物質が同時に移動する ような系の解析で重要なパラメーターとなる。ルイス数が1の場合、温度と物質移動の分布が相似と なる。ルイス数は次式で定義される。

$$Le = \frac{\alpha}{D}$$

α	: 熱拡散率	$[m^2/s]$
D	: 拡散係数	$[m^2/s]$

また、次式で定義される。

$$Le = \frac{Sc}{Pr}$$

 Pr
 :プラントル数

 Sc
 :シュミット数

以下に温度と湿度を変更した場合のルイス数コンター図を記す。本報告ではルイス数を一定値 0.88 とする。

図 239 ルイス数コンター図

式 146

式 147

3.4.5 全熱交換機温湿度交換効率算出式の作成

全熱交換器の特性式を作成する。計算フローを以下に記す。

図 240 全熱交換機:交換効率計算フロー

- ① カタログ温度交換効率情報を入手
- ② 給気風量、還気風量の設計
- ③ 据付図面を作成し、OA、SA、RA、EAの機外静圧を算出
- ④ ②~③の風量比、機外静圧より内部漏れ量算出
- ⑤ 内部漏れ量を考慮した温度交換効率、湿度交換効率、全熱交換効率を算出

以下に、詳細計算内容を記す。

<入力項目>

○カタログ効率

温度交換効率:η_c

○風量比より熱交換効率補正係数[-]

 α

- ○ルイス数を用いて湿度交換効率[-]
 - $\eta = \eta_{\rm c} \times \alpha \times Le^3$

式 148

- ※ ルイス数を3乗しているのは、エレメントを介して交換を行うので、排気通路⇒エレメント⇒給気 通路と3層に分けて物質移動が必要なため。
- ○温度[℃]
- 外気:ToA 還気:TRA 給気:Tsa'(エレメント通過後) 排気:TEA'(エレメント通過後) ○湿度[g/kg] 外気:XOA 還気:XRA 給気: Xsa' (エレメント通過後) 排気:XEA' (エレメント通過後) ○比熱[kJ/kgK] 外気: CpoA 還気: Cp_{RA} 給気: Cpsa' (エレメント通過後) 排気: CpEA' (エレメント通過後) ○質量流量[kg/s] 給気:Q_{SA} 還気:QRA ○機外静圧[Pa] 外気: PoA 給気:P_{SA} 還気:PRA 排気:PEA ○ファンモーター発熱[W] 発熱:Em

<出力項目> 〇内部漏れ量算出 : RA から SA 〜漏れる分[kg/s]	
$Q_{RA \Rightarrow SA}' = (0.001824 \times (P_{RA} - P_{OA})^2 - 0.760524 \times (P_{RA} - P_{OA}) + 68.831334)/3600$	式 149
○内部漏れ量算出:OA から EA へ漏れる分[kg/s] Q _{OA→EA} '=(0.001676×(P _{RA} - P _{OA}) ² - 0.656959×(P _{RA} - P _{OA}) + 60.749704)/3600	式 150
○内部排気側換気量:RA から EA へ流れる分[kg/s] Q _{RA→EA} '= Q _{RA} - Q _{RA→SA} '	式 151
○内部給気側換気量:OA から SA へ流れる分[kg/s] Qoa⇒sa'= Qoa - Qoa⇒ea'	式 152
○内部漏れ量顕熱:RA から SA 〜漏れる分[W] E _{RA→SA} '=Q _{RA→SA} '× C _{PRA} × T _{RA}	式 153
○内部給気側換気量顕熱:OA から SA へ流れる分[W] Eoa⇒sa'= Qoa⇒sa' × Cpsa' × Tsa'	式 154
○RA から SA へ漏れる顕熱と給気側エレメント通過後顕熱合計[W] E _{SA} = E _{RA⇒SA} + E _{OA⇒SA}	式 155
○RA から SA へ漏れる絶対湿度量[g/s] X _{RA⇒SA} '= Q _{RA→SA} '× X _{RA}	≓ 156
○OA から SA へ流れる給気側換気量絶対湿度量[g/s] X _{OA→SA} ' = Q _{OA→SA} ' × X _{SA} '	式 157
○SA 合計絶対湿度量[g/s] X _{SA} '= X _{RA→SA} '+ X _{OA→SA} '	式 158
○SA 絶対湿度[g/kg] X _{SA} = X _{SA} '/Q _{SA}	式 159

○SA 温度[℃]

$T_{SA} = E_{SA} / Q_{SA} / C_{PSA}$	式 160
○ファンモーターによる発熱給気温度上昇 T _m = E _m / Cp _{SA} / Q _{SA}	式 161
○ファンモーター入熱を考慮した給気温度 T _{SAm} = T _{SA} + T _m	≓ 162
○漏れ込み温度交換効率	1, 102
$\eta_{\rm t}$ ' = (T _{OA} - T _{SAm}) / (T _{OA} - T _{RA})	式 163
○内部漏れ量絶対湿度:RA から SA へ漏れる分[g/s] El _{RA⇒SA} = X _{RA} ×Q _{RA⇒SA} '	式 164
○内部給気側換気量絶対湿度:OA から SA へ流れる分[g/s] Eloa→sa = Qoa→sa' × Xsa'	式 165
○給気口絶対湿度[g/kg] X _{SA} ' = (El _{RA⇒SA} + El _{OA→SA}) / (Q _{RA→SA} '+ Q _{OA→SA} ')	式 166
○漏れ込み絶対湿度交換効率 η x' = (X _{OA} - X _{SA} ') / (X _{OA} - X _{RA})	
	式 167

上記計算より、内部漏れ量を考慮した各吸込みロ、吹出し口の温湿度が求まる。夏期定格条件と冬期 定格条件にて機外静圧を変更した場合温度交換効率、湿度交換効率の変化を記す。

計算条件

○夏期定格条件

外気温度:35℃、外気相対湿度40%、室内温度:27℃、室内相対湿度46.6%

○冬期定格条件

外気温度:7℃、外気相対湿度 86.6%、室内温度:20℃、室内相対湿度 58.6%

○機外静圧条件:吸込み口機外静圧差RA-OA[Pa]

条件 1:90Pa 条件 2:60 Pa 条件 3:30 Pa 条件 4:0Pa(定格条件) 条件 5:-30 Pa 条件 6:-60 Pa 条件 7:-90 Pa

※ 尚、計算条件としてカタログ記載の温度効率を用いて SA と EA 温湿度条件を求めた上で、機外静 Eによる影響を評価した。また、モーター発熱も考慮している。以下に温湿度交換効率の結果を記 す。

温度交換 効率[-]	条件1	条件 2	条件 3	条件 4	条件 5	条件 6	条件 7
夏期	0.552	0.558	0.566	0.575	0.585	0.596	0.609
冬期	0.893	0.898	0.905	0.914	0.924	0.935	0.947

表 91 条件別温度交換効率

湿度交換 効率[-]	条件1	条件 2	条件 3	条件 4	条件 5	条件 6	条件 7	
夏期	0.531	0.543	0.558	0.576	0.596	0.620	0.646	
冬期	0.530	0.542	0.556	0.573	0.593	0.615	0.640	

表 92 条件別絶対湿度交換効率

上記に温度交換効率と絶対湿度交換効率を記す。吸込み口機外静圧の関係が RA<OA になればなる ほど、内部漏れが多くなるので結果的に効率が上がる結果となった。また、冬期に関しては、ファンモ ーターの入熱が暖房側に働くため、効率が高くなる結果となった。尚、絶対湿度交換効率に関しては、 ファンモーターの入熱が影響しない為、同一のカーブになったと考えられる。

有効換気量と上記グラフを組み合わせた図を記す。図が示す様に、有効換気量率が低下する(内部漏 れ量が増加する)と、RA 空気が給気空気に混ざるので、見かけ上交換効率が増加する結果となった。

図 243 機外静圧変更時温度交換効率(有効換気量記載)

図 242 機外静圧変更時絶対湿度交換効率

参考資料:国土交通省:建築設備設計基準を用いて、建築研究所据付に用いた計算結果 (作成者:ダイキンエアテクノ株式会社)

> ODESICA系統の抵抗計算 ・DESICA風量:500m/h, 吹出口の風量:500m/h×1個 ■ EA. RA系統 A. 局部(深型ベンドキャップ)圧力損失 [Pa] [風景:500m/h時] = 20.0 [Pa] AP. B.直スバイラルダクト圧力損失 [Pa] ・ダクト長(L): 0.4 [m], ムp: 0.5 [Pa/m] 風量:500m/h] $\Delta P = L \times \Delta p$ [Pa] [風速:2.8m/s] = 0.2 [Pa] $= 0.4 \times 0.5$ ・損失係数(と): 0.21, 9 か内風速(V): 4.42 [m/s] C. 局部(ホッパ-) 圧力損失 [Pa] [風量:500m//h時] $00 \phi \rightarrow 250 \phi$ $\Delta P = 0.6 \times \zeta \times V^{2} [Pa] = 0.6 \times 0.21 \times 4.42^{2} =$ = 2.5 [Pa] × 1 個 = 2.5 [Pa] D. 直スバイラルダクト圧力損失 [Pa] ・ダクト長(L): 2.6 [m] 、 ムp: 1.5 [Pa/m] [風量:500m/h] $\Delta P = L \times \Delta p$ [Pa] [凰速:4.4m/s] $= 2.6 \times 1.5$ 3.9 [Pa] ¥ E. 局部(90° エルボ)圧力損失 [Pa] →損失係数(な): 0.22, が小内風速(V): 4.42 [m/s] [風景:500m/h] 200 0 $\Delta P = 0.6 \times \xi \times V^{2} [Pa] = 0.6 \times 0.22 \times 4.42^{2}$ = 2.6 [Pa] × 2 個 = 5.2 [Pa] F. 直スパイラルダクト圧力損失 [Pa] ・ダクト長(L): 5.0 [m] 、 ムp: 1.5 [Pa/m] [A. : 500m/h] $\Delta P = L \times \Delta p \\ = 5.0 \times 1.5$ [凰速:4.4m/s] [Pa] = 7.5 [Pa] G. 局部(90° エルホ') 圧力損失 [Pa] ・損失係数(と): 0.22、 がか内風速(V): 4.42 [m/s] [風景:500m/h] $\Delta P = 0.6 \times \xi \times V^2 [Pa]$ = 2.6 [Pa] × 2 個 = 6.2 [Pa] $= 0.6 \times 0.22 \times 4.42^{2}$ ・損失係数(ぐ): 0.83、 がか内風速(V): 4.42 [m/s] H. 消音ボックス圧力損失 [Pa] 400x400x350H [風量:500mi/h] $\Delta P = 0.6 \times \xi \times V^{2} [Pa] = 0.6 \times 0.83 \times 4.42^{2}$ = 9.7 [Pa] ・損失係数(と):3.00, 吹出風速(∨): 2.1 [m/s] I.吸込口圧力損失 [Pa] [風景:500m/h] HS-300x300 $\Delta P = 0.6 \times \xi \times V^{2} [Pa] = 0.6 \times 3.0 \times 2.1^{2} = 7.94 [Pa]$ J.局部(ダンパ-(VD))圧力損失 [Pa] ・損失係数(な): 0.20, ダクト内風速(V): 4.42 [m/s] [風景:500m/h] $\Delta P = 0.6 \times \xi \times V^2 \quad [Pa]$ $= 0.6 \times 0.2 \times 4.42^{2}$ 2.3 [Pa] × 1 個 = 2.3 [Pa] = P(静圧) = 64.4 × 1.20 (余裕率) = 77.3 [Pa] 図 244
■ OA, SA系統

図 245

◎VKMP(外気処理機)系統の抵抗計算

・VKMP風量:500ml/h, 吹出口の風量:500ml/h×1個

■ EA, RA系統

A. 局部(深型ベンドキャップ)圧力損失 [Pa] [風景:500m/h時] = 20.0 [Pa] AP. B.直スバイラルダクト圧力損失 [Pa] ・ダクト長(L): 0.4 [m] 、Δρ: 0.5 [Pa/m] [風量:500m/h] $\Delta P = L \times \Delta p \\ = 0.4 \times 0.5$ [風速:2.8m/s] [Pa] = 0.2 [Pa] C.局部(ホッパ-)圧力損失 [Pa] ・損失係数(ぐ): 0.21、 ダウト内風速(V): 4.42 [m/s] [風景:500m/h時] $200 \phi \rightarrow 250 \phi$ $\Delta P = 0.6 \times \zeta \times V^{2} [Pa] = 0.6 \times 0.21 \times 4.42^{2} =$ = 2.5 [Pa] × 1 (III = 2.5 [Pa] D.直スバイラルダクト圧力損失 [Pa] ・ダクト長(L): 6.1 [m] 、ムp: 1.5 [Pa/m] [風景:500m/h] $\Delta P = L \times \Delta p \\ = 6.1 \times 1.5$ [凰速:4.4m/s] [Pa] = 9.2 [Pa] E.局部(90" エルボ)圧力損失 [Pa] *損失係数(と): 0.22, 9"か内風速(V): 4.42 [m/s] [風景:500m/h] $\Delta P = 0.6 \times \xi \times V^{2} [Pa] = 0.6 \times 0.22 \times 4.42^{2} = 2.6 [Pa] \times 3 = 7.7 [Pa]$ F.直スバイラルダクト圧力損失 [Pa] ・ダクト長(L): 6.4 [m] 、Δρ: 1.5 [Pa/m] [風量:500㎡/h] $\Delta P = L \times \Delta p \\ = 6.4 \times 1.5$ [Pa] [風速:4.4m/s] = 9.6 [Pa] G.局部(90° 164) 圧力損失 [Pa] ・損失係数(と): 0.22、 がか内風速(V): 4.42 [m/s] [風景:500m/h] $\Delta P = 0.6 \times \xi \times V^2 [Pa]$ $= 0.6 \times 0.22 \times 4.42^{2}$ = 2.6 [Pa] × 4 個 = 10.3 [Pa] ・損失係数(と): 0.83、 ダクト内風速(∨): 4.42 [m/s] H. 消音ギックス圧力損失 [Pa] [風景:500mi/h] 400x400x350 $\Delta P = 0.6 \times \zeta \times V^2 [Pa]$ $= 0.6 \times 0.83 \times 4.42^{2}$ = 9.7 [Pa] ・損失係数(ζ): 3.00, 吹出風速(V): 2.1 [m/s] I. 吸込口圧力損失 [Pa] [風景:500m/h] HS-300x300 $\Delta P = 0.6 \times \xi \times V^{2} [Pa] = 0.6 \times 3.0 \times 2.1^{2} = 7.94 [Pa]$ J.局部(ダンパ-(VD))圧力損失 [Pa] →損失係数(ζ): 0.20, ダクト内風速(V): 4.42 [m/s] [風景:500m/h] 200 0 $\Delta P = 0.6 \times \zeta \times V^2 \quad [Pa]$ $= 0.6 \times 0.2 \times 4.42^{2}$ = 2.3 [Pa] × 1 (fil = 2.3 [Pa] P(静圧) = 79.5 × 1.20 (余裕率) = 95.4 [Pa] 図 246

■ OA, SA系統

図 247

3.5 ヒートポンプデシカント調湿外調機特性の把握

3.5.1 適用範囲

居住空間の空気調和における換気と調湿の機能を併せ持ち、吸着材料の吸着、再生にヒートポンプの熱源を用いるとともに、空気通路および冷媒回路のバッチ切換えによって連続除加湿運転を可能と するヒートポンプデシカント調湿外調機について記載する。

3.5.2 カタログ(技術資料)表記項目

ヒートポンプデシカント調湿外調機およびヒートポンプデシカント調湿外調機と組み合わせて潜 熱・顕熱分離空調を実現する高顕熱形の空調機の機種ラインアップを表 93 に示す。

機	器名称	ラインアップ				
ヒートポンプデ	シカント調湿外調機					
高顕熱形	熱源機	8~54HP(2HP 毎)				
ビル用マルチ	室内ユニット	$2.2, 2.8, 3.6, 4.5, 5.6, 7.1, 8.0, 9.0, 11.2, 14.0, 16.0, 22.4, 28.0 {\rm kW}$				

表 93 ラインアップ

3.5.3 標準仕様

ヒートポンプデシカント調湿外調機のカタログ記載の性能、性能評価条件、引用規格を表 94 に示す。

r	E -					
			評価条件	評価	引用規格	
機種			-	-	—	
構成機種			_	—	JISB8628	
電源		相,電圧 周波数	_	_	JISB8616	
加湿量		kg/h	室内条件:22℃D.B,50%RH 室外条件:0℃D.B,50%RH 定格能力: 外気潜熱負荷を処理する際の能力 全熱,顕熱能力は最大能力も併せて併記	97% 以上	ビル衛生管理 講習会資料 (p11) (H20 年度) 東京都健康安全研究 センター (4)空気線図を使った 加湿計算の実例より (室内,室外条件)	
	全熱能力	kW	室内条件:27℃D.B, 19℃W.B	97%		
除湿	顕熱能力	W	室外条件:33℃D.B,28℃W.B	以上		
冷房 性能	消費電力	W	定格能力: 外気潜熱負荷を処理する際の能力 全熱,顕熱能力は最大能力も併せて併記	105% 以下	JISB8616	
	全熱能力	kW	室内条件:22℃D.B, 50%RH	97%	JISB8616	
加湿	顕熱能力	W	室外条件:0℃D.B, 50%RH	以上	ビル衛生管理 講習会資料 (n11)	
暖房 性能	消費電力	W	定格能力: 外気潜熱負荷を処理する際の能力 全熱,顕熱能力は最大能力も併せて併記	105% 以下	 時日気気行(p11) (H20年度) 東京都健康安全研究 センター (4)空気線図を使った 加湿計算の実例上り 	
	全熱能力	kW	室内条件:27℃D.B, 19℃W.B	97%	778 GE HT 9P 17 9C 110C 7	
空調	顕熱能力	W	室外条件:35℃D.B,24℃W.B	以上	II G D a a t a	
^{正俗点} 冷房性能	消費電力	W	定格能力:外気潜熱負荷を処理する際の能力 全熱,顕熱能力は最大能力も併せて併記	105% 以下	J12B2010	
	全熱能力	kW	室内条件:20℃D.B, 13.8℃W.B	97%		
空調	顕熱能力	W	室外条件:7℃D.B,6℃W.B	以上		
定格点 暖房性能	消費電力	W	定格能力: 外気潜熱負荷を処理する際の能力 全熱,顕熱能力は最大能力も併せて併記	105% 以下	JISB8616	
外装	·	材質	(亜鉛鋼板)	-	—	
外形寸法	高さ×幅×奥行	mm	_	-	—	
熱交換器			_	—	—	
圧縮機	型式		_	-	—	
	電動機出力×台数	kW	_	-	—	
	始動方式		_	_	—	
ファン	型式	1	_	-	—	
	電動機出力×台数	kW	_	-	—	
	定格風量	m³/h		±10% 以内	JISB8616 JISB8628	
	駆動方式		_	_		
	定格機外静圧	Pa	_	±10% 以内	JISB8616 JISB8628	
質量	•	kg	-	-	JISB8616	
運転音(A	スケール)	dB		+2db 以内	JISB8616	
容量制御		%		_		
冷媒(R41	0A)充填量	kg	-	_	JISB8616	
冷媒制御			電子膨張弁	_	—	
法定冷凍	·ン		_	l –	冷凍保安規則	

表 94 ヒートポンプデシカント調湿外調機カタログ表記値、引用規格

3.5.4 ヒートポンプデシカント調湿外調機性能特性

ヒートポンプデシカント調湿外調機のカタログに記載されている性能特性を表 95,表 96に示す。 表に示すように、室外温湿度、風量変化時の最大全熱能力、最大顕熱能力特性、消費電力が記載されている。

これらの機種選定に必要となる性能特性が明らかにされている一方、年間消費電力試算に必要な部分負荷時の性能については記載されていない。

					素件は込む表示画を 108 ● 1011年 1011																			
				- 1	22,	22, 0 23, 0 24, 0 25, 0 25, 0 27, 0 28, 0																		
					458 558	658	458	558	65.6	458	55%	65.6	458	555	655	458	556	656	456	55,6	65 5	458	555	655
					4,18 4,0	4,00	4,10	4,00	1,92	4,01	2.91	1.00	1.83	2.81	3,70	1.84	3, 72	3.60	1.75	1.62	2, 49	3, 65	1.52	3,38
	20, 0	013	39Th(48855)		1 24 1 3	1 30	1 31	1.31	1.32	1.32	1.32	1 33	1 33	1.34	1.34	1.35	1.35	1.35	1.35	1.34	1.37	1.37	1.38	1.38
			全局要力		4.52 4.4	4, 33	4, 43	4, 33	4, 24	4, 35	4, 24	4,14	4, 25	4, 15	4.04	4, 15	4.04	1,93	4.04	3, 92	2, 80	3, 91	3, 79	3, 67
		605	莱恩 泉力	LV .	0, 83 0, 81	0, 89	0,84	0,84	0,84	0,79	0, 73	0,79	0,74	0,74	0,74	0,69	0, 69	0, 69	0, 64	0, 64	0,65	0,59	0, 59	0, 60
	25.0		消費電力(全参裁力等)		1.29 1.2	1,30	1,30	1,30	1.31	1,31	1, 32	1, 32	1,33	1, 33	1.34	1,34	1.34	1,35	1,35	1,35	1,35	1,37	1, 37	1,38
			全限股 力		5,05 4,98	4,85	4, 95	4,87	4.77	4,88	4.17	4, 67	4, 79	4,68	4,57	4, 70	4, 58	4,45	4.61	4,49	4.35	4, 52	4.39	4, 25
		915	####// 注意理力(全意的力势)		0.79 0.71	0,75	1.95	0,74	0,74	0,01	6, 61	0,01	0,04	0.04	0,04	0,53	0,53	0,53	0.54	6,54	0,54	1, 12	1, 12	0,50
	_		公司 (1) (1) (1) (1) (1) (1) (1) (1)		4.84 4.7	4.65	4.75	4.65	4,55	4.57	4.57	4.45	4.58	4.47	4.35	4.49	4.38	4.25	4.40	4.28	4.15	4.31	4.18	4.04
		605	蒙稳振力	EN	0,98 0,9	0,98	0,93	0, 93	0, 94	0,88	0,88	0,83	0,83	0,84	0,84	0,79	0,79	0,79	0,74	0,74	0,74	0,69	0,69	0,69
	27.0		消費電力(全意能力時)		1, 27 1, 21	1, 28	1, 28	1, 23	1, 29	1, 29	1, 30	1, 30	1, 31	1, 31	1, 32	1, 32	1, 32	1.33	1, 33	1.34	1, 34	1, 35	1, 35	1, 36
			全局股力		5,44 5,3	5, 25	5,36	5,26	5,16	5, 27	5, 17	5,05	5,18	5,07	4,95	5, 10	4, 98	4,85	5,01	4,88	4,75	4, 91	4, 78	4, 64
		815	第二日 (今日前 1日)	104	0.87 0.81	6,87	0,82	0,82	0,82	6.17	6.17	6,17	0,72	0,72	0,72	0.67	0.67	0.67	0,62	6, 62	0.63	0,57	0,58	6,58
			485h		4.24 4.10	4.01	4.13	4.05	1, 24	4.02	3.94	3.85	1, 23	3, 83	3.74	3, 81	3.72	1.62	3,70	3.63	1,50	1.54	3.48	3.38
		405	類激動力	10	1, 19 1, 2	1, 20	1, 15	1, 15	1, 15	1, 10	1, 10	1, 10	1,05	1,05	1,05	1,00	1,00	1,00	0,95	0,95	0,95	0,90	0, 90	0,90
			消費電力(全豪政力等)		1,31 1,3	1,31	1, 32	1, 32	1, 33	1, 33	1, 34	1,34	1, 34	1,35	1, 35	1, 35	1, 35	1,37	1, 37	1, 38	1, 38	1, 38	1, 39	1, 39
			全意表力		5,18 5,0	5,00	5,10	5,00	4, 93	5, 02	4, 91	4, 80	4, 53	4, 82	4, 70	4, 84	4, 72	4, 60	4, 75	4, 62	4, 50	4,65	4, 52	4, 39
	29, 0	615	第二日 (今日 中小 一)	R.	1.07 1.07	1,07	1,02	1,02	1,03	0,97	0, 98	0,98	0, 93	0,93	0,93	0,88	0,88	0,88	0,83	0,83	0,83	0,78	0,78	0,78
			288h		5.85 5.7	5.68	5.78	5.68	6.68	5.69	6.59	5.48	5.61	5.50	5.38	5.52	5.40	5.28	5.43	5.30	5.18	5.34	5.20	5.07
		815	業務会力	LV	0,94 0,9	0, 95	0,90	0,90	0,93	0,85	0,85	0,85	0,80	0,80	0,80	0,75	0,75	0,75	0,70	0,70	0,70	0,65	0,65	0,65
91913131 C 018			消費電力(全意義力時)		1.19 1.1	1,19	1.29	1, 20	1, 21	1, 21	1, 22	1, 22	1, 23	1, 23	1, 23	1.24	1,24	1,25	1.25	1,25	1.26	1,26	1,27	1, 28
and we have			全局数力		4,59 4,51	4, 43	4, 48	4,40	4, 31	4, 37	4, 28	4, 19	4, 26	4, 16	4,05	4, 14	4,04	3, 94	4,03	3, 92	3, 81	3, 91	3, 79	3, 68
		405	第5歳//		1.30 1.30	1,30	1,25	1, 25	1, 25	1,29	1,20	1, 20	1, 15	1, 15	1.15	1,10	1,10	1,10	1,05	1,05	1,05	1,00	1,00	1,00
			2887		5.55 5.40	5.37	5, 47	5, 37	5, 27	5.38	5, 28	5,17	5, 30	5, 19	5.07	5.21	5,03	4, 97	5, 12	4, 93	4, 87	5.03	4, 83	4.76
	31,0	60%	蒙隐轰力	LW	1.16 1.14	1,16	1.11	1.11	1.11	1,05	1.05	1,05	1, 01	1.01	1.01	0,95	0,95	0,97	0,91	0.92	0, 92	0,85	4, 87	0.87
			消費電力(全意設力等)		1, 22 1, 2	1, 23	1, 24	1, 24	1,24	1, 25	1, 25	1, 26	1, 26	1, 27	1, 27	1, 27	1, 28	1, 28	1,23	1,23	1, 30	1, 30	1, 31	1, 31
			<u>全局表</u> 力 ■単義力		<u>6.32</u> 6.23	6,13	6,24	6.14	6.04	6.15	6.05	5.94	6.05	5, 95	5.84	5,98	5,85	5.74	5,89	5,75	5.63	5,79	5, 65	5.53
		043	第2日本(会会成力等)		1, 12 1, 04	1, 12	1, 17	1, 17	1, 18	1, 18	1, 18	1, 19	1, 19	1, 20	1, 20	1, 21	1,21	1, 22	1, 22	1, 22	1, 23	1, 23	1, 24	1,24
			全體優力		4.95 4.8	4,78	4.84	4, 75	4.65	4, 73	4.62	4, 52	4.61	4, 50	4, 39	4, 49	4.37	4.25	4.37	4.24	4.12	4, 23	4.03	3, 96
		405	業総数 力	LW	1,40 1,40	1,40	1, 35	1, 35	1, 35	1, 30	1, 30	1, 30	1, 25	1, 25	1, 25	1, 20	1, 20	1, 20	1, 15	1, 15	1, 15	1,10	1, 10	1, 10
			消費電力(全都能力率) 人参考され	_	1, 27 1, 20	1,28	1,28	1,23	1,23	1,30	1, 30	1.31	1,31	1, 32	1.32	1, 32	1,33	1,33	1.34	1,34	1,35	1,33	1,33	1,34
	33.0	616	288/1	19	5, 35 5, 81	1.74	1.18	1 19	1.19	1 14	1 14	1 15	5,63	5, 55	5,47	1.05	1.05	1.05	1.00	5,35	5,29	5,42	5,25	5,15
			消費電力(全意義力時)	-	1.29 1.2	1, 20	1, 21	1, 21	1, 22	1, 22	1, 23	1, 23	1,24	1,24	1.24	1,25	1,25	1,25	1, 25	1, 27	1, 27	1, 27	1, 28	1, 29
			全義慶力		6, 81 6, 72	6, 63	6, 73	6, 63	6, 53	E, 64	6, 54	6, 43	6, 56	6, 45	6, 33	6, 47	6, 35	6, 23	6, 38	6, 25	6,13	6, 29	6, 16	6,02
		805	要発表力	R.	1.08 1.0	1.08	1,03	1,03	1,03	0, 98	0, 98	0, 98	0, 93	0, 93	0,94	0,88	0,83	0,89	0,83	0,84	0,84	6,79	6,79	0,79
			· · · · · · · · · · · · · · · · · · ·		5.31 5.2	5 13	5.21	5.10	4 93	5.09	4 97	1, 15	1, 19	4.84	4 72	4.84	4.71	4.57	4.69	4 55	1, 20	4 53	4 38	4 23
		405	東急艇力	10	1,49 1,4	1,50	1,44	1,44	1,45	1, 39	1,40	1,40	1, 34	1, 35	1, 35	1, 29	1, 30	1, 30	1,24	1, 24	1, 24	1, 18	1, 18	1, 19
			消費電力(企業政力時)		1, 25 1, 24	1, 26	1, 27	1, 27	1, 27	1, 28	1, 28	1, 29	1, 29	1, 30	1, 30	1, 30	1,31	1,31	1, 30	1, 30	1, 31	1, 26	1, 27	1, 28
			全意能力		6.37 6.2	6,19	6.23	6.19	6.03	6.21	6,10	5.99	6.12	6,01	5,89	6.03	5, 91	5,79	5.94	5,81	5,69	5,85	5.72	5,58
	35, 0	615	#88271 39971(488718)	E.	1, 32 1, 32	1, 32	1,27	1,27	1, 27	1, 22	1, 22	1, 22	1,17	1, 17	1,17	1, 12	1, 12	1,13	1,07	1,07	1,05	1,02	1,03	1,03
			2857		7.35 7.2	7, 16	1.75	7, 16	1, 07	2.14	7.07	6.97	7.09	6.98	6.87	7.01	6.81	6.77	6.97	6.79	6.65	6.82	6.69	6.55
		815	聚物能力	LV	1,14 1,14	1,14	1,03	1,03	1,03	1,04	1.04	1,04	0, 99	0, 99	0, 93	0, 94	0, 94	0, 94	0,89	0,89	8, 99	0,84	0,84	0,85
			消費電力(全参数力時)		1.08 1.0	1,09	1.09	1, 10	1, 10	1.11	1,11	1,12	1,12	1,12	1,13	1, 13	1.14	1.14	1,15	1,15	1,16	1,16	1, 16	1, 17
		100	2.8.影力 (1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		5, 72 5, 60	5,49	5, 59	5,47	5, 34	5,45	5, 33	5, 20	5,33	5, 19	5,05	5,18	5,03	4,88	5,00	4,85	4, 69	4,83	4, 65	4,50
		413	(全量約力()		1.23 1.53	1.74	1.74	1.25	1.25	1.25	1.25	1.77	1.27	1.77	1.71	1.25	1.20	1.27	1,21	1,24	1,23	1,27	1.21	1.27
			全體最力		6,83 6,7	6, 65	6,75	6, 65	6, 55	6, 65	6, 56	6,45	6, 58	6,45	6,35	6,49	6, 37	6, 25	6,40	6,27	6,15	6,31	6,17	6,04
	37, 0	60%	要是最力	RA.	1.39 1.3	1, 39	1.34	1,34	1.34	1, 29	1, 29	1, 30	1, 24	1, 25	1,25	1, 19	1, 20	1.20	1, 15	1, 15	1, 15	1, 10	1, 10	1, 10
			消費電力(全意設力時)		1,14 1,14	1,14	1, 15	1, 15	1, 16	1, 16	1,17	1,17	1,17	1, 18	1, 18	1, 19	1, 19	1,20	1, 20	1,21	1, 21	1, 21	1, 22	1, 23
		216	2.元炭7)		1,93 7,83	1 1 1	1,84	1,15	1,65	1,76	1,65	1,55	1,67	1.56	1,45	7,59	1,47	1,35	1,50	1,37	1,24	7,41	1,27	7,14
			30001(000000)		1.04 1.0	1.05	1.05	1.05	1.05	1.05	1.07	1.07	1.03	1.03	1.09	1.09	1, 10	1, 10	1,10	1.11	1.10	1,12	1,12	1.12

表 95 除湿冷房最大能力特性

							室内吸込	温度 ℃DE	3 相対湿	度 %RH	
						26	Ϋ́C	27	°C	28	Ϋ́C
	都市名	温度	湿度	能力及び	《消費電力	45%	55%	45%	55%	45%	55%
				全熱能力		5,73	5,61	5,64	5,52	5,55	5,42
	東京	34.4	56.4	顕熱能力	kW	1,13	1,13	1.08	1.08	1,03	1,03
名ī				消費電力	T	1.24	1.25	1.26	1.26	1.27	1.28
		名古屋 36.1 52.		全熱能力		5.89	5.77	5.80	5.67	5.66	5.49
	名古屋		52.4	顕熱能力	kW	1,23	1,24	1,19	1,19	1,13	1,13
				消費電力	Ī	1,24	1.24	1.25	1.26	1,25	1,25
外気温度 ℃DB				全熱能力		5.81	5,69	5.72	5.60	5.63	5,50
相対湿度 %RH	大阪	35.1	55.0	顕熱能力	kW	1.17	1.17	1.12	1.12	1.07	1.07
				消費電力		1.24	1.24	1.25	1.26	1.27	1.27
				全熱能力		5.84	5,72	5.75	5.62	5,66	5,52
	広島	34.6	57.8	顕熱能力	kW	1.13	1.13	1.08	1.08	1.03	1.03
				消費電力		1.23	1.24	1.25	1.25	1.26	1.27
				全熱能力		5.87	5.75	5.78	5.65	5.68	5.55
	福岡	34.5	58.8	顕熱能力	kW	1,11	1,12	1.06	1,07	1,02	1,02
				消費電力	T I	1.23	1.24	1.25	1.25	1.26	1.26

定格風量[500m³/h]、定格静圧[150Pa]時の最大能力

表 96 加湿暖房最大能力特性

							室内吸込	温度 ℃DI	3 相対版	度 %RH	
								21°C		22°C	
	都市名	温度	湿度	能力及び	消費電力	40%	50%	40%	50%	40%	50%
				全熱能力	kW	6.66	6,91	6,77	7,03	6,89	7.17
	東京	2.0	31.2	顯熱能力		4.49	4,37	4.50	4.37	4.52	4.38
				消費電力		1.68	1.66	1.68	1.67	1.69	1.67
	名古屋 0.6			全熱能力		6.73	6.98	6.85	7.11	6.96	7.24
		0.6	51.9	顕熱能力	kW	4.58	4.46	4.60	4.47	4,61	4.47
				消費電力		1.66	1.64	1.67	1.65	1.67	1.66
外気温度 ℃DB	大阪	2.2	54.5	全熱能力	kW	6.63	6.89	6.76	7.02	6.87	7.15
相対湿度 %RH				顕熱能力		4.48	4.35	4.49	4.36	4.50	4.37
				消費電力		1,69	1,68	1,70	1,68	1,71	1,69
				全熱能力		6.72	6.97	6.84	7.10	6,95	7.23
	広島	0,7	63,8	顕熱能力	kW	4.58	4.46	4.59	4.46	4.61	4.47
				消費電力		1.67	1.65	1.67	1.66	1.68	1.66
	福岡 2.1			全熱能力		6.64	6,89	6,76	7,02	02 6,88	7.16
		2.1	50.7	顯熱能力	kW	4.48	4.36	4,50	4.37	4.51	4.37
1				消費電力		1.69	1.67	1.70	1.68	1.70	1.69

	加湿量(kg/h)								
20	°C	21	°C	22	°C				
40%	50%	40%	50%	40%	50%				
3.12	3.66	3.27	3.83	3.42	4.02				
3.10	3.62	3.24	3.80	3.39	3.98				
3.11	3.65	3.26	3.82	3.41	4.00				
3.09	3,62	3,23	3,79	3,38	3,98				
3.11	3.65	3.26	3.82	3.41	4.00				

定格風量[500m³/h]、定格静圧[150Pa]時の最大能力

3.5.5 ヒートポンプデシカント調湿外調機性能計算

前項に示すように、性能計算を実施する上で必要となる負荷率が変化した際の機器特性はカタログ および技術資料に表記されていない。そこで、以下に示す性能特性式の作成を行った。

3.5.5.1 最大潜熱能力

室内、室外空気条件における最大潜熱能力を下式で示す。

α 00~ α 14 :最大潜熱能力係数	
ToA :外気温度	[°C]
Xoa :外気絶対湿度	[kg/kg]
T _{RA} : 室内温度	[°C]
X _{RA} :室内絶対湿度	[kg/kg]
LC _{max} :最大潜熱能力	[W]

最大潜熱能力 (LC_{max}) = α_{00} + α_{11} ×T_{OA}+ α_{12} ×X_{OA}+ α_{13} ×T_{RA}+ α_{14} ×X_{RA}

式 168

3.5.5.2 最小潜熱負荷率

最小潜熱負荷率を下式で表す。

β 00~ β 24	: 最小潜熱負荷率係数	
Тоа	: 外気温度	[°C]
Xoa	: 外気絶対湿度	[kg/kg]
T_{RA}	: 室内温度	[°C]
X_{RA}	: 室内絶対湿度	[kg/kg]
PLRLmin	: 最小潜熱負荷率	

最小潜熱負荷率=
$$\beta_{00}+\beta_{11}\times T_{OA}+\beta_{12}\times X_{OA}+\beta_{13}\times T_{RA}+\beta_{14}\times X_{RA}+\beta_{21}\times T_{OA}^2$$

+ $\beta_{22}\times X_{OA}^2+\beta_{23}\times T_{RA}^2+\beta_{24}\times X_{RA}^2$

3.5.5.3 潜熱負荷率

潜熱負荷率を下式で定義する。

LC _{max}	:最大潜熱能力	[W]
LC	: 潜熱能力(負荷)	[W]
PLRL	: 潜熱負荷率	

潜熱負荷率(PLRL)=潜熱負荷(LC)/最大潜熱能力(LCmax)

式 170

3.5.5.4 全熱能力

全熱能力を下式で表す。

γ 00~ γ 34	: 全熱能力係数	
Тоа	: 外気温度	[°C]
Xoa	:外気絶対湿度	[kg/kg]
T_{RA}	: 室内温度	[°C]
\mathbf{X}_{RA}	: 室内絶対湿度	[kg/kg]
PLRL	: 潜熱負荷率<最小潜熱負荷率以	人上、1以下の範囲に制限される>

全熱能力= γ_{00} + γ_{11} ×ToA+ γ_{12} ×XoA+ γ_{13} ×TrA+ γ_{14} ×XrA+ γ_{15} ×PLRL+ γ_{21} ×ToA×PLRL+ α_{22} ×XoA×PLRL+ α_{23} ×TrA×PLRL+ α_{24} ×XrA×PLRL+ α_{31} ×ToA×PLRL²+ α_{32} ×XoA×PLRL²+ α_{33} ×TrA×PLRL²+ α_{34} ×XrA×PLRL²

式 171

3.5.5.5 消費電力

消費電力を下式で表す。

δ 00 ~ δ 34	: 消費電力係数	
Toa	: 外気温度	[°C]
Xoa	:外気絶対湿度	[kg/kg]
T_{RA}	: 室内温度	[°C]
X_{RA}	: 室内絶対湿度	[kg/kg]
PLRL	: 潜熱負荷率<最小潜勢	、負荷率以上、1以下の範囲に制限される>

消費電力 = δ_{00} + δ_{11} ×ToA + δ_{12} ×XoA + δ_{13} ×TRA + δ_{14} ×XRA + δ_{15} ×PLRL + δ_{21} ×ToA × PLRL + δ_{22} ×XoA × PLRL + δ_{23} ×TRA × PLRL + δ_{24} ×XRA × PLRL + δ_{31} ×ToA × PLRL² + δ_{32} ×XoA × PLRL² + δ_{33} ×TRA × PLRL² + δ_{34} ×XRA × PLRL²

3.5.6 実測データとの比較検証

3.5.6.1 東京Aビル(夏季)

東京Aビルに設置されているヒートポンプデシカント調湿外調機の 6/2~9/11 の期間における、運転データの分析および性能特性式から算出される全熱能力,消費電力と実測値の比較を行った。図 249 に能力の実測値と性能特性式から算出した値の比較、図 250 に消費電力量の実測値と性能特性式から算出した値の比較を示す。

図 249 夏季期間中の特性式を用いた計算値と実測値の比較(能力)

図 250 夏季期間中の特性式を用いた計算値と実測値の比較(消費電力量)

	実測	計算	誤差
全熱能力期間積算值[kWh]	-2574.5	-2602.9	1.10%
潜熱能力期間積算值[kWh]	-2063.6	—	
消費電力期間積算值[kWh]	424.8	459.2	8.09%
СОР	6.06	—	—
COP(潜熱)	4.86	_	_

表 97 夏季分析結果

期間積算で全熱能力の誤差が1%強、消費電力量の誤差が8%強となった。

消費電力の誤差は、負荷が比較的小さい条件において性能特性式の方が実測値と比較して高い消費電 力値を示すことが要因であると考えられる。これは、性能特性を作成する際に低い負荷率の取得データ が不十分であったことが原因と考えられる。

3.5.6.2 東京 A ビル(冬季)

冬期においては、1/30~4/18 期間にて分析を行った。

図 252 に能力の実測値と性能特性式から算出した値の比較、図 253 に消費電力量の実測値と性能 特性式から算出した値の比較を示す。

図 252 冬季期間中の特性式と実測値の比較(能力)

図 253 冬季期間中の特性式と実測値の比較(消費電力量)

	実測	計算	誤差
全熱能力期間積算值[kWh]	2473.5	2233.7	-9.69%
潜熱能力期間積算值[kWh]	960.5	_	_
消費電力期間積算值[kWh]	653.2	651.2	-0.31%
СОР	3.79	—	—
COP (潜熱)	1.47	_	_

表 98 冬季分析結果

期間積算で全熱能力の誤差が10%弱、消費電力量の誤差が1%弱となった。

消費電力は計算値と実測値が期間積算値ではほぼ合致しているが、負荷率が高い条件においては実測 値が計算値と比較して高い値を示すなど部分的に誤差が生じている。

3.5.7 圧縮機回転数を入力項としたヒートポンプデシカント調湿外調機特性式の精度検証、特性式作

成

前項で示した特性式は入力項を室外温度、室外湿度、室内温度、室内湿度、潜熱能力としているため エネルギー計算に用いる際の利便性が高い。一方、前項で示した通り消費電力試算において若干の乖離 が見られるため、圧縮機の回転数を入力項としたシステムの運転状態をダイレクトに表現できる特性式 を用いた計算結果と実測結果との妥当性検証を行った。

3.5.7.1 消費電力計算

消費電力の計算フローを下記に示す。

3.5.7.2 圧縮機最小回転数の計算

A11~A15	: 除湿運転時圧縮機最小回転数係	系数
$A_{21} \sim A_{25}$:加湿運転時圧縮機最小回転数係	系数
Тоа	: 外気温度	[°C]
Xoa	:外気絶対湿度	[kg/kg]
T_{RA}	: 室内温度	[°C]
X_{RA}	: 室内絶対湿度	[kg/kg]
RS_{\min}	: 圧縮機最小回転数	[rps]

孜 55 广油版取 小 回私奴际奴							
運転モード	A_1	A_2	A ₃	A_4	A ₅		
除湿	A ₁₁	A_{12}	A_{13}	A_{14}	A_{15}		
加湿	A_{21}	A_{22}	A23	A_{24}	A_{25}		

表 99 圧縮機最小回転数係数

 $RS_{min} {=} A_1 {+} A_2 {\times} T_{OA} {+} A_3 {\times} X_{OA} {+} A_4 {\times} T_{RA} {+} A_5 {\times} X_{RA}$

3.5.7.3 圧縮機最大回転数の計算

$B_{11} \sim B_{15}$: 除湿運転時圧縮機最大回転数例	系数
$B_{21} \sim B_{25}$:加湿運転時圧縮機最大回転数例	系数
Тоа	:外気温度	[°C]
Xoa	:外気絶対湿度	[kg/kg]
T_{RA}	: 室内温度	[°C]
Xra	: 室内絶対湿度	[kg/kg]
$\mathrm{RS}_{\mathrm{max}}$: 圧縮機最大回転数	[rps]

表 100 圧縮機最大回転数係数

運転モード	B_1	B_2	B_3	B_4	B_5
除湿	B ₁₁	B_{12}	B_{13}	B_{14}	B_{15}
加湿	B_{21}	B_{22}	B_{23}	B_{24}	B_{25}

 $RS_{max} \!=\! B_1 \!+\! B_2 \!\times\! T_{OA} \!+\! B_3 \!\times\! X_{OA} \!+\! B_4 \!\times\! T_{RA} \!+\! B_5 \!\times\! X_{RA}$

式 174

3.5.7.4 圧縮機駆動率の算出

CU	: 圧縮機駆動率	
RS_{\min}	: 圧縮機最小回転数	[rps]
$\mathrm{RS}_{\mathrm{pre}}$: 補正前圧縮機回転数	[rps]

表 101 圧縮機駆動率の算出						
優先順位	条件	アクション				
1	$\mathrm{RS}_{\mathrm{pre}}{<}\mathrm{RS}_{\mathrm{min}}$	$CU=RS_{pre}/RS_{min}$				
2	Else	CU=1.0				

3.5.7.5 圧縮機 ON 時の実運転回転の算出

RS_{\min}	: 圧縮機最小回転数	[rps]
RS_{\min}	: 圧縮機最小回転数	[rps]
$\mathrm{RS}_{\mathrm{pre}}$: 補正前圧縮機回転数	[rps]
RS	: 圧縮機回転数	[rps]

表 102 圧縮機回転数の算出

優先順位	条件	アクション
1	$\mathrm{RS}_{\mathrm{pre}}{<}\mathrm{RS}_{\mathrm{min}}$	$RS=RS_{min}$
2	$\mathrm{RS}_{\mathrm{max}}{<}\mathrm{RS}_{\mathrm{pre}}$	$RS=RS_{max}$
3	Else	$RS = RS_{pre}$

3.5.7.6 蒸発温度の算出

$C_{11} \sim C_{18}$: 除湿運転時蒸発温度係数				
C_{21} ~ C_{28}	:加湿運転時蒸発温度係数				
Тоа	: 外気温度	[°C]			
Xoa	: 外気絶対湿度	[kg/kg]			
T_{RA}	: 室内温度	[°C]			
X_{RA}	: 室内絶対湿度	[kg/kg]			
Voa	: 給気風量	[m³/h]	*JIS 風量測定条件	(20°C)	の体積風量
VRA	: 排気風量	[m³/h]	*JIS 風量測定条件	(20°C)	の体積風量
RS	: 圧縮機回転数	[rps]			
Те	: 蒸発温度	[°C]			

表 103 蒸発温度係数

運転モード	C_1	C_2	C_3	C_4	C_5	C_6	C_7	C ₈
除湿	C_{11}	C_{12}	C13	C_{14}	C_{15}	C16	C_{17}	C18
加湿	C_{21}	C_{22}	C_{23}	C_{24}	C_{25}	C_{26}	C_{27}	C ₂₈

 $Te \!=\! C_1 \!+\! C_2 \!\times\! T_{OA} \!+\! C_3 \!\times\! X_{OA} \!+\! C_4 \!\times\! T_{RA} \!+\! C_5 \!\times\! X_{RA} \!+\! C_6 \!\times\! V_{OA} \!+\! C_7 \!\times\! V_{RA} \!+\! C_8 \!\times\! RS$

式 175

3.5.7.7 凝縮温度の算出

$D_{11} \sim D_{18}$ $D_{21} \sim D_{20}$: 除湿運転時凝縮温度係数 · 加湿運転時凝縮温度係数				
TOA D28	:外気温度	[°C]			
Xoa	: 外気絶対湿度	[kg/kg]			
T_{RA}	: 室内温度	[°C]			
X_{RA}	: 室内絶対湿度	[kg/kg]			
Voa	: 給気風量	[m³/h]	*JIS 風量測定条件	(20°C)	の体積風量
V_{RA}	: 排気風量	[m³/h]	*JIS 風量測定条件	(20°C)	の体積風量
RS	: 圧縮機回転数	[rps]			
Tc	: 凝縮温度	[°C]			

表 104 凝縮温度係数

運転モード	D_1	D_2	D_3	D_4	D_5	D_6	D_7	D_8
除湿	D ₁₁	D_{12}	D_{13}	D_{14}	D_{15}	D_{16}	D_{17}	D_{18}
加湿	D_{21}	D_{22}	D_{23}	D_{24}	D_{25}	D_{26}	D_{27}	D_{28}

 $Tc \!=\! D_1 \!+\! D_2 \!\times\! T_{OA} \!+\! D_3 \!\times\! X_{OA} \!+\! D_4 \!\times\! T_{RA} \!+\! D_5 \!\times\! X_{RA} \!+\! D_6 \!\times\! V_{OA} \!+\! D_7 \!\times\! V_{RA} \!+\! D_8 \!\times\! RS$

式 176

3.5.7.8 消費電力の算出

$E_{11} \sim E_{14}$: 除湿消費電力係数	
$E_{21} \sim E_{24}$:加湿消費電力係数	
$F_1 \sim F_3$: 圧縮機消費電力補正係数	
ON_{rate}	: リモコン ON 率	
CU	: 圧縮機駆動率	
RS	: 圧縮機回転数	[rps]
Те	: 蒸発温度	[°C]
Tc	: 凝縮温度	[°C]
W_{base}	: ベース消費電力	[W]
W _{fan}	:ファン消費電力	[W]
W_{comp}	: 圧縮機消費電力	[W]
W	: 消費電力	[W]

表 105 消費電力係数

運転モード	\mathbf{E}_1	E_2	E_3	${ m E}_4$
除湿	E_{11}	E_{12}	E_{13}	E_{14}
加湿	E_{21}	E_{22}	E_{23}	E_{24}

 $W_{comp} = E_1 \times RS^2 + E_2 \times Te^2 + E_3 \times Tc^2 + E_4$

式 177

	表 106 庄	稲懱 涓貨電刀桶止		
優先順位	条件	アクション		
1	運転モード=加湿	$W_{comp} = F_1 \times W_{comp^2} + F_2 \times W_{comp} + F_3$		
2	Else	$W_{comp} = W_{comp}$		

表 106 圧縮機消費電力補正

 $W = ON_{rate} \times (CU \times (W_{comp} + W_{fan} + W_{base}) + (1 - CU) \times (W_{fan} + W_{base})) + (1 - ON_{rate}) \times W_{base}$ $\ddagger 178$

3.5.7.9 給気温湿度の算出

給気温度の計算フローを下記に示す。

図 256 給気温度計算フロー

給気温度の計算フローを下記に示す。

3.5.7.10 給気温度算出

G_{11} ~ G_{17}	: 除湿給気温度係数	
$G_{21} \hbox{$\sim$} G_{27}$:加湿給気温度係数	
CU	: 圧縮機駆動率	
RS	: 圧縮機回転数	[rps]
Vs	: 給気風量	[kg/sec]
Ve	: 排気風量	[kg/sec]
Тоа	: 外気温度	[°C]
Xoa	: 外気絶対湿度	[kg/kg]
T_{RA}	: 室内温度	[°C]
Те	: 蒸発温度	[°C]
Тс	: 凝縮温度	[°C]
$T_{\rm SA}$: 給気温度	[°C]

表 107 給気温度の算出

優先 順位	条件	アクション
1	運転モード =加湿	$ \begin{array}{l} T_{SA} = T_{oa} + G_{21} \times RS + G_{22} + RS^2 + G_{23} \times T_{OA} \\ + G_{24} \times X_{OA} + G_{25} \times T_{RA} + G_{26} \times T_c + G_{27} \end{array} $
2	運転モード =除湿	$\begin{array}{l} T_{SA} = T_{oa} + G_{11} \times RS + G_{12} + RS^2 + G_{13} \times T_{OA} \\ + G_{14} \times X_{OA} + G_{15} \times T_{RA} + G_{16} \times T_e + G_{17} \end{array}$
3	Else	Тоа

 $T_{SA}{=}CU{\times}T_{SA}{}^{'}{+}~(1{-}CU)~{\times}T_{OA}$

3.5.7.11 給気湿度の算出

: 除湿給気温度係数	
:加湿給気温度係数	
: 圧縮機駆動率	
: 圧縮機回転数	[rps]
: 給気乾燥空気風量	[kg/sec]
:凝縮温度	[°C]
: 蒸発温度	[°C]
: 外気温度	[°C]
: 室内温度	[°C]
: 外気絶対湿度	[kg/kg]
: 室内絶対湿度	[kg/kg]
: 給気湿度	[kg/kg]
	 : 除湿給気温度係数 : 加湿給気温度係数 : 正縮機駆動率 : 圧縮機回転数 : 給気乾燥空気風量 : 凝縮温度 : 凝縮温度 : 蒸発温度 : 外気温度 : 室内温度 : 室内絶対湿度 : 畲内絶対湿度 : 給気湿度

優先 順位	条件	アクション
1	運転モード =除湿	$X_{SA} = X_{OA} - (H_{11} + H_{12} \times Tc + H_{13} \times Te + H_{14} \times X_{RA} + H_{15} \times RS + H_{16} \times X_{OA}) / V_{sDA}$
2	運転モード =加湿	$\begin{array}{l} X_{SA} = X_{OA} + & (H_{21} + H_{22} \times Tc + H_{23} \times Te + H_{24} \times X_{RA} + H_{25} \times RS + H_{26} \times RS^{0.5} + H_{27} \times T_{OA}) \\ \swarrow V_{sDA} \end{array}$
3	Else	$X_{SA}'=X_{OA}$

表 108 給気湿度の算出

 $X_{SA} = CU \times X_{SA} + (1 - CU) \times X_{SA}$

式 180

3.5.8 実測データとの比較検証

3.5.8.1 東京Aビル(夏季)

東京 A ビルの実測結果を用いて、6/2~9/11の期間におけるヒートポンプデシカント調湿外調機の 圧縮機回転数を入力項とした性能特性式から計算される消費電力と実測値の比較を行った。比較は、 一時間平均の値で行った。

図 258、表 109、図 259 に消費電力の実測値と性能特性式から計算した値の比較を示す。

	消費電力量	亚均荷	二乗平均	平均	二乗平均
	[Wh]	平均恒	平方根誤差	誤差	平方根誤差
実測	452855	381.7	_		_
計算	451399		19.5	0.3%	5.1%

表 109 夏季通期評価結果

図 259 夏季消費電力比較(実測,計算)

期間積算で消費電力量の誤差が1%弱となった。

二乗平均平方根誤差で比較しても 5%強の誤差となっており、入力項に圧縮機回転数を取ることによって精度よく消費電力が予測可能となった。

3.5.8.2 東京 A ビル(冬季)

冬期においては、1/30~4/18期間にて分析を行った。夏季と同様に比較は、一時間平均の値で行った。

図 260、図 261、表 110 に消費電力の実測値と性能特性式から計算した値の比較を示す。

図 260 冬季消費電力比較(実	ミ測,計算)
------------------	--------

	消費電力量	亚均荷	二乗平均	平均	二乗平均
	[Wh]	平均恒	平方根誤差	誤差	平方根誤差
実測	717483	490.1	—	—	
計算	714789	_	39.8	0.4%	8.13%

表 110 冬季通期評価結果

図 261 冬季消費電力比較(実測,計算)

期間積算で消費電力量の誤差が1%弱となった。

二乗平均平方根誤差で比較しても 8%強の誤差となっており、入力項に圧縮機回転数を取ることによって精度よく消費電力が予測可能となった。

3.5.8.3 建築研究所(冬季)

建築研究所において実測した結果についても、実測値と計算値の比較を行った。2016/1/29~2016/2/7の期間のデータを用いて分析を行った。

消費電力の実測値と性能特性式から計算した値の比較を図 262、表 111、図 263 に示す。

义	262	冬季消費電力比較(実測,計算)
---	-----	-----------------

A 11 2 千远初时间和木					
	消費電力量	亚均荷	二乗平均	平均	二乗平均
	[Wh]	平均恒	平方根誤差	誤差	平方根誤差
実測	121821	507.6			—
計算	125687		41.4	3.2%	8.2%

表 111 冬季通期評価結果

期間積算で消費電力量の誤差が3%強、二乗平均平方根誤差で8%強の誤差となった。 Aビルの結果よりも、若干大きめの誤差となったものの計算モデルの高い精度が確認できた。

3.5.9 省エネルギー基準への反映案(全熱計算法への反映)

現在の省エネルギー基準においては、空調負荷を潜熱、顕熱分離して取り扱わず全熱として取り扱っている。本項では、全熱負荷計算における調湿外調機の計算方法について提案を行う。

<入力>

L _{total}	: 室全熱負荷	[W]
LLout	: 外気潜熱負荷	[W]
Тоа	: 外気温度	[°C]
Xoa	: 外気絶対湿度	[kg/kg]
T_{RA}	: 室内温度	[°C]
Xra	: 室内絶対湿度	[kg/kg]

3.5.9.1 最小潜熱負荷率の算出

β 00~ β 24	: 最小潜熱負荷率係数	
TOA	: 外気温度	[°C]
Xoa	: 外気絶対湿度	[kg/kg]
T_{RA}	: 室内温度	[°C]
X_{RA}	: 室内絶対湿度	[kg/kg]
PLRL _{min}	: 最小潜熱負荷率	

最小潜熱負荷率= β_{00} + β_{11} ×ToA+ β_{12} ×XoA+ β_{13} ×T_{RA}+ β_{14} ×X_{RA}+ β_{21} ×ToA²+ β_{22} × XoA²+ β_{23} ×T_{RA}²+ β_{24} ×X_{RA}²

式 181

3.5.9.2 最大潜熱能力の算出

$\alpha 00 \sim \alpha 14$	·最大潜埶能力係数	
Тоа	: 外気温度	[°C]
Xoa	:外気絶対湿度	[kg/kg]
T_{RA}	: 室内温度	[°C]
X_{RA}	: 室内絶対湿度	[kg/kg]
LC _{max}	:最大潜熱能力	[W]

最大潜熱能力 (LC_{max}) = $\alpha_{00} + \alpha_{11} \times T_{OA} + \alpha_{12} \times X_{OA} + \alpha_{13} \times T_{RA} + \alpha_{14} \times X_{RA}$

式 182

3.5.9.3 潜熱負荷率の算出

LC _{max}	:最大潜熱能力	[W]
LC	: 潜熱能力(負荷)	[W]
PLRL	: 潜熱負荷率	

潜熱負荷率 (PLRL) = 潜熱負荷 (LC) / 最大潜熱能力 (LCmax)

式 183

但し、潜熱負荷率は最小潜熱負荷率以上、1以下で制限する。

3.5.9.4 発停率の算出

潜熱負荷率が最小潜熱負荷率を下回る場合、発停率の算出を行う。

$O_{\rm fre}$: 発停率	
PLRL _{min}	: 最小潜熱負荷率	
LC	: 潜熱能力(負荷)	[W]
LC _{max}	:最大潜熱能力	[W]

発停率 (Ofre) =LC/ (PLRLmin ×LCmax)

3.5.9.5 消費電力の算出

δ 00~ δ 34	: 消費電力係数	
Тоа	: 外気温度	[°C]
Xoa	: 外気絶対湿度	[kg/kg]
T_{RA}	: 室内温度	[°C]
Xra	: 室内絶対湿度	[kg/kg]
PLRL	: 潜熱負荷率<最小潜熱負荷	肯率以上、1 以下の範囲に制限される>
$O_{\rm fre}$: 発停率	
W_{fan}	:ファン消費電力	[W]: 定格静圧, 定格風量における消費電力を用い
		る

消費電力= $(\delta_{00}+\delta_{11}\times T_{OA}+\delta_{12}\times X_{OA}+\delta_{13}\times T_{RA}+\delta_{14}\times X_{RA}+\delta_{15}\times PLRL+\delta_{21}\times T_{OA}\times PLRL+\delta_{22}\times X_{OA}\times PLRL+\delta_{23}\times T_{RA}\times PLRL+\delta_{24}\times X_{RA}\times PLRL+\delta_{31}\times T_{OA}\times PLRL^2+\delta_{32}\times X_{OA}\times PLRL^2+\delta_{33}\times T_{RA}\times PLRL^2+\delta_{34}\times X_{RA}\times PLRL^2) \times O_{fre}+W_{fan}\times (1-O_{fre})$

式 185

3.5.9.6 全熱能力の算出

$\gamma \ 00$ ~ $\gamma \ 34$: 全熱能力係数	
Тоа	: 外気温度	[°C]
Xoa	: 外気絶対湿度	[kg/kg]
T_{RA}	: 室内温度	[°C]
X_{RA}	: 室内絶対湿度	[kg/kg]
PLRL	: 潜熱負荷率<最小潜熱負荷率	以上、1以下の範囲に制限される>
O_{fre}	: 発停率	

全熱能力= (γ 00+ γ 11×ToA+ γ 12×XoA+ γ 13×TRA+ γ 14×XRA+ γ 15×PLRL+ γ 21×ToA× PLRL+ α 22×XoA×PLRL+ α 23×TRA×PLRL+ α 24×XRA×PLRL+ α 31×ToA× PLRL²+ α 32×XoA×PLRL²+ α 33×TRA×PLRL²+ α 34×XRA×PLRL²) ×Ofre 式 186

3.5.9.7 残負荷の算出

L _{total}	: 室全熱負荷	[W]
C_{total}	: 全熱能力	[W]
L _{rem}	: 残負荷	[W]

Lrem (残負荷) =Ltotal-Ctotal

3.5.10 ヒートポンプデシカント調湿外調機の性能計測方法

ヒートポンプデシカント調湿外調機の性能を計測する方法についての考え方を整理した。本計測手法 に基づいて技術資料の表記データは作成されている。

3.5.10.1 性能評価を行う上での評価項目・計測器必要精度

定常状態で運転する場合の測定項目および測定項目に使用する計測器の必要精度はJISB8615に準ずる。JIS 改訂時には、改訂版の精度に改訂する。

	測定項目	必要精度
	還気(RA)乾球温度	定常時 能力用:±0.1℃
	外気(OA)乾球温度	性能用: ± 0.2 ℃
	給気(SA)乾球温度	非正吊心合性 10 秒以内 0.2 C木両封建のこと
温	排気(EA)乾球温度	
度	還気(RA)湿球温度	定常時 能力用:±0.1℃
	外気(OA)湿球温度	性能用: ± 0.2 ℃
	給気(SA)湿球温度	非正吊心合性 10 秒以内 0.2 C木両封建のこと
	排気(EA)湿球温度	
	還気(RA)相対湿度	定常時 能力用:±2%Rh
	外気(OA)相対湿度	性能用: $\pm 3\%$ Rh
	給気(SA)相対湿度	非正吊応合性 30 秒以内に変化重の 90 %応合
湿	排気(EA)相対湿度	
度	還気(RA)絶対湿度	定常時 能力用:±1g/kg-DA
	外気(OA)絶対湿度	性能用: $\pm 1g/kg$ -DA 北京学校教士 20 私以内に亦化是の 00% 広然
	給気(SA)絶対湿度	升圧市心合性 30 秒以内に変化型の 30 %心合
	排気(EA)絶対湿度	

表 112 非定常計測における測定項目と必要精度

湿度測定は湿球に頼らず、精度信頼のおける絶対湿度センサーまたは相対湿度センサーの使用を可とする。

3.5.10.2 性能評価時の計測方法

性能評価を実施する際の試験機の設置方法を下図に示す。

- ・ 送風機が被試験機に内蔵されており、且つ機外静圧を所定の値に調整可能な場合は、外部ファン は不要とする
- ・ 定格機外静圧を表示したものにあってはその時の機外静圧を加える
- ・ 温度・湿度の測定点までの管路は、必要に応じて断熱すること
- ・ 温度・湿度の測定点は、管路内の平均的な値が得られるよう位置調節や混合部設置を行うこと、 またそれらは風量測定部と一体としてもよい
- ・ 各室の外壁と仕切り板には十分な断熱を施すこと
- ・ 各室の温度・湿度の分布は、均一となるよう留意すること

また、計測時の室内、室外空気条件は、表 113 の範囲に入っていること

室内		室外		
乾球温度	湿球温度	乾球温度	湿球温度	
設定温度 ±0.3℃	設定温度 ±0.2℃	設定温度±0.3℃	設定温度 ±0.2℃	

表 113 計測時における室内、室外空気条件

適用機種がバッチ式である場合、加湿能力の測定は次のように行う。サイクルはバッチ運転において 各バッチを1周りすることを表す。また平均値は計測値から求めた能力値等の積分平均値とする。

- ・ 室外側、室内側の空気条件が表 113の条件で安定した後、被試験機を運転する
- ・ 試験条件が安定したことを確認し1時間以上運転した後に、連続3サイクル計測し平均値データ を採用、記録する。このとき算出した能力のバラツキがない(各サイクルの最大・最小値が平均 値の±3%以内にある)ことを確認すること
- ・ 温調室の試験条件変動などで被試験機が安定しない場合は連続6サイクル測定し、全て上記条件 を満足できない場合は、最もバラツキの小さい連続3サイクルの平均値を採用する。そのとき還 気、外気、給気の乾球温度、湿球温度(相対湿度)の変動も記録すること

風量、静圧の計測方法はJISB8628に準ずるものとする。

3.5.11 機種選定手順

カタログに記載されている最大能力表を用いたヒートポンプデシカント外調機および高顕熱形ビル 用マルチエアコンの機種選定手順について整理した。

3.5.11.1 ヒートポンプデシカント調湿外調機選定の手順(フローチャート)

図 267 ヒートポンプデシカント調湿外調機選定時のフローチャート

3.5.11.2 ヒートポンプデシカント調湿外調機の風量

「風量一定機能を使用する場合(工場出荷時の設定)」

500m³/h(規定風量):規定の機外静圧範囲内(50~220Pa)において自動で風量を調整 「風量一定機能を使用しない場合(現地設定)」

450~550m³h(規定の風量範囲内):規定機外静圧範囲内において、現地設定にて給気・排気ファンステップを固定し、手動で風量を調整

3.5.11.3 ヒートポンプデシカント調湿外調機の冷房能力算出方法	
 (1) 冷房能力(全熱・顕熱)を算出する 冷房能力(全熱・顕熱) =除湿冷房性能特性表より外気・室内吸込温湿度を補正した除湿冷房能力(全熱・顕熱) 	
×風量による除湿冷房能力補正係数	式 188
(2) 冷房能力(潜熱)を算出する	
冷房能力(潜熱)=冷房能力(全熱)-冷房能力(顕熱)	式 189
3.5.11.4 調湿外調機の暖房能力算出方法	
 (1) 暖房能力(全熱・顕熱)を算出する。 暖房能力(全熱・顕熱) =加湿暖房性能特性表より外気・室内吸込温湿度を補正した加湿暖房能力(全熱・顕熱) ×風量による加湿暖房能力補正係数 	
	式 190
(2) 暖房能力(潜熱)を算出する 暖房能力(潜熱)=暖房能力(全熱)-暖房能力(顕熱)	式 191
3.5.11.5 調湿外調機の加湿能力算出方法	
加湿能力[kg/h]=暖房能力(潜熱)×3600[sec]÷2500[kJ/kg]	

3.5.11.6 風量による能力の補正

表 114 除湿冷房能力補正係数							
		給気					
		550m³/h	500m³/h	450m³/h			
排	550m³/h	1.05	1.03	1.01			
気	500m³/h	1.02	1.00	0.98			
	450m ³ /h	0.99	0.97	0.95			

		給気				
		550m³/h	500m³/h	450m ³ /h		
排	550m³/h	1.06	1.04	1.02		
気	500m ³ /h	1.02	1.00	0.98		
	450m ³ /h	0.98	0.96	0.94		

表 115 加湿暖房能力補正係数

3.5.11.7 ビル用マルチエアコンの選定の手順

3.5.11.8 残熱負荷算出方法

(1) 冷房残熱負荷(顕熱・潜熱)を算出する
 冷房残熱負荷(顕熱・潜熱)=冷房熱負荷(顕熱・潜熱)-DESICA 合計冷房能力(顕熱・潜熱)
 式 193

(2) 暖房残熱負荷(顕熱)を算出する

暖房残熱負荷(顕熱)=暖房熱負荷(顕熱)-DESICA 合計暖房能力(顕熱)

式 194

3.5.11.9 ビル用マルチ接続時の室内ユニット冷房能力(全熱・顕熱)を算出する

ビル用マルチ接続時の室内ユニット(冷房能力) =ビル用マルチ接続時の室内ユニット定格冷房能力×室内吸込温度による能力補正係数

式 195

3.5.11.10 ビル用マルチ接続時の室内ユニット冷房能力(潜熱)を算出する

ビル用マルチ接続時の室内ユニット冷房能力(潜熱)

- =ビル用マルチ接続時の室内ユニット冷房能力(全熱)
 - ービル用マルチ接続時の室内ユニット冷房能力(顕熱)

式 196

3.5.11.11 ビル用マルチ室外ユニット最大冷房能力を算出する

ビル用マルチ室外ユニット最大冷房能力

- =ビル用マルチ室外ユニット定格冷房能力
- ×外気・室内吸込温度による能力補正係数
- ×能力特性図より求めたその接続容量での能力変化率
- ×配管帳による能力補正係数
- ×配管熱損による能力補正係数

3.5.11.12 残熱負荷算出方法

(1) 室内ユニット接続容量が 130%以下の場合

ビル用マルチ接続時の室内ユニット暖房能力 =ビル用マルチ接続時の室内ユニット定格暖房能力 ×室内吸込温度による能力補正係数×着霜による能力補正係数

(2) 室内ユニット接続容量が 130% 超の場合

ビル用マルチ接続時の室内ユニット暖房能力

- =ビル用マルチ接続時の室内ユニット定格暖房能力
 - ×室内吸込温度による能力補正係数
 - ×着霜による能力補正係数
 - ×弱風量/強風量(急風量)

3.5.11.13 ビル用マルチ室外ユニット最大暖房能力を算出する

ビル用マルチ室外ユニット最大暖房能力

- =ビル用マルチ室外ユニット定格暖房能力
 - ×外気・室内吸込温度による能力補正係数
 - ×能力特性線図より求めたその接続容量での能力変化率
 - ×配管長による能力補正係数
 - ×配管熱損による能力補正係数
 - ×着霜による能力補正係数

式 198

3.5.11.14 各室内ユニット暖房能力を算出する

(1) 室内ユニット接続容量が 130%以下の場合

室内ユニット暖房能力=システム暖房能力×室内ユニット容量/室内ユニット容量の合計

式 199

(2) 室内ユニット接続容量が 130% 超の場合

室内ユニット暖房能力

- =システム暖房能力×室内ユニット×弱風量/強風量(急風量)
- / (室内ユニット容量×弱風量/強風量 (急風量))の合計

式 200