第7章

建築物Eに関する調査分析

7.1 序論

7.1.1 はじめに

2011年に発生した東日本大震災では、構造設計時に十分な検討が明示的に求められていない部位の 損傷が顕在化し、その結果、当該建築物が地震後継続使用できなくなる事例が確認されており、現行基 準の要求レベルを確保するだけでは、地震後の建築物の継続使用性は必ずしも確保されないことも明ら かとなった^[7,1:1]。そこで建築研究所では、2013年度より、地震後の継続使用が強く求められる庁舎およ び避難施設の建築物を対象に、地震後継続使用性を確保するための要求性能の提案や、地震後継続使用 性を判断する部位の損傷評価技術の開発を行ってきた^[7,1:2]。2016年に発生した熊本地震では、地震によ って多くの建築物が大小様々な被害を受けた。また、複数の庁舎において地震後継続使用できなくなっ た例が報告されている^[7,1:3]。その中には、杭基礎の被害によって上部構造が傾斜したために継続使用が 出来なくなった例がある。そこで本章では、杭基礎部分が被災した庁舎である建築物 E を対象に、地震 によってどのように建築物が損傷を受け、どのような損傷によって庁舎の継続使用が出来なくなったか についての検討を行う。

7章の構成を以下のように示す。

7.1 節では, 7.1.1 項で研究の背景を説明し, 7.1.2 項では現在の建築基礎構造についての状況を簡単に概説する。

7.2節では、2016年に発生した熊本地震について概要を示す。

7.3節では、対象とした建築物の概要を示す。

7.4節では、地震の被害状況として、今回実施した被害状況を、上部構造と基礎構造に分けて示す。

7.5 節では、地震の被害の再現および被害要因の解明を目的として解析モデルを用いた検討を実施する。なお、解析モデルは上部構造と基礎構造でそれぞれ分けてモデル化を行う。

7.6節で研究のまとめと今後の検討課題を示す。

7.1.2 建築基礎構造について

(1) 建築基礎の地震被害と耐震性能評価方法

建築基礎では、杭基礎の被害が顕在化した 1978 年宮城県沖地震を受けて 1984 年に建設省住宅局建築 指導課から「地震力に対する建築物の基礎の設計指針」が示され、中小地震に対する杭の耐震設計法(許 容応力度計算)の普及がはかられた。さらに、1995 年兵庫県南部地震以降は大地震時の評価法も提案さ れてきている。

1964 年新潟地震以降に提案,整備されてきた耐震設計評価手法の特徴を以下に,建築基礎や地盤の地 震被害とこれまでの耐震性評価手法の整備の時系列を表 7.1.2.1 に示す。

①1974年「建築基礎構造設計規準」

建築分野で杭の耐震設計について初めて公に示された

応力解析は線型地盤反力法(弾性支承梁に基づく解析法で「Changの方法」と呼ばれることが多い(式 7.1.2.1)および極限水平抵抗力による方法「Bromsの式」と呼ばれることが多い)が示された。水平地盤 反力 *k*_h は弾性論に基づく方法, N 値を用いた概略値が示されている。

$$EI\frac{d^4y}{dy^4} + k_h y = 0 \tag{₹7.1.2.1}$$

ここで、EI:杭の曲げ剛性

kh:水平地盤反力係数

y:杭の水平変位

②1984年「地震力に対する建築物の基礎の設計指針」

宮城県沖地震での杭の被害を契機に編集・刊行され,許容応力度計算の方法が示された。(センター指 針」と呼ばれることが多い)応力解析法は弾性支承梁の方法,水平地盤反力係数*k*h は様々な評価手法の比 較を示したうえで,「バックデータが豊富である」という理由で,日本道路協会「道路橋示方書」(1980刊行)で規 定された杭の水平載荷試験に基づいて統計的に導かれた実験式(式 7.1.2.2)を採用している。

 $k_{h} = 80 \cdot E_{0} \cdot B^{3/4}$ (kN/m³, 原式はkg/cm³で係数は0.8) (式 7.1.2.2)

ここで, EO: 地盤の変形係数 (kN/m², 原式は kg/cm²)

B: 杭径を cm で表した無次元量(原式は cm)

また、地下震度による基礎部分の根入れ効果を含む慣性力の計算方法が示された。

1985 年建設省住指発第 324 号建設省住宅局建築指導課長通達「「地震力に対する建築物の基礎の設計指計」の取り扱いについて」、センター指針を「建築基準法令における最低基準として位置づけることについてもさらに検討を続けていく方針・・・当分の間、望ましい水準の基準として推奨すべきものとして、本指針の周知及び普及に努めることとしたい」としている。なお、本指針のQ&A では「自主的に 2 次設計を行い、構造安全性を検討しておくことは一向に構わず、むしろ歓迎される」と述べられている。

さらに1995年建設省住指発第176号建設省住宅局建築指導課長通達「構造物の構造耐力上の安全確保に関わる措置について」では、1995年兵庫県南部地震を受けて、基礎も「地震力に対する安全性について構造計算により確認すること」が要求されるようになった。

③1988年「建築基礎構造設計指針」

応力解析は 1974 年版と同様に弾性支承梁および極限水平抵抗による方法,水平地盤反力は上記「センター指針」の方法に加え,非線形性を水平変位 y^{-1/2} で考慮する方法「道路橋示方書」に基づく) 群杭効果の考え方が示された。

④1990年「建築耐震設計における保有耐力と変形性能(1990)」

構成材料の応力ーひずみ関係に基づく杭体の強度・変形性能の評価方法が示された。

⑤2000年「新建築構造体系の開発 性能評価分科会 基礎 WG 最終報告書」

基礎構造の2次設計法についてまとめられており,杭基礎の耐震設計に関しては応答変位法における杭 慣性力と地盤変位の組み合わせに関する提案や,杭体や地盤ばねの非線形化を考慮した設計方法が示され ている。杭体(④にならう)および杭頭接合部の終局強度,変形性能について示された。水平地盤反力は③ にならっており,群杭効果は考え方のみが示された。

⑥2001年「平成13年度国土交通省告示第1113号」

杭基礎の許容応力度が規定された。ここで,短期許容応力度が規定されたことにより耐震設計が義務化 された。-杭材の短期許容応力度を規定→耐震設計(許容応力度計算)が法的に義務化

⑦2001年「建築基礎構造設計指針」

限界状態を考慮した設計法が示された。杭基礎の耐震設計法は1988年版の考え方を踏襲しているが、地盤・基礎・上部構造の一体解析や地盤変位を考慮するための方法(応答変位法・荷重分布法)について触れられた。また、水平地盤反力係数・塑性地盤反力に対する群杭効果が定式化された。

⑧2007年「2007年版建築物の構造関係技術基準解説書」

②の方法を技術基準として示す。

ここで,現行の技術基準に従って杭の耐震設計を行う場合は②,③で示された方法が採用されるのが一般 的で,被害建物のうち杭の耐震設計を実施された建物でもこれが用いられている。また,基礎部分の慣性力を 地下震度から求める方法は、②に示された考え方および建築基準法施行令第88条の規定に基づくもので,⑧では 「地上部分と地下部分とは振動性状が異なる」ことを考慮したとしている。

⑤,⑦に示された大地震時の設計法も基本的な考え方はこの延長上にあり,部材の非線形性や地盤変位 の影響を考慮することを求めている。

また、その他の建築基礎に関する技術資料としては以下のようなものがある。

⑨2002年「評定・評価を踏まえた高層建築物の構造設計実務」(日本建築センター) 高層建築物の性能評価における大地震時の基礎部材の設計法に関し,設計クライテリアの設定や解析手法, 地盤変位の評価方法等の事例がまとめられている

⑩2006年 日本建築学会「建物と地盤の動的相互作用を考慮した応答解析と耐震設計」 動的解析に用いる地盤ばね(水平地盤反力)と静的解析に用いる地盤ばねの違いについて比較・検討され ている。

⑪2011年「風力発電設備支持物構造設計指針・同解説」(土木学会)

2007年の法改正により 60m 以上の工作物で性能評価が求められるようになったことに対応して,風力発 電施設の基礎構造について極稀地震や暴風時の設計方法が規定された。ただし,2014.4 以降は建築基準法の工作 物としての規制はなくなり,電気事業法に基づく経済産業省の審査に一本化された。

122012年「津波避難ビル等の構造上の要件に関する解説」(国土技術政策総合研究所)

国土交通省国住指第2570号技術的助言「津波に対し構造耐力上安全な建築物の設計法等に係る追加的知 見について」に示された「東日本大震災における津波による建築物被害を踏まえた津波避難ビル等の構造 上の要件に係る暫定指針」(2011.11)の解説として作成された。

「建築物が,浮力及び自重を考慮して、津波荷重によって転倒又は滑動しないこと(杭基礎にあっては、杭の 引き抜き耐力を超えないこと等)を確かめる」という規定における滑動に対する設計法として,杭の曲げ破 壊時のせん断力の総和を杭の保有水平耐力とする方法が示されている。

(3)2013年「基礎構造の耐震診断指針(案)」(ベターリビング)

基礎構造の耐震診断方法として、上記指針類の2次設計法に準じた応力解析手法が提案されている。 また、基礎構造の性能レベルとして軸力保持に関する要求性能と判定指標が提案されている。

⑭2017年 日本建築学会「鉄筋コンクリート基礎構造部材の耐震設計指針(案)・同解説」

上部構造と基礎構造一体解析を中心とした基礎構造部材の耐震設計方法,および杭種ごとの杭体の強 度・変形特性の評価方法がまとめられている。

表 7.1.2.1	建築基礎の主な技術基準類と地震被害

年	地震,地震と基礎構造の技術基準類	基礎の被害,基礎構造に関する規定等
1964	新潟地震	液状化・側方流動による杭被害→継続使用
昭 39		液状化による直接基礎の転倒他
1974	①日本建築学会	杭の耐震設計法の提案
昭 49	「建築基礎構造設計規準」改定	
1978	宮城県沖地震	杭の破損による建物傾斜
昭 53		字地崩壊
1979		工述の設置によります。
1010	建筑構造設計指針 改訂9 版	2009 年版上りすべての建物が対象)
1091	建筑其淮江改正	2002 千版より 9 (10) 定切が対象)
1301	(新耐電設計法)	工即併起 1 八段町, 2 八段町の寺八 其碑構造の耐雪雲計の用字わ1
1000		室硬件垣の 前長 取 可 の 尻 足 な し
1982	佣仍們地展	別の祝何による建物傾斜
	四和 50 左分比改体 204 月	@「地震力に対ナフカダ梅の甘淋の訊礼化
1984		② 「地長刀に刈りる建築物の基礎の設計指 創いたたたまで記録させ)
昭 59	(住宅向建築指导硃女進達)	」 「「」による机の 「長 による れの 「 による れの 「 長 武 丁 ど 推 突 し よる れの 長 武 丁 ど 推 突 し 、 、 、 、 、 、 、 、 、 、 、 、 、
1985	メキシコ地震	机の破損による建物の転倒・崩壊
昭 60		
1988	③日本建築字会	杭の耐震設計法の改定
昭 63	「建築基礎構造設計指針」改定	ー非線形性や群杭効果の考え方を示す
1990	④日本建築学会	2 次設計のための基礎構造の強度・変形特
平 2	「保有耐力と変形性能(1990)」刊行	性を提示
1995	兵庫県南部地震(阪神淡路大震災)	杭の破損による建物傾斜・層崩壊
平 7		大規模な液状化・側方流動の発生
1995	平 7 住指発第 176 号	基礎の地震力に対する安全性について構
平 7	(住宅局建築指導課長通達)	造計算による確認を要求
1995	建築物の耐震改修の促進に関する法律	耐震診断・補強の促進
平 7		基礎構造の具体的な規定はなし
1999	住宅の品質確保の促進等に関する法律	耐震等級の設定(基礎も構造計算が必要。
平 11		ただし、安全限界は除外)
2000	建築基準法改正	限界耐力計算,エネルギー法の導入
平 12		構造計算審査の厳格化
2000	⑤建設省総合技術開発プロジェクト	安全限界状態の設計法を示す
平 12	「新構造体系の開発」報告書	-地盤・杭の非線形性,応答変位法
2001	⑥日本建築学会	限界状態表示型の設計方法
平 13	「建築基礎構造設計指針」改定	-応答変位法の考え方を示す
2001	⑦国土交通告示第1113 号地盤の許容応力度及び	基礎構造の短期許容応力度を規定
平 13	基準へいの許容支持力を求めるための方社等を定める件	→基礎の耐震設計を義務化
2003	十勝沖地震	杭の破損による建物傾斜
平 13		
2006	平18 国交告第184 号/耐震診断及び耐震	技術的指針として敷地の基準を規定
平 18	改修の促進を図るための基本的な方針	(液状化・がけ崩れの防止)
2007	平19 国交告第 594 号/保有水平耐力計算	保有水平耐力の計算において、 塔状比 4 以
平 19	及び許容応力度等計算の方法を定める件	上の場合は極限支持力の確認を要求
2007	⑧「2007 年版 建築物の構造関係技術	②、⑦を杭の耐震設計法のための技術基準
平 19	基準解説書」刊行	として示す
2011	東北地方太平洋沖地震(東日本大震災)	杭の破損による建物沈下・傾斜
平 23		大規模な液状化・宅地崩壊
2013	(13ベターリビング「基礎構造の耐震診	基礎構造の耐震診断(大地震時の耐震性評
平 25	断指針(案)刊行	価)手法の提案
2014	住宅の品質確保の促進等に関する法律	液状化に関する情報提供を規定
平 26	施行規則の改正	
2016	能本地震	杭の破損による建物・傾斜
平 28		断層上の基礎の被害
2017	④日本建築学会「鉄筋コンクリート其	一体解析によろ基礎部材の設計の考え方
平 29	磁構造部材の耐震設計指針(案)	杭体の強度・変形特性の評価方法を示す

(2)過去の大地震時の杭被害の概要

1) 1964 年新潟地震 [7.1-3][7.1-4]

・地震後に傾斜したものの継続使用されていた2つの建物が1980年台に解体され、杭の被害が確認された。 いずれもRC 造2 階一部3 階の事務所建物で、杭径\$300.\$350 杭長10~12m の 既 製 RC 杭および PC 杭が使用され ていた。建物の沈下量は最大1.3m 不同沈下 575mm、および不同沈下量 500mm と報告されているが、上部構 造の被害が軽微であることから、 床の補修や杭の増し打ちを行って継続使用していた。

・いずれも掘り出された杭の杭頭ではあまり被害は見られず,液状化が考えられる層の中間部分および支持層 (N 値20~30)の直上の2箇所で圧壊が見られた。杭の全数が調査された建物では、すべての杭が破壊しかつ 同一方向に傾斜し1.0~1.2m水平変位していたことから、液状化に伴う側方流動力によるものと考えられ ている。

2) 1978 年宮城県沖地震[7.1-5]~ [7.1-9]

・L 字型に直交する板状の2棟で構成される建物2組(SRC11 階建×2・SRC14 階建×2)が沈下・傾斜し,杭 頭の被害が確認された^[7.1-6]。上部構造は非構造壁のひび割れ程度である。 地形はいずれも沖積低地で,大 規模な液状化は見られていない。

11 階建物のうち傾斜が 1/100 程度となった棟はジャッキアップして直接基礎に変更,3mm 程度の沈下 の棟も78本中49本の杭に鋼管を巻いて補修された^{[7,1-7][7,1-8]}。14 階建の建物は2 棟間で2cm 程度の段差 が生じ,隅角部の杭のみが鋼管で補修され,いずれも継続使用された^{[7,1-7][7,1-8]}。2011 年東北地方太平洋沖地 震では,これらの建物のうち,11 階建の建物では傾斜・沈下がなかったのに対し,14 階建の建物では1/50 程度の傾斜が生じるとともに,上部構造では非構造壁が大破し,最終的に解体された^[7,1-9]。杭の状況は不 明である。

・杭の被害による建物の沈下・傾斜が確認され,杭の耐震設計および被害を受けた杭の補修・補強技術の 必要性が認識された。

3) 1982 年浦河地震[7.1-10][7.1-11]

・台地上にある RC 造3 階建て建物で上部構造の被害は軽微であるが 100mm の不同沈下が生じた。表層地盤 は N 値2~8 程度の粘性土で,支持層はやや傾斜している。杭は既製コンクリート杭\$300 杭長8m,掘削調 査した 2 本の杭頭部は圧壊していた。

・鋼管杭が使われた RC 造4 階建て建物では、杭は無被害であったがパイルキャップが破損した。杭径 400mm に対してパイルキャップのへりあき(杭中心からパイルキャップ端部までの距離)が300mm と、パイルキャップの耐力不足が指摘されている。

4) 1985 年メキシコ地震^{[7.1-12][7.1-13][7.1-14]}

9 階建てのアスペクト比が高い杭基礎建物の転倒,崩壊があった(死者8名)。地盤は非常に軟弱であるが,杭は 支持層に達しておらず沈下制御のための摩擦杭で,水平抵抗(耐震性能)にも期待していないと考えられる(杭 径400・RC 杭,芯鉄筋のみ)転倒の要因は水平耐力喪失に加え,押し込み方向の支持力が不足していたこ とも考えられる。

5) 1995 年兵庫県南部地震[7.1-15]~[7.1-19]

・液状化による地盤変位,側方流動によると考えられる杭の被害が多く見られた。その中には上部構造施 工前で杭のみ(慣性力なし)のものも含まれている^[7.1-15]。

・文献[7.1-16]に示された 180 件の調査事例の傾向は以下である。

基礎に被害のあった 97 件のうち,地形は埋立地(49 件) 平坦地(35 件)が多い。97 件中 1985 年以降に建設 された建物も 27 件(調査は 50 件)含まれるのに対し,上部構造が大破となった建物 54 件のうち 1981 年 以前の建設が 44 件を占める。基礎の被害があった建物で,上部構造が大破した建物は 12 件である。

・杭基礎の被害のあった89件のうち既製コンクリート杭は62件(打込み34,埋込み28)

・傾斜した6 階建てRC 造の建物で、一部の杭のみが破損し、かつ1つのパイルキャップの中でも杭の被害 に差がある例があった。(PHC 杭C 種(一部A 種) φ600)

・杭の被害が原因となって層崩壊が生じたと推定されている建物(RC5 階・PC 杭¢350)があった^[7.1-19]。この建物は杭基礎であるが短辺方向18 通りのうち16 通り は液状化地盤,2 通り は硬質な地盤に杭が打設されていた。そのため、図7.1.2.1 に示すような側方流動力が加わる液状化地盤の杭と硬質地盤の杭で変位量の差が生じ、地盤の境界部のはり(基礎ばりも含む)の破壊および硬質地盤上の柱のせん断破壊につながったとされている。

図 7.1.2.1 兵庫県南部地震で層崩壊した建物の破壊メカニズムの推定^{[7.1-19]に加筆}

・基礎構造の被害は埋立地・沖積低地・緩扇状地に多く、その要因としては上部構造からの水平力および 転倒モーメント、液状化地盤の振動中の地盤変位、地盤破壊による支持力の減少、液状化後の側方流動を 含む地盤の残留変位が挙げられ、これらの影響を適切に考慮した耐震設計が必要であることが確認された。 一方で、新しい埋立地では被害は比較的少なく、埋立地盤の圧密対策による剛性確保などの地盤条件とと もに、これらでは基礎構造の耐震設計が確実に行われていたために 被害の緩和につながった可能性が指 摘されている。

6) 2003 年十勝沖地震[7.1-20][7.1-21]

RC 造3 階の建物で,長手方向の端部に近いスパンで最大傾斜角 1/220 の被害が見られた。杭はPC 杭ф400, 地盤は軟弱な粘性土層が 30m 程度続いている。杭の被害は杭頭部の圧壊とともに,GL-4~6m 付近,およびN 値0~5 の粘土質シルトと N 値10 程度の砂質シルトの境界である GL-20m 付近でもひび割れが見られ,地盤 変位の影響が考えられる。

7) 2011 年東北地方太平洋沖地震[7.1-22]

被害が広範囲であり、杭の被害調査は学校や公営住宅など公共施設を中心に実施された。民間建築物の被害の全体は不明である。調査範囲での傾向を以下に示す^[7,1-22]。

a.建設年代

被害建物の建設年代は杭の耐震性の考慮がなされていない 1970 年代のものが 40 例中 22 件 (55%) 1985 年の通達以前で 30 件 (合わせて 75%) あるが,杭基礎の耐震設計が普及した 1980 年代後半以降でも 10 件

(25%) 含まれていた。

b.上部構造の構造規模

調査対象が学校や集合住宅が主であることから、5階以下が37件(93%)で、すべて地下階のない建物である。このうち、1970年代に建設され、その後、上部構造の耐震補強が実施されているものも3件含まれていた。また、アスペクト比(建物高さと建物幅の比)

でも,情報が得られている建築物26件中16件(70%)で2.0以下,最大でも3.6と,地震力による転倒モーメント・変動軸力はそれほど大きくはなかったと考えられる。また。板状の建物で,変動軸力が大きいと思われる 短辺方向ではなく長辺方向に傾いた例や,中央部の杭にも被害が生じた例もあった。

c.上部構造の被害

傾斜した建築物の33件中20件(61%)は上部構造の構造体がほぼ無被害,または軽微なひび割れが生じた 程度となった。また,被害ありとなっている13件(39%)では柱・はり・耐震壁にせん断ひび割れは生じて いるが,層崩壊するような被害に至ったものはない。なお,これらの被害には杭の破壊に伴う傾斜によ り生じたひび割れも含まれている。

それに対して,傾斜量から被災度区分判定を行うと大破(1/75以上)が29件中16件(55%),中破(1/150以上)が7件(合わせて79%)であった。また,不同沈下が報告されているもののうち,大破となる30cm以上が6件,中破の10cm以上と合わせると11件(28%)であった。

また、「上部構造被害なし」および「軽微」の17件でも、傾斜角は大破(1/75以上)が10件(59%)、中破(1/150以上)4件(合わせて82%)となった。

d. 杭種

被害があった杭種はすべて既製コンクリート杭であった。建設年代が古いものは設計図書には PC 杭と 記載されているのみで詳細は不明である。1989年以降に建設された 9 件は PHC 杭が使用されている。SC 杭の例では被害は下杭の PHC 杭で生じている。杭径は 300~400mm が33 件 (92%) 500~600mmが6 件 (8%) であった。杭の配置は、ラーメン構造の場合は柱下に 2~6 本打設され、壁式構造では布基礎の下に連続的に配 置されていた。

e.地盤条件·地形

被害が見られた建築物の敷地のうち、明確に液状化の影響によると考えられるのは7件であった。その他 にも敷地内または近隣で小規模な噴砂が見られるものもあったが、土質柱状図では明確に液状化が考えられ る層はない。その他は台地の7件を除き、地形図で「氾濫平野」や「谷底平野」と表現される低地または盛土である。 敷地は谷を埋めて造成されており、他の被害事例も同様な地形であるものが多い。なお、台地上の建物について

も当該建物建設にあたって造成されており、一部は盛土である可能性がある。

また、1つの建物内で杭長が異なるものがあり、これらは支持層が平坦でないと考えられる。さらに、敷地内 に同じ形状の建物が多数並んでいる中の1棟のみ、あるいは同じ建物の1部のみが破損した例が数例あるが、こ れらは敷地内の最も低い場所であったり、川や用水路の跡に建設されていた。表層地盤が不均質で、被害の あった側が他より軟弱で地盤反力が小さくかつ地盤変位が大きくなったことが被害形態に影響したと推定される。

d.その他の特徴

建物が沈下・傾斜した側で,沈下・傾斜量に相当する杭頭の破壊や傾斜が見られない,かつ地中部の損傷もひび割 れ程度と推定される例が見られた²⁰。杭の破壊と地盤の支持力不足が混在し,沈下・傾斜につながった可能性 が考えられる。

e.まとめ

東日本一帯の広い範囲で建築物の杭基礎に大きな被害のあったことが明らかとなった。建物の建設年代が 古いものに被害が多いものの新耐震以降の建物も例外ではない。また、軟弱地盤での被害が多いものの比 較的地盤が良いと思われる場所での被害も含まれている。このことから、大地震時における杭基礎の耐震 性能が必ずしも十分ではない可能性のあることが示唆される。特に既製コンクリート杭は、大きな地震力 が作用したときの変形性能を十分に保有していない可能性が高い。

8) 過去の被害の特徴のまとめ

- ・杭に被害を受けた建物の大部分では、上部構造の被害は非構造壁の破壊は見られたが、構造部材の破壊はほとんど報告されていない。
- ・杭の被害の大部分は既製コンクリート杭が占めていた。
- ・上部構造が軽量あるいは建設中で慣性力(杭頭水平力)がほとんどない場合でも杭が破損する例があった。
- ・杭の損傷がありかつ若干の沈下・傾斜があっても、軽微な補修で継続使用された例もあった。一方で、 杭の補修・補強が不十分であったために、再び大地震を受けた場合、より大きな被害につながったと考 えられる例があった。
- ・基礎構造の支持力もしくは水平耐力の不足により、大地震時に建物全体が転倒・崩壊した例や層崩壊し たと考えられる例もあった。
- ・同じ杭の仕様であっても建物内の被害は一様ではない例があった。被害が長手方向の端部に集中する場合や、同じパイルキャップ内でも被害状況が異なる場合もある。
- ・液状化地盤以外では、建築物の規模によらず、盛土上や低地等で地層構成が不均質な地盤で、既製コンクリート杭が使用される場合の被害が多い傾向が見られた。

(3) 建設年代と杭の仕様

1) 既製コンクリート杭

既製コンクリート杭の規格と開発の変遷^{[7.1-23][7.1-24]}を表7.1.2.2に示す。1960年代まではFc40N/mm²のRC 杭が主流で、それ以降はFc50N/mm²のPC 杭も使用されるようになった。1970年代からは高強度の杭の開発が進みFc80N/mm²のPHC 杭が使用されるようになり、RC 杭やPC 杭は1990年代以降はほとんど使用されていない。(前者は小規模建築物で用いられることもある。)PRC 杭やSC 杭も1970年代以降開発が行われたが、全体の需要としては PHC 杭の使用が大部分を占めている。

図7.1.2.2^[7,1-25]に1968年(昭和43年)から2000年(平成12年)までのPC杭とPHC杭の年ごとの出 荷実績を示す。昭和60年代以降はF_C=80または85N/mm²のPHC杭が大部分で、2000年代後半からはFc105 N/m²も使われるようになってきている。SC杭やPRC杭ははほとんど規模の大きな建築物の杭頭部に限定 されていると思われ、全体に占める出荷量としては多くはない。ただし、1995年阪神淡路大震災をはじめ とする杭の被害を受けた耐震性向上の要求や、拡大根固め工法の普及に伴う鉛直支持力の増大から、PRC 杭+SC杭の使用は増加傾向である。同時に、PHC杭の高強度化、大径化も進められている。

図7.1.2.2 既製コンクリート杭の出荷実績^[7.1-25]

	最大径	RC 杭	Fc	PC杭I	Fc	PHC 杭	Fc	PRC 杭	Fc	SC杭	Fc			
	森林資源の保護 木杭→コンクリート杭へ													
1955		JIS A 5310 制定	27											
1960		JIS A 5310 改訂	35	PC 杭の開発										
1968				JIS A 5535 制定 :	50	オートクレーブRC 杭	70							
1970		JIS A 5310 改訂	40			オートクレーブPC 杭	80							
	騒音規制・振動規制強化 打撃工法→埋込み工法へ													
1975 頃			SC 杭の開発											
1978						宮城県沖地震								
1979								SC 杭設計指針	-					
1982	600					JIS A 5337 制定	80							
1985頃	800							PRC 杭の開発	É					
1993	1000			JIS A 5535 廃止										
1995						兵庫県南部地震								
1999								基本評価取得	85					
2000	1200	JIS A 5372 制定	40			JIS A 5373 制定	80	JIS A 5373 制定	80	JIS A 5372 制定	80			
2001		告示 1113 号制定	40	告示 1113 号制定	50	告示 1113 号制定	80,85			告示 1113 号制定	80			
2004						JIS A 5373								
2005頃							105	基本評定取得	105		105			
現在	1500						123							

表 7.1.2.2 既製コンクリート杭の規格と開発の変遷^{[7.1-23][7.1-24]を参考に作成}

2) 鋼管杭

鋼杭は1900年ごろからレールやH型鋼を中心に使用されてきた。1950年代から使用実績が多くなり、以下のような鋼管杭の規格が制定された。

1961年 JIS G 3444	一般構造用炭素鋼鋼管(STK41,STK50,STK51)
1963年 JISA 5525	鋼管グイ(STK-K41,71 年改訂/STK-K50 が加わる)
1983年 JISA 5525	鋼管ぐい(SKK41, SKK50)

現在の鋼管杭の製造範囲を図 7.1.2.3 に示すが,最大径 2500mm,径厚比はほぼ 100 以下である。

図 7.1.2.3 鋼管杭の製造範囲^{[7.1-26]に追記}

3)場所打ちコンクリート杭

場所打ちコンクリート杭工法は明治の終わりごろから用いられており、コンプレッソル杭、ペデスタル杭な どと呼ばれる工法が使用されていた。現在用いられている工法の導入、開発の年代を以下に示す。拡底杭工法は1970 年代から使われ始めている。

- 1954年 オールケーシング工法(揺動式)
- 1959年 アースドリル工法
- 1962年 リバースサーキュレーション工法
- 1971年 リバースサーキュレーション拡底工法
- 1982年 オールケーシング工法 (回転式)
- 1984年 アースドリル拡底工法

図 7.1.2.4 に日本基礎建設協会会員 43 事業所における 2015 年度(平成 27 年度)の各工法の使用割合, 軸径, 拡底の有無の施工実績^[7.1-27]を示す。建築分野ではアースドリル工法が 61%で, 拡底抗が44.3%である。 拡底の形状は, 2002 年までは傾斜角度は 12 度以下, 拡底径4.2m 以下, 拡底率3.2 以下とされていたが, 現状は 上限値が撤廃され, 傾斜角度 21.1 度, 拡底径 5.5m, 拡底率 7.29 まで拡張されている。

使用材料については、コンクリートは 1990 年代まで Fc18~24 が使われていたが、それ以降はより高い 強度のものも使われており、特に拡底径(率)の増大に伴いFc60まで使用可能になっている。

また,場所打ち鋼管コンクリート杭は 1984 年に最初に技術評定を取得しているが,コンクリート強度は Fc45 が最大である。鋼管は主に SKK 材が使用され,最大径は 2700mm である。

図 7.1.2.5 は 2 次設計を実施した杭(対象が主に大型建築物・重要建築物であることに留意されたい。) に対する、コンクリート強度、杭径、鋼管厚の使用実績に関する調査結果^[7.1-28]を示す。

図 7.1.2.5 2次設計を行った場所打ちコンクリート杭の仕様^[7.1-28]

参考文献

- [7.1-1] 国土技術政策総合研究所,建築研究所:平成23年(2011年)東北地方太平洋沖地震被害調査 報告,国土技術政策総合研究所資料第674号,建築研究資料第136号,2012.3
- [7.1-2] 向井智久: 東日本大震災での教訓を活かした耐震設計法に関する研究成果, 建築研究所講演会 資料, 2015.3, (<u>https://www.kenken.go.jp/japanese/research/lecture/h27/pdf/T3.pdf</u>)
- [7.1-3] 国交省:熊本地震における建築物被害の原因分析を行う委員会報告書概要,2016.9, (<u>https://www.mlit.go.jp/report/press/house05_hh_000633.html</u>)
- [7.1-4] 西沢敏明,河村壮一,田尻貞夫:新潟地震時に破損した既製 RC ぐいの調査と耐震解析(その1)調査概要,日本建築学会学術講演梗概集構造系,767-768,1982
- [7.1-5] 河村壮一,西沢敏明,和田曄日芙:新潟地震震害調査「20年後の発掘で分かった液状化による 杭の被害」,日経アーキテクチュア,1985年7月29日号,130-134
- [7.1-6] 杉村義広,大岡弘: 1978 年宮城県沖地震による既製コンクリート杭の被害調査報告,建築研 究資料 No.31,1981.7
- [7.1-7] 志賀敏男:宮城県沖地震におけるくいの被害とその復旧,建築技術1980年4月号,79-91
- [7.1-8] 志賀敏男:コンクリートぐいと地震,コンクリート工学, vol.18, No.8, 14-21, 1980.4
- [7.1-9] 源栄正人:東日本大震災における地震動と建物被害の実態と教訓,東日本大震災に関する技術 講演会論文集-巨大地震・巨大津波がもたらした被害と教訓, 21-39, 2012.2
- [7.1-10] 岸田英明・上杉守道:浦河沖地震(1982)における杭基礎の被害-浦河町立浦河小学校の被害調 査-,日本建築学会学術講演梗概集構造系,2755-2756,1983
- [7.1-11] 川上圭二:浦河沖地震(1982)における鋼管杭基礎構造物の調査結果について、日本建築学会学 術講演梗概集構造系,2757-2758,1983
- [7.1-12] M.J.Mendoza and G.Auvient: The Mexico earthquake of September 19, 1985-Behavior of building foundations in Mexico City, Earthquake Spectra, Vol.4, No.4, 835-853, 1988
- [7.1-13] 10)岸田英明,風間了,八尾眞太郎,花里利一,五十嵐健,牧原依夫,松尾宏司:4。基礎及び 地盤の被害,日本建築学会メキシコ地震災害調査団 1985 年メキシコ地震災害調査速報,23-26,1986.1
- [7.1-14] 杉村義広:津波による建築物の被害と対策,基礎工,2012年12月号,23-27
- [7.1-15] 阪神・淡路大震災調査報告編集委員会:阪神・淡路大震災調査報告 建築編-4 木造構造物・ 建築基礎構造, 1998.3
- [7.1-16] 日本建築学会近畿支部基礎構造部会兵庫県南部地震建築基礎被害調査委員会:兵庫県南部地震 による建築基礎の被害調査事例報告書, 1996
- [7.1-17] 日本建築学会近畿支部基礎構造部会:基礎の調査・補強・耐震設計の課題,2000
- [7.1-18] 建築基礎における液状化・側方流動対策検討委員会(BTL 委員会): 兵庫県南部地震における 液状化・側方流動に関する研究,建築研究報告, No.138, 2000
- [7.1-19] 伊藤淳志,西田一彦,八尾眞太郎,楠見晴重,西形達明,兵庫県南部地震における私立西宮高 校の被害調査結果および破壊機構に関する検討,関西大学工業技術研究所,直下型地震防災研 究報告書,24-40,1997
- [7.1-20] 古山田耕司,宮本裕司,福田孝晴:2003年十勝沖地震における杭の実被害調査とその解析的 検討,日本建築学会構造系論文集,第598号,97-401,2005.3

- [7.1-21] 福田孝晴, 宮本裕司, 古山田耕司: 2003 年十勝沖地震での杭被害に関する解析的検討(その 1)上部構造及び杭基礎の被害概要, 日本建築学会学術講演梗概集 B-2, 735-736, 2004
- [7.1-22] 金子治,中井正一,阿部秋男,飯場正紀,久世直哉,平出務,2011 年東日本大震災における建築物の杭基礎の被害状況と要因分析,地盤工学会誌,Vol.62,No.1,16-19,2014.1
- [7.1-23] 日本建築センター, 既製コンクリート杭の変遷, らぴど, 2012.10, pp.4-7
- [7.1-24] 林隆浩, 先崎大樹, 既製コンクリート杭の時代変遷について, 基礎工, 2007 年 7 月号, pp.8-10
- [7.1-25] 堀口隆司,世界で初めての高温高圧養生コンクリート杭の開発と事業化-旭化成の例から-, 基礎工,2017 年 6 月号, pp.106-110
- [7.1-26] 鋼管杭鋼矢板技術協会ホームページ, (<u>http://www.jaspp.com/koukannkui/standard.html</u>)
- [7.1-27] 日本基礎建設協会広報誌 Foundation, Vol.8, 2018
- [7.1-28] 金子治:大地震に対する耐震設計におけるコンクリート杭の適用条件に関する実態調査, 日本建築学会技術報告集, 第 23 巻, 第 53 号, pp.87-92, 2017.2

7.2 地震概要

7.2.1 地震動観測記録

2016年熊本地震とは、4月14日21時26分以降に発生した熊本県を中心とする一連の地震活動を指す [7.2-1]。このうち、震度5弱以上の地震は24回(震度7:2回、震度6強:2回、震度6弱:3回、震度5強: 5回、震度5弱:12回)発生した。特に、4月14日21時26分に発生した前震(以下、前震)および4月16 日01時25分に発生した本震(以下、本震)では、益城町宮園にある熊本県の震度情報ネットワークの震 度計によって最大震度7が観測された。図7.2.1.1 に前震による震度分布を、図7.2.1.2 に本震による 震度分布を示す。

図7.2.1.3~7.2.1.6は対象建物近傍のKiK-net観測点(KiK-net益城, KMMH016)の地震記録[7.2-3], 図7.2.1.7, 7.2.1.8は対象建築物1階に設置された地震計による地震記録である。最大振幅は前震と本震 で大差ないが、本震の方が1Hz以下の低周波数(長周期)成分の寄与が大きい傾向にある。これは、KiKnetの記録と対象建築物1Fの地震計の記録とで共通である。KiK-netの記録と対象建築物内地震計の記 録との違いに着目すると、対象建築物内の地震計の記録では1~2Hz以上の高周波数成分の寄与が小さ い傾向にある。これは、KiK-net観測点と対象建築物敷地地盤の地震応答特性の違いによる影響が大き いものと考えられる。7.5.3に詳細を示しているが、KiK-netの地中観測記録を、対象建築物敷地の地盤 の解析モデルに入力して地表面の応答を求めると、計算結果と対象建築物内の地震計の記録は概ね整合 する。

図 7.2.1.1 熊本地震・前震(2016 年 4 月 14 日 21 時 26 分)の震度分布 (気象庁 震度情報データベース^[7,2-2]より)

図 7.2.1.2 熊本地震・本震(2016 年 4 月 16 日 01 時 25 分)の震度分布 (気象庁 震度情報データベース^[7,2-2]より)

図 7.2.1.3 KiK-net 益城 (KMMH016) 観測点, 前震記録の加速度時刻歴波形

図 7.2.1.4 KiK-net 益城 (KMMH016) 観測点, 前震記録の加速度フーリエスペクトル

図 7.2.1.5 KiK-net 益城 (KMMH016) 観測点, 本震記録の加速度時刻歴波形

図 7.2.1.6 KiK-net 益城 (KMMH016) 観測点, 本震記録の加速度フーリエスペクトル

図 7.2.1.7 対象建築物内地震計, 前震記録

図7.2.1.9 対象建築物内地震計,設置位置

参考文献

- [7.2-1] 「平成 28 年 (2016 年) 熊本地震」について (第 41 報), 2016.7, (<u>https://www.jma.go.jp/jma/press/1607/12a/kaisetsu201607121030.pdf</u>)
- [7.2-2] 気象庁 震度情報データベース, 2016.7 閲覧 (https://www.data.jma.go.jp/svd/eqdb/data/shindo/index.php)
- [7.2-3] 防災科学技術研究所, KiK-net, 2017.1 閲覧 (https://www.kyoshin.bosai.go.jp/kyoshin/docs/kyoshin.shtml)

7.3 対象建築物について

7.3.1 敷地および地盤概要

対象建築物は,熊本県上益城郡熊本県上益城郡益城町宮園に立地している建築物であり,前震の震央から北に 5.6km,本震の震央から北東に 6.7km の距離に立地している。図 7.3.1.1 に立地状況を,図 7.3.1.2 に建築物敷地図を示す。

図7.3.1.1 建築物立地状況(地図出典:国土地理院ウェブサイト^[7.3-1])

図7.3.1.2 建築物敷地図(地図出典:国土地理院ウェブサイト^[7.3-1])

対象建物の建築に先立ち,1979年に実施された地盤調査について,調査位置および柱状図を図7.3.1.3~図7.3.1.7に示す。

Bor No.

試 錐 結 果 杜 状 凶

 $s = \frac{1}{100}$

381	許名 [* 港北	成町方石		设敷地地頂調查	地 熊 茂 -2	35 M	M (訪朔) 武 於 禦 準 貫 入 誠 新	
34	76 B. 7	厅上着	玉城郡	基均	町木山	孔内卡位。G	T	M 資産目時 県 男 サンヨーコンサルタント(図の公)	t
12H 3 T	如年,月1	9 102.A 7- n	154年]	し月	- 日~二月 日 アーボーリング	部制売金を	30 An	100 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1
law	485 275	1 1 14	1 1	22) (泊 =	= / + /	1
原見	25 18	13	国 王 国	料		観	対ショテ		
(M)	(M) (M) (M)	記号	登	00 B:	事 項	an シー 皮ー	ジーン 健 10 20 30 許正計 10 20 <u>50 40 50</u>	_
0-	-2,35		===		[火山沢墳シルト		# 1 001515 30 40000 概報度入	KAN
1-			==	1	-	(黒ボ?)	察	1.0012 13 00 0 仙的武入3	北南
2-	-805/27	0 2 70		2	SADE UNA	粘性疳干		2.00	-
Z-	0.0012.1	0.2.10				粘着力中位	中位		-
4-			1			所在《教的事状下			-
5-	-7/5 4.8	0 210		3	戦略 粘質レルト	現代項シルト	-	5.00 15 15 30	-]
6-			==		-	微新混合	φ.	6.00 20 13 35	
	9.05 6.7	01.50		4	REF UR *	まし、そのかくけの		7.00 6 6 8 20	- 1
			.0			日康格千	<u>\$</u>	8 3.00 3 3 2 8	
8-	-112518.9	0 2 2 0	0	5	報天 詰出りを	下部(至)粘性		2 00 36 36	
2					-	北无险い。	摄教		1
15		į.	===	6	-	低塑性			-
11-					-	凝灰度シルト			
12-				7		含水中量	款	$12.00 \frac{16}{1} \frac{15}{1} \frac{31}{2} - 0$	j
13-			-15		-	17 4 9 2 ~ 20 % ~		$13.00 \frac{17}{1} \frac{17}{1} - \frac{34}{2} - \phi$	1
14-				ę	-	WHIR HAT KEEN		14.00 19 18 37	1
15-						帯状に挟む	-	15.00 20 16 36	1
				9		全体が粘土質	*	16.00 18 20 38	
16-									-
17-			=	10	-				
18-					颛民贺"		敬	B W#77	
19-	-2205 19 3	10 10 80		11	暗茶度レルト			19.00	-
20-					-	非常下商合水で	-98 ft).		
21-						微細砂括干	ALC:	21.00 ELLCE	
22-	-239521.0	501.90		12	and to t		-	22.00 4 4 5 13	-
23-			.0	13		キューシのがんなの		25.00 5 6 7 18	1
24-			0			干混入了3.	中位	10 24.00 5 5 7 17 -	
25				14		教经许信均一节		25.00 9 9 8 26	1.10
				1.5		「凝灰頂細へ後的」の混合		24 00 6 7 8 21	
26			(-	ブネネー おくんしょ			۳.
27-					-	下口 工 1 各 米 由 十	中位		-
28.			0-	16	12 52 9 -				
29-			o		的表现是现在和			27.00 14 12 10 36	
30-	-3215 291	80 8,20	0	17			密	30.00 19 19 17 55	1
31-			00	18		キョーのなんなの		31.00 16 16 14 46	1
32-						一部950%以上の		32,00 10 12 12 34	
77			0.7	19		巨廠若干.		33.00 911012 32	-
50	-		ō		凝灰質	粗砂混合	88		-
34-			0.0		26.	合水中量		<u>24.001 9 11 16 23</u>	
	1 *** = = 1 * *	ad + 10	s.n.V.	00		42	R - 5		

図7.3.1.4 ボーリングデータ (No.1 柱状図) ^[7.3-2]

		0
Bor	170.	6

试 班 祐 朱 仕 仄 凶 s= 1/100

途 標 說 道 入 誠 巅 四 於 名 你 基 域 町方舍建設 軟 地地頂調產地_ 题 _ 前 -149 N (热潮 35 11 孔内火位 (11.— M 副正日時 出 昌 "11 作为 115 上态域即基域时末山 副准年月日 昭和54年10月 日~115 日期副孔雅 130 % 100 % 65% 65% 施工 资 **************************** 1 1 × 12 2 光 8 -相当营 ロークリー記コアーガーリング Τ. .715 A.C. 相対認度 11 和 13 「17 12 <u>10</u>」 21 (入 102 깹 質 12 P.C. En. 101 t. n -1-觊 諁 読む程度 霓 料 N = ----- 0-----12 24 162 17 色 名 10 20 30 숨 ⁰핏 cm cm cm 거 포함 記号 器号 * 375 瓜 33 聯 10 20 30 40 (M) (M) (M) (M) 1.44 0--0-1.00 | 1 2 4 初印百入武藏 火山灰填 三儿十 Ċ 2.00 15 16 4 12/3 (黒ボク) 欲 -----助的贝入試驗 下都粘性活干 2. 5 風気レルト 2 4.14 270 270 32 5 粘着力中位 4.00 12 11 9 32 3 浙口微利带状 4 に夜む 2 故 5.0021 17 凝灰顶粘土柔 36 5 莱 粘 1 1.06 5.60 250 4 6.00710724 °α 中3~30%位の更 月藤主体 所の中50%以上の 大麻若干、栽落中、 6 内心 0 0.0 7.00 7 4 1112 兼祖 砂 7 5 20 60 祖町混合含水中は 8.00 1 7 13 30 ---8 6 款 9.0014 14 11 39 该程佳 9 凝灰度シルト 含水小量 所 2 4 2~20% 12 7 ----10,01 18 16 34 1 2 枢石石干 11.00 15 16 ----313 11. B 微細耐带状に挟 Ξ 欧 12.0013 11 11 全体成粘土复 35 12ć ----3 9 13.00 13 14 11 38 13 É 10 幕庆 日本 1 524 13 80 6 60 14.00 33 33 14 非常に含水量多(柔い 福秋 15,00 34 34 15 ■秦氏砂雪シルト 和性名子 17.14 15.70 6.00 5 5 7 17 16 17.00 6 7 8 21 12 17 中位 13.00 5 7 8. 20 18-13 中マーろの石柱の 2-2 里角膜 羟石若 19.001 11 1133 19 千混入下3 14 20.00 6 7 8 21 20-粒径1月1月-15 21.00 <u>|| ||</u> 12 34 翻中两主体 守位 21 15 22.07 6 7 8 21 22-2-2 23.00 1111 12 34 16 23. 所なゆちのんしひとの 24.00 7 7 8 22 輕石混入 打 24. 25.00 11 L2 11 34 17 下部に至り含れり 25 中位 26.00 7 8 10 25 26 18 27.0013 15 15 43 27 19 28.00 B 9 12 29 28 29.001721-225 29 中位 略揭快起妖質砂 2.0 -31.4 430 30.0010 11 13 34 30 5000 ò 31.00 31 32.00 32 33,00 33 34.00 34-25 00 図7.3.1.5 ボーリングデータ (No.2 柱状図) [7.3-2]

Bor, No. 3

試錐結果柱状凶

 $s = \frac{1}{100}$

281 . <u>10</u>	〔_名_ 你 ■	益成 町方	合建	設数加	2.地頂調直	地然百二	15 M ((1997) 就 較 標 21 以 政 和 11 人 33 版
201 VE	年月日	E 和54年	10月		11月 1月 - リング	掴 削孔 径 、 「「」 「」 「」 「」	er % 100	0 ★3:5 ★ 65★ 施工 巻 マンヨーヨンナルタント校式会社 担当者 目力 修一
標	標口	國土	賢	±	斑	121 12	相引之	学 標 準 貫 入 試 颐
尺	75 HS	厚配	料香日	13 The	*	л н	対ちっき	
		(m) -2	1 2	100	1024	1	loc 114	(M)
			1			大山灰頂シルト		1.001124 四本放入政
2:	3,45 2,3 0	2.30	2	茶	***	和住居干	中位	2.00 2 2 2 6
3-			3			新着力中位 		3.00 2 2 1 5
4	3,15 4,0 0	1 2.0	4	端来汉	粘質シルト	に接む	家	4.00 1 1 2 4
5-						凝灰度311ト		5.00 1 1 1 3 6
6-			5			· 含水若干 樹 初 苦状 に探想	中位	6.00 1 2 1 4
7-		4	6			MIR 92~30%		
8~						位の軽石括干	Chi Att	om 2 2 3 7
9-			7		夏 获贺		MALEN.	
11-						-	矖	11.00 5 6 6 17
12-	275 11.60	7.60	8		<i>v</i> .	中マー40天位の街		12.00 4 4 5 13
13-		-5-	9		-	除着千 高含水へFD状の		13.00 4 4 4 12
14	5.65 14.50	2,90	10	台場便	₩ # # }·	微相标混入		
15-		0				-	麗	
16-		0	1.1		1	-		
17-			12			42~10×120	we	
10-			13			角腺后干	ND2	19.00 13 15 14 42
20-			14			至14的整石中 又~50%位为(20,00 10 12 13 35
21-		0				混入している 数谷は作用一な		21.00 9 2 2 13
22-		0 0	15			细中动主体	中位	22.00 3 4 5 12
23-			16			「なり目話化しく		23.00 12 19 6 26
24-					2	-		24,00 12 20 5 25
25-			1.7			下部に呈り含水石		25.00/11/12/18/42
20-			18			捩む	R	27,00 8 9 11 28
28.		. o	19		建鹅り			28.00 9 10 12 31
29-		0				-		27.00(1) 18/20 49
30	51,15 3000	15,50	20	略 厌	豪庆贸易	-		30.001 918 6 26
31-						_		<u>31.00</u>
32-						-		32,00
33-						-		33.00
34-						-		34.00
		×	7.3	8. 1. (6 ボ-	-リングデ	ー タ	(No.3 柱状図) [7.3-2]

図7.3.1.7 ボーリングデータ (No.4 柱状図) [7.3-2]

7.3.2 建築物概要および耐震改修概要

対象とする建築物は,熊本県上益城郡益城町宮園にあり,1980年に建設された。本建築物は桁行方向 9 スパン,張間方向4 スパンのRC造の地上3階,塔屋1階の庁舎建築物で,平面形状は長方形である。 北側には隣接する建築物を繋ぐ渡り廊下棟(RC造2階)がエキスパンションジョイントを介して繋がっ ている。建築物の基礎は杭基礎であり,耐震補強時に作成された構造計算書には、φ400のPC杭または AC杭(PHC杭)(長さ26~32m),長期許容支持力500kN(50ton)との記載がある。杭本数は177本で, 下屋や渡り廊下部分を除き1柱あたり3~6本ずつ配置されている。施工方法や杭頭接合部の詳細は不 明である。また,地震時には北東側にエレベータ棟と鉄骨造の庇(写真7.3.2.2)が存在したが,詳細 調査実施時は撤去されていた(写真7.3.2.1)。

写真7.3.2.1 对象建築物南面

写真7.3.2.2 建築物北東のエレベータ棟と鉄骨造の庇

本建築物は 2012 年に耐震改修を実施している。図 7.3.2.1 に示すように X10 通りと Y4 通りに鉄筋コ ンクリート造壁の増し打ち工法を用いた耐震補強を行っている。また,図 7.3.2.2 に示すように南側の Y0 構面にプレキャスト外フレーム工法を用いた耐震補強を行っている。外付けフレームの基礎も杭基礎 であり,回転杭工法による鋼管杭(軸径 φ 318.5mm,羽根径 φ 637mm,長さ 27.0m)が柱 1 本あたり 2 本 ずつ配置されている。地震時水平力の負担は不明である。また,Y4 通りに耐震スリットを用いた靱性能 の改善がなされている。

図7.3.2.1 対象建築物1階平面図

7.3.3 耐震診断結果と耐震改修後の診断結果

対象建築物は,2000年に耐震診断を2012年に耐震改修を実施している。表7.3.3.1~表7.3.3.2に耐 震診断の結果と耐震改修後の診断結果^[7.3-2]を示す。なお、耐震診断は第二次診断法を採用している。

X(東西)方向の補強前の崩壊形は、曲げ柱、せん断柱、柱型付き曲げ壁、柱型付きせん断壁、せん断壁、 極脆性柱の混在する崩壊形である。フレーム外雑壁の耐力を無視して計算したところ正側加力で 2F が Is=0.67, 1F が Is=0.39 となり所要値(0.7)を下回っている。また、1F は偏心しているために SD 指標が 0.86 となっている。以上より、所要の耐震性能が不足していると判断された。

X 方向の耐震補強計画は,耐力増加および偏心率の改善を行う補強としてプレキャスト外フレームを南 側構面に新設することとした。さらに,北側構面の壁を撤去し,耐震壁を新設した。また,北側構面の極 脆性袖壁付き柱および極脆性柱を改善する目的で,腰壁にスリットを設置した。

Y(南北)方向の補強前の崩壊形は X 方向と同様に,曲げ柱,せん断柱,柱型付き曲げ壁,柱型付きせん 断壁,せん断壁,極脆性柱の混在する崩壊形である。フレーム外雑壁の耐力を無視して計算したところ正 側加力で 1F が Is=0.56 となり所要値(0.7)を下回っている。また,1F は偏心しているために SD 指標が 0.80 となっている。以上より,X 方向と同様に所要の耐震性能が不足していると判断された。

Y 方向の耐震補強計画は, 偏心率の改善を行う補強として1Fに開口付き耐震壁を新設することとなった。SD 指標が改善されたことや, 耐震壁増設により1Fの1s 値が0.74 となり所要値(0.7)を満足した。

	階	ΣWi	1/Ai	W/A	С	F	E0	SD	Т	Is	CTU · SD	判定
補	PH	{2.5 · (AW1+A	AW2)+0.7	Ac $\cdot \alpha/(Z$	×W×Ai)={	2.5 • (9000	00+11175	00)} • 1.07	/(0.9×105	7200×2.0)	=2.84 ≧ 1.00	OK
強 前		3 15952.1	0.71	12.3	1.34	1.00	0.95	1.00	0.98	0.93	0.95	OK
		2 31483.3	0.85	12.4	0.8	1.00	0.68	1.00	0.98	0.67	0.68	NG
		49337.1	1.00	12.0	0.46	1.00	0.46	0.86	0.98	0.39	0.39	NG
			-					-				
	階	ΣWi	1/Ai	W/A	С	F	E0	SD	Т	Is	$CTU \cdot SD$	判定
補	PH	{2.5 · (AW1+A	AW2)+0.7	$Ac \} \cdot \alpha/(Z$	×W×Ai)={	2.5 • (9000	00+11175	00)}・1.07	/(0.9×105	7200×2.0)	=2.84 ≧ 1.00	OK
強		3 15952.1	0.71	12.3	1.34	1.00	0.95	1.00	0.98	0.92	0.95	OK
後	/	2 31943.0	0.85	12.7	0.91	1.00	0.77	1.00	0.98	0.76	0.77	OK
		50805.0	1.00	12.7	0.75	1.00	0.75	1.00	0.98	0.73	0.75	OK

表 7.3.3.1 X (東西) 方向 耐診断結果および耐震改修後の診断結果^[7.3-2]

表 7.3.3.2 Y(南北)方向 耐診断結果および耐震改修後の診断結果^[7.3-2]

	階		ΣWi	1/Ai	W/A	С	F	E0	SD	Т	Is	CTU · SD	判定
	PH		{2.5 · (AW1+A	W2)+0.7	Ac $\cdot \alpha/(Z$	×W×Ai)={	2.5 • (9000	00+47250	0)}•1.07/	(0.9×1057)	200×2.0)=	1.93≧1.00	OK
補		3	15952.1	0.71	12.3	1.34	1.00	1.55	1.00	0.98	1.52	1.55	OK
二二二		2	31483.3	0.85	12.4	0.8	1.00	1.03	1.00	0.98	1.01	1.03	OK
ניח		1	49337.1	1.00	12.0	0.39 0.39	1.00 1.50	0.71	0.80	0.98	0.56	0.31	NG
	1											1	
	階		ΣWi	1/Ai	W/A	С	F	E0	SD	Т	Is	$CTU \cdot SD$	判定
補	PH		$\{2.5 \cdot (AW1 + AW2) + 0.7 \cdot Ac\} \cdot \alpha / (Z \times W \times Ai) = \{2.5 \cdot (900000 + 472500)\} \cdot 1.07 / (0.9 \times 1057200 \times 2.0) = 1.93 \ge 1.00$									OK	
強		3	15952.1	0.71	12.3	2.17	1.00	1.55	1.00	0.98	1.50	1.53	OK
後		2	31943.0	0.85	12.7	1.18	1.00	1.00	1.00	0.98	0.98	1.00	OK
		1	50805.0	1.00	12.7	0.76	1.00	0.76	1.00	0.98	0.74	0.76	OK

7.3.4 建築物の図面

対象建築物について、耐震改修後の建築物の図面を図7.3.4.1~図7.3.4.17に示す。

図7.3.4.2 2階伏図

7-32

第7章 建築物Eに関する調査分析

図7.3.4.3 3階伏図

第7章 建築物 E に関する調査分析

7-33

図7.3.4.4 PH階伏図

7-34

第7章 建築物 E に関する調査分析

図7.3.4.6 Y0通り, Y1通り軸組図

図7.3.4.7 Y2通り, Y3通り軸組図

図7.3.4.8 Y4通り, Y5通り軸組図

図7.3.4.10 X5~X7通り軸組図

図7.3.4.11 X8~X11通り軸組図

	· 清· 浸 · · · · · · · · · · · · · · · · ·			C1		1	6	n	0	3	0	<u></u>
rset、 教 》夏(1991)		1	U	I	6		ն	2	U U	2	6	2
	3F-	- 3F	2F -	- 2F	1 F -	- 1F	3F -	- 3F	2F -	- 2F	1F -	- 1F
い 推 置	2 2 2	所面	全断	而	全권	fia	全원	f i f i f i f i f i f i f i f i f i f i	全路	所面	全国	F 🖬 👘
>> 方 向	X方向	Y方向	X方向	Y方向	×方向	Y方向	X 方向	¥ 方向	X方向	¥ 方向	X方向	Y方向
所面				•				· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·
D (cm)	60 >	< 75	60 >	; 75	60 x	≮ 75	60 >	: 75	60 x	(75	60)	(75
寄せ筋	X	Y	X	Y	XY		X	Y	X	Y	X	Ϋ́
2.2.1段筋	4-025	4-D25	4-D25	4-D25	6-D25	6-D25	5-D25	5-D25	5-D25	5-D25	9-D25	7- D2 5
^{主動} 2段筋	-	-	-	-	-	_	-	-	-	-	-	-
黄筋 (111)	2-013@100	2-D13@100	2-D13#100	2-D13@100	2-D13@100	2-013@100	2-D13#100	2-013@100	2-D13@100	2-D13@100	2-D13#100	2-013@100
芯鉄筋	-	-	-	-	_	-	—	-	-	-	-	_
鉄骨町面 (mm) 、		_		- -		_ _		_		_		

、う符	唐 二日	C	3	0	3	C	3	C	3	Ç	4	¢	4
	8	RF -	- RF	3F -	- 3F	2F -	- 2F	IF -	- F	3F -	- 3F	2F -	- 2F
位	置	全國	新面	全世	鼾面	<u>술</u>	后面	全難	折面	全難	折面	全國	后面
ار ا	间 👘	X方向	Y方向	X方向	Y方向	X方向	Y方向	× 方向	Y方向	X方向	Y方向	X方向	Y方向
D	(cm) / 🦿	60)	< 75	60 :	x 75	60 :	c 75	60 >	c 75	60 :	c 75	60 :	c 75
() 清	と筋	X	Y	Xĭ		X	Y	Х	Y	Х	Ϋ́	X	Y
19.44	1段筋	3-025	3-D25	4-025	5-D25	6-D25	5-D25	8-D25	7-D25	4-D25	4-D25	4-025	6-D25
<u>т</u> , но	2股筋	—		-	—	_	-	4-D25	4-D25	-	—	_	-
帯筋	(mm)	2-D13@100	2-D13@100	2-D13@100	2-D13@100	2-D13@100	2-D13@100	4-D13@100	4-013 @100	2-D13@100	2-D139100	2-013@100	2-013@100
12.8	朱厉] —	_	-	-	-	-	—	-	-	-	—	
族骨筋面(m) 。		-	_		_		_		_		_		

符号	27	Û	4	C	5	G	5	6	5	C	6	Ć	6
當	92.Z	1F -	- 1F	3F -	- 3F	2F -	- 2F	1F ·	- 1 F	2F -	- 2F	1F -	- 1F
い、佐福		全曲	斤面	全體	而	全불	后面	全불	新画	全難	新面	全世	而
一方 戊	i i	X方向	Y方向	X方向	Y方向	X方向	Y方向	× 方向	Y方向	X方向	¥ 方向	X方向	Y 方向
斷		* * * * * * * *	• • • • • •	-	· · ·	• • • •	•	• • • • • • • •	• • •		• • •	ہ ، و	
D (cm)	60)	< 75	60 ;	c 75	50 :	c 75	60 :	c 75	50 ;	x 50	50 🤉	c 50
寄せ剤	5	Х	Ŷ	Х	Y	r XY		۲ ۲		Х	Y	X	Y
4 at 1	段筋	9-025	6-D25	3-D25	4-D25	3-D25	4-D25	7-D25	6-D25	3-D25	3-D25	3-D25	3-D25
二册 2	段筋	_	2-D25	-	-	-	-	-	2-D25	-	-	-	_
帯筋 🗤	nn) 🔅	2-D13@100	2-D139100	2-D13@100	2-D139100	2-D13@100	2-013@100	2-D13\$100	2-D13@100	2-D10@100	2-D10@100	2-D10\$100	2-D10@100
芯鉄	7	-	-	-	-	-	-	-	-	-	-	-	-
統脅 断面			- <u>-</u>		_	_		_		_			

待号、	- P(31	PC	01	PO		
	2F -	- 2F	1F -	- 1F	1F •	- 3F	
ふう 植 着 ふか		所面	全進	后面	全世	斤面	
《方向》:	X方向	Y方向	X方向	Y方向	X方向	Y方向	
断面	•••	· · · · · · · · · · · · · · · · · · ·	• • • • • •	· · ·			
D (cm)	90 1	< 65	90 ;	≮ 65	20)	< 20	
寄せ筋	XY		XY		X	XY	
1段筋	4-D25 5-D25		4-D25 5-D25		2-016	2-D16	
- 二別 2段筋	4 -D25 -		4 -D25	-	-	-	
(一) (前) (前)	3-0130100 2-0130100		3-D13#90	2-D13#90	2-D10@100	2-D10#100	
之恭鉄筋	-	-	-	-	—	_	
發骨斷面(mm)]	-	-	-	_		

図7.3.4.12 柱断面リスト

符号		G 1			G1			G1		6	62
層		RF			3F			2F		F	8F
位 置	外端	中央	内端	外端	中央	内 站	新 外 站	1 中央	内端	両端	中央
			••••		· · ·	,		····· ····· ····· ····· ·····		(* * * *	
b x D (cm)	40 x 65 4	10 x 65 40) x 65 40) x 65	40 x 6	65 40 x	65 40 x	70 40 x 70) 40 x 70	40 x 65	40 x 65
∧ンチ長(cm)	— .	- 4	-	-	-	-			. — 	-	
上端筋 2段筋	4-020	<u>- 120 4</u>		-025	3-025	- 5-02	3-D2	5 4-025	2-D25	3-025	3-025
下端筋 2段筋		-	-	-	-	-	2-D2	5 -	2-D25	-	-
段筋 あばら筋 (mm)	3-025 2-0104150 2-	3-025 3 -010#150 2-6	-025 4 010#150 2-0	-025 010@125	3-025 2-01091	5 3-D29	5 5-D2	5 4 -025 100 2-010410	4-025 0 4-010&100	3-D25 2-D10@150	3-D25 2-D10@150
鉄骨断面 (mm)		-	-	-	_	-	-	-	. –	-	-
符号	G	2		G2		62	!A	Gź	2A	G2	A
層	3	IF		2F		R	F	3	F	2	F
位置	両端	中央	両端	ቀ ያ	央	両端	中央	両端	中央	両端	中央
		·····		· · ·		b b 4			· · · · ·		
b x D (cm)	40 x 65	40 x 65	40 x 70	40 x	70 .	40 x 65	40 x 65	40 x 65	40 x 65	40 x 70	40 x 70
<u>ハンチ長(cm)</u> 1 m/m			. — 5-025	2_02		3-025	3-D3E	. — 5-D25	3-D3E		
上端筋 2段1	5 – <u>5</u>		2-D25			-				2-D25	
下端筋 2段角	5 -	-	-	-		-	-	-	-	-	-
1段) あげこ(mm)	5 3-025 2-0106150	5-025 2-0108150	5-025 4-0108150	3-D2	:5 #150 - 2	3-025 2-010#150	3-025 2-010±150	3-025 2-0106150	2-DL08150	5-025 4-0106150	5-025 2-0108150
<u> ありまちが</u> (mm) 鉄骨断面 (mm)	-	2-010@100		2 010	w100 Z	-	2-010@100	2-010-100	2-010@100	-	-
								0.0		1	<u> </u>
一行亏		63 DE			63 25			63 2E			04 DE
位置	左端	мг ф.ф	右端	左端	 10 4	- 右位	# 左前	 ۲ ف	右端		м фф
						.] 	· ····			····
bxD(cm)	40 x 65 4	10 x 65 40) x 65 40	x 90	40 x (65 40 x	65 40 x	70 40 x 7	0 40 x 70	40 x 65	40 x 65
ハンチ長 (om)	-	-	- 7	5.00	-	-	· · -		-		-
上端筋 1段筋 2段筋	4-D25 3-D25 3	3-D25 5 3-D25 3	-D25 5- -D25 2-	-D25 -D25	3-025	5-02	5 5-02 4-02	5 5-025 5 -	4-D25	5-025	3-025
下端筋 2段筋	-	-		-		-	. 4-D2	5 –	4-D25	· _	-
1.股筋 た/fご銘 (mm)	3-D25	3-D25 3	-D25 4· 1104100 2-0	-D25	3-D25	6 4-D2	5 5-D2 100 4-D138	5 5-D25 9160 2-D12910	5-D25 50 4-0128154	3-D25 1.2-D10:150	3-D25
あたようが、(mai) 鉄骨街面 (mai)	-	-	-	-	2-010@1	100	-	-100 2-01081. —	-	-	-
		24		64			¢ E			65	1
- 竹 丂 		14 1F		9F			PE			- 00 3F	
位置	雨端	 	雨端	<u>,</u>	p.	外端		内端	外端	<u>т</u> т ,	内端
				 				· · · · ·			
b x D (cm)	40 x 65	40 x 65	40 x 70	40 x	70	40 x 65	40 x 65	40 x 65	40 x 65	40 x 65	40 x 65
<u>ハン</u> チ長(cm) 1656年		4-D25	4-D25	 	5			4-D25	— . 4-D25		
上端筋 2段前	新 -	-	4-D25			-	-	-	2-D25	-	2-D25
下端筋 2段前	<u>5</u> −	-	3-D25			-	-			-	— E D25
	± 5−025 4–010≋150	4-025 2-0100150	4-025 4 -010&100	4-D2 2-D10	:5 à100 2	3−025 2−010à150	3-025 2-0102150	3-025 2-010#150	4−025 4−010©150	პ−025 2–010≋150	5-025 4-010±150
<u>鉄骨断面 (mm)</u>	-	-	-			-		-	-		-
		1			I						

図7.3.4.13 梁断面リスト1

符号			G5		G	6	G	6	G	i6	G7	G7
層			2F		R	F	. 3	F	2	F.	3F	ŹF
位置		外端	中央	内蜻	両端	中央	両端	中央	両端	中央	全断面	全断面
			•••••	<u></u>							• • •	
bxD (cm)		40 x 70	40 x 70	40 x 70	40 x 65	40 x 65	40 x 65	40 x 65	40 x 70	40 x 70	35 x 60	35 x 60
バンチ長 (cm)		-	_	_	_	_	_	-	-		_	-
L ALL 200	1段筋	5-D25	5-D25	5-D25	4-D25	3-D25	5-D25	3-D25	5-D25	4-D25	3-D22	3-D22
- 二、垢助	2段筋	4-D25	_	4-D25	-	-	_	—	3-D25	_	-	-
	2段筋	3-D25	_	4-D25	_	_	_	—	3-D25	_	-	-
下当而用加	1段筋	5-D25	5-D25	5-D25	3-D25	3-D25	4-D25	3-D25	5-D25	4-D25	3-D22	3-D22
あばら筋(㎜)		4-D10@100	2-D10#100	4-D10@100	2-D10@150	2-D10@150	2-D10@125	2-D109125	5-D10@100	2-D10@100	2-D104200	2-D10@150
	mλ	_	_	_	—	_	_	-	_	_	_	—

符号		G	8	G	18	G	i8	G	9	G	19
層		R	F	3	F	2	F	R	F	3	F
位置		両端	中央	両端	中央	両端	中央	両端	中央	両端	中央
			· · · ·	; · · :	· · · ·					· · · · · · · · · · · · · · · · · · ·	• • • •
b x D (cm)		40 x 85	40 x 85	40 x 85	40 x 85	40 x 90	40 x 90				
] —	—	_	-	-	-	-	—	_	-
日始故	段筋	5-D25	3-D25	4-D25	3-D25	5-D25	4-D25	5-D25	3-D25	4-D25	3-D25
上项的	2段筋	—	-	2-D25	-	4-D25	_	_	—	2-D25	_
下持效	2段筋	—	—	_	—	2-D25	_	—	—	—	—
በ የ ም መ መ	1段筋	3-D25	4-D25	3-D25	4-D25	4-D25	4-D25	3-D25	4-D25	3-D25	4-D25
あばら筋(㎜)		2-D10@150	2-D10@150	2-D10@150	2-D10@150	5-D10@100	2-D10@100	2-D10@150	2-D10@150	2-D10@150	2-D10@150
鉄骨断面(町	m)	—	_	_	-	_	_	—	—	_	—

符号		(i9	G	10	G	10	G	10	G	1 1
層		2	2F	F	۲F	0	3F	2	F	F	F
位置		両端	中央	両端	中央	両端	中央	両端	中央	両端	中央
			······································		• • •	••••		: ! : : :	•••••	· · · ·	
b x D (cm))	40 x 95	40 x 95	40 x 65	40 x 65	40 x 85	40 x 85				
ハンチ長 (cm))	-	_	-	-	-	-	-	-	-	-
L 5些 5个	1段筋	5-D25	4-D25	4-D25	3-D25	5-D25	3-D25	5-D25	4-D25	4-D25	3-D25
上端加加	2段筋	3-D25	-	-	-	-	-	3-D25	-	2-D25	-
王 4当 97	2段筋	—	—	—	—	_	_	2-D25	-	—	—
[○ ≌而 月力	1段筋	5-D25	5-D25	3-D25	3-D25	3-D25	3-D25	4-D25	4-D25	3-D25	5-D25
あばら筋 (mm)		2-D10@100	2-D10@100	2-D10@150	2-D10#150	2-D10@150	2-D10@150	4-D10@100	2-D10@100	2-D10@150	2-D10@150
鉄骨断面 (m	m)	-	_	_	_	_	_	_	-	_	_

符号		G	1	G	11		G12			G12	
層		3	F	2	F		RF			3F	
位置		面端	中央	両端	中央	外端	中央	内端	外端	中央	内端
b x D (cm)						· · · · · · · ·				· · · · · · · · ·	
b x D (cm)		40 x 85	40 x 85	40 x 90	40 x 90	40 x 90	40 x 90	40 x 90	40 x 90	40 x 90	40 x 90
ハンチ長 (cm)	· .	—	—	-	—	-	_	-	-	-	_
上的半部在	段筋	5-D25	4-D25	5-D25	5-D25	5-D25	3-D25	4-D25	5-D25	4-D25	5-D25
9m 用刀	2段筋	3-D25	_	5-D25	—	—	—	2-D25	3-D25	—	3-D25
下建体	2段筋	—	—	2-D25	—	—	—	_	_	_	_
1. 24111 月20	1段筋	4-D25	5-D25	5-D25	5-D25	3-D25	5-D25	4-D25	4-D25	5-D25	5-D25
あばら筋 (mm)		4-D10g125	2-D10#125	4-D10@100	2-D10@100	2-D10@150	2-D10#150	2-D10@150	4-D10@150	2-D10@150	4-D10@150
鉄骨断面(m	m)	-	-	-	-	-	-	-	-	. –	

図7.3.4.14 梁断面リスト2

符号		G12			(G13			G13	
一 一 層 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一		2F	内か	불 서	·瑞 [RF t∋nnt ∣	内提	林楼	3F 由	内谍
					···		·····	2 F 3 m		
							<u> </u>			
b x D (cm) ハンチ長 (cm)	40 x s	<u>15 40 x 1</u> 	95 40 x	95 40	x 85 40 -	<u>x 85 4</u> — .	0 x 85 —	40 x 85 -	40 x 85 —	40 x 85 —
上端筋 18	<u>と筋 5-D25</u> 2筋 5-D25	5-D25	5 5-D2 5-D2	25 5-0 25 -	0 25 3- -	-D25 5	5-D25 —	5-D25 4-D25	5-D25 —	5-025 3-025
下端筋 28	筋 2-D25	2-D25	5 2-D2	.5 -	-	-	-	3-D25	-	2-D25
5 あぱら筋(mm) 鉄骨断面(mm)	4-D25 4-D10@1	4-D25 2-D10@ —	9 4-D2 125 4-D10 —	25 3-L @125 2-D1	D@150 2-D -	10@150_2- 	з-D25 D10@150 —	5-D25 4-D10@100 —	5-D25 2-D10@100 	5-025 4-010@100 —
符号		G13		614		G14		614		315
倍 位 置	外端	2F	内端して	RF ā站岩 山	· · · · · · · · · · · · · · · · · · ·	3F सं क	<u>ر</u> هر	2F 端 中中	堲弽	RF 中央
	: 1 + P -	·			· • •••	•• ••	· ++·		<u></u>	
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					<u> </u>		
b x D (cm) ハナモ長 (cm)	40 x 90 4	40 x 90 40	× 90 40	x 90 40 :	× 90 40 ×	90 40 x	90 40 x	95 40 x	95 40 x 85	40 x 85
上端筋 1段筋 2段筋	5-D25 5-D25	5-D25 5- - 5-	-D25 5- -D25	D25 3-D 	25 5-D2 - 2-D2	25 3-D2 25 —	5 5-D) 4-D)	25 5-D28 25 —	5 5-D25 —	3-D25 —
下端筋 2段筋 1段筋	2-D25 5-D25	- 2· 5-D25 4·	-D25 -D25 3-	 D25 5-D	 25 3-D2	- – 25 5–D2		- – 25 5–D25		
あばら筋 (mm)	4-D10#100 2-	-D10%100 4-D	10¢100 2-D1	IQ#150 2-D1	Da150 2-D10	a100 2-D10	100 4-D10	¢150 2-D10%	150 2-D101150) 2-D10∛150
		- 5	 	- -	<u>ا</u>	16	1 -	616	6	16
層	3	F	21	F ,	R	F		3F	. 2	?F
位 置		中央	両端	中央	両端	中央	両端	中央	両端	中央
		•••••	; <u>,</u> ;	,,,,,		· · · ·	····			
bxD(cm) p`rf导(cm)	40 x 85	. 40 x 85	40 x 90	40 x 90	40 x 90	. ⁴⁰ × 90	40 x 90) 40 x 90	. 40 x 95	40 x 95
上端筋 2段節	4-D25	4-D25 —	5-D25 4-D25	5-D25 —	4-D25	3-D25	5-D25	3-D25	5-D25 2-D25	3-D25
下端筋 2段筋	-	. —	2-D25	— E B85			-	-		
」 あばら筋(mm)	4-025 4-010¤150	2-D10@150	4-025 4- <u>D10¤</u> 125	2-D10#125	<u>2-D10</u> ⊈150		3−025 2−D10¢15	4-025 0 <u>2-D1</u> 0⊈15	0 2-D10@150	2-D10@150
鉄骨断面 (mm)	-	_	—	_	_	_	_	_	_	_
符号	G	17 F	Ĝ1	I 7	G	17		G18	G	I8
	- 両端	中央	3. 両端	中央	西端	r 中央	両端	中央	· 両端	! 中央
	 ,					' 				· · · · ·
b x D (cm)	40 x 65	40 x 65	40 x 65	40 x 65	40 × 65	40 x 65	40 x 85	40 x 85	. ⁴⁰ × 85	40 x 85
● 0/7 按(5回) ▶ 端筋	5 4-D25	3-D25	4-D25	3-D25	5-D25	3-D25	4-D25	3-D25	 5-D25	3-D25
二回 4/4 2段館 下端筋 2段館		-	-	-	-	-	-			-
1 1268								1 b 11/16	14 DM DE	
「 _{RQB} あばら筋 (mm)	5 3-025 2-010¢150	3-D25 2-D10@150	3-D25 2-D10@150	3-025 2-010@150	3-025 2-010¢150	3-025 2-010@150	3-D25 2-D10@15	0 2-D10@15	3-025 0 2-010¢150	5-D25 2-D10@150

図7.3.4.15 梁断面リスト3

符号		G	18	6	19	G	9	63	}	G4	1
醴		2	F		3F	2	F	PHF	RF	PH	۲F
位置		両端	中央	両端	中央	両端	中央	両端	中央	両端	中央
						· · · ·			• • •		• • • •
bxD (cm)	40 x 90	40 x 90	40 x 65	40 x 65	40 x 65	40 x 65	35 x 60	35 x 60	35 x 60	35 x 60
ハンチ長(cm)	-	-	-	-	—	-	—	—	—	—
上端筋	1段筋 2段筋	5-D25 5-D25	3-D25	4-D25 —	3-D25	. ^{5-D25}	3-D25 —	4-D25 —	^{3-D25} .	4-D25 —	3-D25 —
TT 5-4 97	2段筋	·	-	-	-	_	-	—	—	—	—
「「「」」	1段筋	4-D25	5-D25	3-D25	3-D25	3-D25	3-D25	3-D25	3-D25	3-D25	3-D25
あばら筋 (mm).	1	2-D10@100	2-D10@10	0 2-D10@150	2-D10@150) 2-D10@150	2-D10@150	2-D10@200	2-D10@200	2-D10@200	2-D10@200
鉄骨断面(1	m)			-	-	. –	-	-		-	-
符号	ï	G10		PG1	GYI	B2	CGI	CGI	GO	F	GI
層		PHR		2F - 3F	2F - 3F	2F - 3F	3F	2F	1F - RF	1	F
位置		両端	中央	全断面	全斷面	全断面	全断面	全断面	全断面	両端	中央
			· · · · ·				:: ::	'*****' . <u>*****</u> .	[22]		· · ·
bxD(cm)		35 x 60	35 x 60	35 x 130	40 x 60	30 x 60	40 x 90	40 x 70	10 x 10	40 x 110	40 x 110
nンチ長 (cm)		_	_	_	-	_	_	_	-	-	-
上端筋	1段筋	4-D25	3-D25	2-D22	2-D19	3-D25	5-D25	5-D25	2-D25	5-D25	3-D25
	2段筋	-	-	_	-	-	3-025	-	-	-	-
下端筋	2段筋	2 025	2 0 25	1 523	2 010	2 625	2-025 5-025	- 4 D26	2 025	E 020	2 020
あげた筋 (mm)	1段肋	3-DZ3 2-D166200 ''	3-020 -DIN=900	Z=UZZ 2=D13@1000	2-019 2-012/e100	3-DZ3 2-D108200	0-020 2-0106100	4-020 2-0106160	2-020 9-0106950	2-012/250	3-029 2-D12@250
(1111) (nì		. 0109200	2 01081000	-	2 0109200	2 0109100	2 0109100	2 0109200	2 0109200	2 0139230

符号	FG2	F	G3	-	FGX1		FGY1
層	1F	1	IF		1F		1F
位置	全断面	両端	中央	外端	中央	内端	全断面
避 而				· · · · ·	· · · ·		
b x D (om)	40 x 110	40 x 150	. 40 x 150	. 45 x 280	45 x 280	45 x 280	40 x 100
ハンチ長 (cm)	-	-			-	-	_
上端筋 1段	5-D25	5-D25	3-D25	3-D29	3-D29	3-029	2-D19
	筋 —		_	3-D29	_	-	_
下端筋 2段	65 —	-	_	3-D29	_	-	
1段	所 5-D25	5-D25	3-D25	3-D29	3-D29	3-D29	2-D19
あはら筋(㎜)	2-D13@250	2-D13@250	2-D13@250	2-D13#100	2-D13#100	2-D13@100	2-D13@100
鉄骨断面(nm)		-	. –	. –	-		—

図7.3.4.16 梁断面リスト4

図7.3.4.17 基礎フーチング

2,000

2,000

参考文献

[7.3-1] 国土交通省国土地理院:国土地理院ウェブサイト (<u>https://maps.gsi.go.jp/</u>)

[7.3-2] 益城町庁舎 耐震診断改修計画報告書

7.4 地震被害状況

本研究では、対象建築物に対して複数回にわたり地震被害状況の調査を行った。表 7.4.1.1 に、実施 した地震被害調査の一覧を示す。

調査年月	調査名	調査者	調査範囲	調査方法	建築物の状況
2016.4	-	-	—	-	地震発生
2016.8	調査1回目	地方自治体	上部構造	・被災度区分判定など	エレベーター棟と鉄骨庇撤去
			基礎構造	・IT 試験など	済み
2017.5	調査2回目	建築研究所	上部構造	・被災度区分判定など	同上
2018.2	調査3回目	建築研究所	上部構造	・損傷度調査	建築物内の内装・什器・天井な
				 高解像度写真計測調査 	ど撤去済み
				・地上型レーザースキャ	
				ナーを用いた調査	
2018.3	調査4回目	建築研究所	上部構造	・コア抜き調査など	同上
2018.5	調査5回目	建築研究所	基礎構造	・損傷度調査	上部構造撤去済み
				・コア抜き調査など	

表 7.4.1.1 地震被害調査の一覧

7.4.1 上部構造の被害状況

上部構造の被害調査は、2016年8月に地方自治体が第1回目の調査を、2017年5月に建築研究所が 第2回目の調査を、2018年2月に建築研究所が第3回目の調査を実施した。本項では、そのうち2回 目と3回目の調査について調査結果を報告する。

(1) 被害調査2回目

2017 年 5 月に建築研究所が上部構造について第 2 回目の被害調査を実施した。この時,エレベーター棟と鉄骨庇撤去済みの状態であった。上部構造の被害状況について,写真 7.4.1.1~写真 7.4.1.12 のように示す。また,上部構造の被害状況を以下に示す。

(既存部)

既存部の被害は,建築物内部・桁行方向の両側耐震壁に損傷度Ⅲの被害が見られた以外は,損傷度 IまたはⅡの被害であった。写真 7.4.1.1,写真 7.4.1.2のように,袖壁付柱と腰壁の接合部分にお いて,腰壁の上部のタイルが剥落している様子が見られた。図面上ではこの部分に構造スリットが設 けられているが,確認出来なかった。

(補強部)

南側桁行方向に設置されたプレキャスト外フレームと既存部を繋ぐ境界梁は7本中,6本が損傷度 III,1本が損傷度Iとなった。写真7.4.1.3は、7本の境界梁のうち最も東側の梁であり、損傷度IIIの せん断ひび割れが観測された(写真7.4.1.4)。また、この梁の北下端部および南上端部の目開きを確 認した。(写真7.4.1.5)南上端部の目開き量は16mmであり、梁の下端を仮に回転中心と考えると、 梁せいが 600mm から残留部材角は16/600=2.67%であった。この梁が取付く既存部の周辺の土間コンク リートにおいて、既存部柱から見て円周上にひび割れが発生していることが確認出来た(写真 7.4.1.6)。また、写真7.4.1.7のように耐震補強の外フレームの基礎梁の端部に曲げせん断ひび割れ を確認した。写真7.4.1.8のように、耐震補強によって増し打ちした耐震壁の中央部に軽微なせん断 ひび割れを、下部に軽微な水平スリップひび割れを確認した。

(周辺地盤変状)

写真 7.4.1.6 のように,既存部と補強部間の床スラブのひび割れや,建築物南西部の地盤変状も確認されている(写真 7.4.1.9)ため,基礎構造が何らかの被害を受けることによって,既存部と補強部の間で不同沈下が発生した可能性がある。また,建築物所有者が,地震後に杭の IT 検査を実施し,その後埋め戻した痕跡が見られた(写真 7.4.1.10)。

(渡り廊下棟)

本建築物からエキスパンションジョイントで縁を切られている渡り廊下棟の東側一階柱(損傷度 V) の柱脚部分において、コアコンクリートの圧壊および主筋の座屈が確認出来た(写真 7.4.1.11)。西側 柱が 2.4 度、東側柱が 1.6 度、西側に傾いていることが確認できた。また写真 7.4.1.12 のように、渡 り廊下棟の東側一階柱の柱梁接合部に破壊が認められた。

7-50

写真 7.4.1.1 腰壁上部のタイル剥落

写真 7.4.1.2 タイル剥落部の拡大写真

写真 7.4.1.3 外フレームと既存部の境界梁

写真 7.4.1.4 境界梁の拡大写真

写真 7.4.1.5 境界梁の南側端部目開き量

写真 7.4.1.6 写真 7.4.1.3の柱のあしもと

写真 7.4.1.7 損傷度 II の基礎梁

写真 7.4.1.8 損傷度 Iの両側柱付壁

写真 7.4.1.9 外フレーム西側階段

写真 7.4.1.10 杭調査の跡

写真 7.4.1.11 渡り廊下棟の柱の柱脚

写真 7.4.1.12 渡り廊下棟の柱

最も被害が大きい1階について,被災度区分判定^[7.4·1]の方法により部材の損傷調査を行った。調査した結果を図 7.4.1.1に示す。室内には天井があったため、室内の梁は損傷調査を実施することができなかった。また、壁や柱には仕上げ材の上から部材の損傷度を判定した。

建築物の傾斜について計測結果を図 7.4.1.2 および図 7.4.1.3 に示す。なお,建築物の傾斜は直接 計測出来なかったため,柱の傾斜と床の傾斜の計測を行った。柱の計測は 1800mm の高さから下げ振 りを下ろして,その水平移動距離を計測し傾斜を求めた。図中には,柱の上部が傾いている方向を矢印 で,傾きの数値を**/1800 (**は計測値)として示している。床の計測は,傾斜計を用いて床の傾斜角度 を計測した。図中には,床が下がっている方向を矢印で,傾きの数値を**° (**は計測値)として示し ている。建築物は全体的に北側に向かって傾いていることがわかった。ただし,外フレームの傾きより も既存建築物の傾きのほうが大きい結果となった。

(2) 被害調査3回目

2018 年 2 月に建築研究所が上部構造について第 3 回目の被害調査を実施した。この時,室内の什器 が撤去され,天井や柱や梁にとりついていた仕上げ材が撤去された状態であった。この時,上部構造の 被害調査は損傷度調査を行った A 班および B 班,高解像度写真計測調査を実施した C 班,地上型レー ザー測定スキャナーを用いた調査を実施した D 班の合計 4 班によって実施された。

A 班は目視によるひび割れ, 浮き剝落損傷調査を行った。A 班は各階の壁を調査した後に, 1 階柱を できるだけ多く調査することとし, FL から高さ 2000mm までを計測範囲とした。ひび割れ性状及びひ び割れ幅計測位置を記録するため, マジックペンを用いて部材に直接ひび割れを記入する。次にひび割 れ幅については, 各部材の曲げとせん断の最大ひび割れ幅を計測しその値を記録する。幅の計測は, ク ラックスケールを用いて目視により行う。但し, ひび割れを目視確認でき, かつ 0.05mm 未満のひび割 れの場合はひび割れ幅を 0.00mm と表記する。また 1 本のひび割れの中で最大ひび割れ幅を計測した 点にはひび割れと直交するよう線を引き,後に最大ひび割れ幅の計測位置が写真から判別できるように した。続いて, 1 階の壁及び柱に対して OHP シートを用いてひび割れ長さ形状を計測した。浮き・剥 落の計測は損傷の大きい壁 1 部材を対象とし OHP シートを用いて計測した。

B 班は,建物の被災度区分判定を実施することを目的として全層の柱と壁および大梁の調査を実施した。その際,調査する部材数が多く,調査時間は限られていたため,損傷の小さい部材1本にかける時間を極力短縮して調査を行った。

C班は,高解像度カメラの撮影計測を行った。この高解像度カメラで撮影した画像を処理することで, ひび割れの位置・長さ・幅の計測を実施した。また,コンクリートの剥落や浮きを計測することを目的 として,損傷部を複数の場所から撮影した。これらの損傷は,A 班の損傷計測結果との比較を行った。

D 班は,地上型レーザースキャナーを用いた計測を実施した。地上型レーザースキャナーは測定誤差 が±5mm(確度±3mm),測定挙可能距離は0.5~800m,計測レートは最大50万点/秒の仕様を用い, 計測情報として対象物の座標値,表面の反射強度,色情報を取得できる。本調査においては,建物外周 部に加え,建物内においても計測を実施し,建物や柱部材の残留傾斜や室内床面の傾斜を計測する計画 とした。

1) 損傷度調查(B班)

今回の調査では、大半の部材の仕上げ材が除去されていた。しかし、一部の部材では仕上げ材が残っ ていた。そこで、例えば図 7.4.1.4 のように仕上げ材が残っている面と仕上げ材が除去された面を跨が って発生していたひび割れに対して、仕上げ材の上から計測したひび割れ幅と、仕上げ材が除去された あとのコンクリートの躯体のひび割れ幅とをそれぞれ計測した。計測結果を表 7.4.1.2 に示す。サンプ ル数が 22 個と多いモルタル仕上げの柱の曲げひび割れにおける躯体ひび割れ幅と仕上げひび割れ幅と の関係を図 7.4.1.5 に示す。モルタル仕上げの柱の曲げひび割れは、仕上げの上から計測したひび割れ 幅が 0.1~0.45 に対して、実際のコンクリート躯体のひび割れ幅が 0.15mm 以下となった。このことか ら、今回の調査において、モルタル仕上げの柱の曲げひび割れが 0.45mm 以下の場合は、コンクリート躯 体のひび割れ幅が 0.15mm 以下と判断し、損傷度を I として評価することとした。

(a) モルタル仕上げの柱

(b)石膏ボード仕上げの壁

	図 7.	4. 1. 4	仕上げ材が一部残っている例
表	7.4.1.2	躯体ひ	いび割れ幅と仕上げひび割れ幅との関係

		仕上げ	アトア゙実まれ	飯休7\7\割	什 ト (デフトフド
位置	仕上げ	に <u>エい</u> 厚さ(mm)	利利 利利	』 加藤(mm)	ビエ() 0·0· 割れ幅(mm)
X3-Y1-1F	モルタル	12	曲げ	0.1	0.25
X4-Y1-1F	モルタル	12	曲げ	0.1	0.25
X4-Y1-1F	モルタル	12	曲げ	0.1	0.15
X5-Y1-1F	モルタル	12	曲げ	0.15	0.4
X6-Y1-1F	モルタル	30	曲げ	0.1	0.35
X6-Y1-1F	モルタル	30	曲げ	0.1	0.35
X7-Y1-1F	モルタル	30	曲げ	0.05	0.15
X4-Y1-2F	モルタル	25	曲げ	0.15	0.45
X5-Y1-2F	モルタル	?	曲げ	0.1	0.25
X6-Y1-2F	モルタル	?	曲げ	0.1	0.2
X6-Y1-3F	モルタル	20	曲げ	0.05	0.2
X6-Y1-3F	モルタル	20	曲げ	0	0.15
X6-Y1-3F	モルタル	20	曲げ	0	0.2
X6-Y1-3F	モルタル	20	曲げ	0.05	0.2
X6-Y1-3F	モルタル	20	曲げ	0.1	0.2
X7-Y1-3F	モルタル	12	曲げ	0.05	0.1
X7-Y1-3F	モルタル	30	曲げ	0.1	0.35
X7-Y1-3F	モルタル	30	曲げ	0.05	0.2
X7-Y1-3F	モルタル	30	曲げ	0.05	0.15
X7-Y1-3F	モルタル	30	曲げ	0	0.1
X8-Y1-3F	モルタル	20	曲げ	0	0.1
X8-Y1-3F	モルタル	20	曲げ	0	0.15
X2~3-Y3-2F	モルタル	?	せん断	0.35	0.5
X2~3-Y3-2F	モルタル	?	せん断	0.35	0.6
X2~3-Y3-2F	モルタル	?	せん断	0.25	0.5
X2~3-Y3-2F	モルタル	?	せん断	0. 2	0.35
X2~3-Y3-2F	タイル	?	せん断	0.5	2
X4~5-Y3-3F	石膏ボード	?	せん断	0.8	0.8
X2~3-Y3-3F	石膏ボード	?	せん断	1.3	1.3

図 7.4.1.5 モルタル仕上げの柱の曲げひび割れにおける躯体ひび割れ幅と仕上げひび割れ幅との 関係

部材の損傷を図 7.4.1.6~図 7.4.1.10 に示す。なお、1 階は柱・壁だけでなく梁のひび割れ情報があ るが、2 階~PH 階は、梁のひび割れ情報がない。柱・壁のひび割れ幅はクラックスケールで計測した値 であるが、1 階における梁のひび割れ幅はクラックスケールを使用せず、ひび割れから 2m 程度離れた距 離から見えるひび割れを目視によって推定したものであるため、精度が悪いと考えられる。一方、2 階 ~PH 階では梁のひび割れ幅は記録せずに目視によって判断した損傷度だけを記録した。

図 7.4.1.6 部材損傷一覧(1階, X方向)

GWO

CWO

CWO

CWO

(Y4)

GWO

GVO

GWO

GWO

GWO

SNO

SW0

図 7.4.1.10 部材損傷一覧 (PH 階)

2) 損傷度調査(A班)

熊本県益城町役場(3層RC造)にて損傷量調査を行った。本資料では損傷量調査の方法及び調査結果を示す。損傷量の調査項目は表 7.4.1.3に示す以下の3点とした。

計測項目	
建物内部の柱のひび割れ幅・長さ	
建物内部の壁のひび割れ幅・長さ	
建物内部の壁の浮き・剥落面積	

表 7.4.1.3 調査項目

(a) 計測方法

今回の損傷量調査では2組の調査結果を用いて結果を示すものとした。調査AではGLから2000mm まで高さの範囲でひび割れ幅だけでなくその形状や浮き剥落の面積及び形状の取得を目的とした。調 査Bでは被災度区分判定の観点から建物の損傷量を計測した。調査Aにおいてひび割れの形状は手持 ちカメラによる写真を用いて計測を行った。また、特に損傷の大きい壁及び柱を、それぞれ1部材ず つOHP シートを用いてひび割れ幅の形状を計測した。ひび割れ幅は野帳に記入すること取得し、後に エクセルに記入することでデジタルデータとする方法とした。浮き、剥落の計測は損傷の大きい壁1 部材を対象としOHP シートを用いて計測した。図7.4.1.11に計測のフローを示す。

図 7.4.1.11 計測のフロー

(b) 計測範囲

今回の全ての計測は壁及び柱部材共通で GL から高さ 2000mm までを計測範囲とした。計測を始める 前に準備として各部材にメジャーを用いて高さ 2000mm を計測し、その位置にマジックペンで水平に 線を引いた。

(c) 計測のフロー

a) 部材名の記入

計測時,部材を各階で順に計測することやデータ処理が困惑しないため,柱及び壁に名称を付ける。部材名は,柱は「<u>階数</u> C Y 軸 - X 軸 」壁は「<u>階数</u> CW Y 軸 - X 軸 」とする。柱及び壁は1部材に対して複数の面を計測できるため計測部材は計測可能な室内側の全ての面を 計測した。複数面計測可能な部材は部材名の後に方角を追記した。計測部材の名称及び計測可能面数 を以下に示す。

柱

柱の計測部材は以下の伏図(図 7.4.1.12)に示す部材とした。また,柱は部材ごとに室内側に 2~4 面あり,室内側から計測可能な面は全て計測した。部材に対する計測面数は以下とする。

2 面 (C1-2, C2-2, C3-3) 3 面 (C1-3, C1-4, C1-5, C1-6, C1-7, C1-8, C2-3, C2-8, C3-2) 4 面 (C2-4, C2-5, C2-6, C2-7)

図 7.4.1.12 計測面名の例

壁

壁の計測部材は以下の伏図(図 7.4.1.13~図 7.4.1.15)に示す部材とした。また,柱は部材ごとに 室内側に 1~3 面あり,室内側から計測可能な面は全て計測した。部材に対する計測面数は以下とす る。

1 階

1面 全部材

2面 なし

2 階

1 面 (2CW1-2, 2CW1-7, 2CW1-10, 2CW2-5, 2CW3-2, 2CW3-3, 2CW3-8, 2CW3-9, 2CW4-1)

2 面 (2CW2-2, 2CW2-3, 2CW3-1, 2CW3-4)

3 面(2CW2-4)(北南面は同じ壁だが,西面は別の壁で構面による名称付の関係でCW2-4 が 3 方角となっている)

3 階

1 面(3CW1-2, 3CW1-10, 3CW2-2, 3CW2-3, 3CW2-5, 3CW3-1, 3CW3-2, 3CW3-3, 3CW3-8, 3CW3-9, 3CW4-1)

2 面 (3CW2-4, 3CW3-4)

3 面(3CW2-8)(4 方角とも異なる部材だが,構面による名称付の関係で CW2-8 が 3 方角となっている)

b) ひび割れの記入

今回の計測では、写真撮影によりひび割れの形状及び座標を計測するためマジックペンを用いて部材 に直接ひび割れ形状を記入する。Vector を用いることで写真からひび割れの長さ、形状、座標を把握で きる。

c) ひび割れ幅計測

ひび割れに対して最大ひび割れ幅を計測し,あらかじめ用意しておいた野帳に記録する。計測する ひび割れは1部材に対し最も幅の大きい曲げ及びせん断ひび割れ1本ずつとする。各ひび割れにおけ る最大ひび割れ幅の計測場所は,以下に示す通りで,各ひび割れで最大と考えられる箇所を計測す る。ひび割れ幅の計測は目視により行い,使用するクラックスケールに示されている幅で表現する

(0.00~3.50mm で表現, それ以上は定規を使用)。但し, 目視により確認でき, かつ 0.05mm 未満の ひび割れの場合はひび割れ幅を 0mm と表記する。

また,1本のひび割れの中で最大ひび割れ幅を計測した点にはひび割れと直行するよう線を引き,後 に最大ひび割れ幅計測点が写真からわかるようにした。

図 7.4.1.16 1本のひび割れにおける最大ひび割れ幅計測位置

図 7.4.1.17 クラックスケール

d) OHP 計測

高解像度写真計測によるひび割れデータの精度検証を計るため、損傷度の多い1階の柱・壁部材に て OHP シートによるひび割れ・浮き剥落計測を行う。損傷度の多い部材にて比較を行うことを目的と するため、上記した1階損傷度判定より、壁についてはⅢと判定された 1CW3-5、柱は 1C1-8 を計測す る。

次に,計測に使用する OHP シートの作成を行う。1 グリットに対して OHP シート 1 枚を使用した。 グリットと OHP シートの寸法が一致していれば,A4 サイズの OHP シートをそのまま使用するが,グ リットの寸法が OHP シート寸法と異なる場合は、グリットの寸法に合わせた線を OHP シートに記入 し、計測時はその線を壁面の実際のグリットに合わせて計測を行う。また、シートの裏表や上下が混 乱しないように各シートにはグリット名を記入する。

コンクリートに浮きが発生した場合は斜線によるハッチング,剥離が生じた時は網掛けによるハッチングを行う。(図 7.4.1.19)

4) ひび割れの写真撮影

2)に続き,各部材で最大ひび割れ幅と捉えたひび割れをマジックペンでなぞり,部材の写真を撮る ことでひび割れの座標や形状を取得する。図 7.4.1.20に例として撮影した部材を示す。丸で囲まれた 線がマークしたひび割れである。

図 7.4.1.20 ひび割れ記入写真の例

(d) 目視によるひび割れ計測結果

図 7.4.1.21 に損傷量計測結果を示す。各部材複数の面で計測を行った内の曲げ・せん断のひび割れ幅の最大値をそれぞれ示した。また、各階で計測した部材のひび割れの様子を写真で示す。

(a) 1C2-3 の部材写真

(b) 1C2-2 の部材写真

写真 7.4.1.13 部材写真

写真 7.4.1.14 1CW2-8の部材写真

写真 7.4.1.15 2CW1-7の部材写真

写真 7.4.1.16 3CW3-1の部材写真

(e) OHP によるコンクリート損傷の計測結果

OHP シートにて計測した柱部材 (1C1-8) 及び壁部材 (1CW3-5) のひび割れ図を図 7.4.1.25, 図 7.4.1.26 に示す。また, 1CW3-5 の OHP 計測範囲よりも高い位置に発生していた浮き剥落の図及びその面積を図 7.4.1.27 に示す。また, 1CW3-5 のひび割れ図では図 7.4.1.25 に示す赤ハッチ部分のデータを損失してしまったためにそれ以外のデータのみを示した。

剥落面積(両ハッチ部分): 34490mm² 浮き面積(片ハッチ部分): 8355mm²

図 7.4.1.27 開口の上の剥落部分ひび割れ図

(f)調査Bによる損傷量調査結果との比較

以下に計測した壁及び柱の最大曲げ・せん断ひび割れ幅の結果を示す。

曲げひび割れの結果とせん断ひび割れの結果をそれぞれの図で示している。また,その後に1部材で の最大ひび割れ(最大曲げひび割れと最大せん断ひび割れの大きい方)で,調査Bが損傷量調査を行 った結果と比較を行う。現地での目視による計測のため,異なるひび割れを計測していることがあ り,結果に差が生じている部材が存在した。以下(図7.4.1.28~図7.4.1.33)に両者の計測結果を 示す。また,両者の計測結果の違いが生じた原因について考察する。2階及び3階の柱部材については 調査Bのみが計測を行ったため調査Bのみの結果を示している。

ひび割れ幅結果の比較において以下の6通りがある。全部材をこれらに区分し図 7.4.1.28~図 7.4.1.33のひび割れ幅の前に記載する。

1) 同じひび割れを計測しているが計測誤差がある

2) 調査Aの調査高さ内で異なるひび割れを計測した

3) 調査 A の計測高さに上限がある。その他, 値が同じでも 4)。異なるひび割れを計測している可能性 や, 5)。どちらか一方のみしか調査できていないケースもある。

写真 7.4.1.17(a)に1 階柱 C1-8 の両者の計測したひび割れを示す。調査 A の計測したひび割れは青 い丸で囲まれたもので,調査 B のひび割れは緑のテープを貼った点にあるものである。C1-8 では両者 が同じひび割れを計測しており,両者せん断ひび割れを捉えているが,計測結果は調査 A が 0.3mm, 調査 B が 0.45mm と差が生じている。これについては同一のひび割れを計測しており,数値が大きい 調査 B の数値を使用することが妥当である。

写真 7.4.1.17(b)に1 階柱 C2-2 の両者の計測したひび割れを示す。調査 A では赤い丸に囲まれた曲 げひび割れより青い丸に囲まれたせん断ひび割れの方が大きく 0.45mm と計測している。対して調査 B では緑のテープの点に曲げひび割れで 0.2mm と計測している。これについては異なるひび割れを計測 しており,調査 A の数値を使用することが妥当である。

(a) C1-8 部材

(b) C2-2 部材

写真 7.4.1.17 計測したひび割れ

写真 7.4.1.18 に 1 階壁 1CW2-2 の両者の計測したひび割れを示す。両者は同一のひび割れを同一の 点で計測しているが、計測では調査 A が 0.85、調査 B が 1.1 と示している。

写真 7.4.1.19に1階壁 1CW3-6の両者の計測したひび割れを示す。調査 A では青い丸に囲まれた ひび割れをせん断ひび割れで 0.4mm と計測しているが、調査 B では計測したひび割れは不明だが、 5.0mm と計測しているため、開口上部のひび割れを計測していると考えられる。調査 A では計測範囲 を高さ 2000mm までとしたため、計測を行っていないひび割れであることが差の要因である。部材の 損傷評価として調査 B の 5.0mm を使用することとした。

図 7.4.1.29 1 階壁部材の調査結果比較

(a)調査A計測点

(b) 調査 B 計測点

写真 7.4.1.18 1CW2-2 計測点

(a) 調査 A 計測点

(b)調査B計測点 写真7.4.1.19 1CW3-6 計測点

図 7.4.1.33 3 階壁部材の調査結果比較

3) 高解像度写真計測調查(C班)

(a) 柱・壁面のひび割れ撮影

a)撮影方法

柱[ICI-8],壁面[ICW3-5]として,高解像度カメラでの撮影を実施した。撮影状況写真を図 7.4.1.34 に,撮影された画像の例を図 7.4.1.35 に示す。ブレによる画像の品質低下を避けるため、カメラは三脚に設置した上で撮影することが望ましい。ただし三脚の設置が難しい状況の場合は,手持ちでの撮影も可能である。なお現地では参考のためにクラックスケールを貼り付けて撮影しているが,解析では使用していない。

撮影した画像を正対かつスケールを合わせた画像(正規化画像)に変換するためには,撮影対象の寸法 が必要である。寸法は,現地でメジャーを当てて計測することで取得した。本撮影では,画像同士が30% 程度オーバーラップするようにしながら対象を複数枚に分割して撮影している。正規化によって分割撮 影したそれぞれの画像が同じ座標系となるため,正規化画像を重ね合わせた上で重複した撮影範囲の中 間付近で切り分けることで画像の接合が可能である。

図 7.4.1.34 撮影状況

図 7.4.1.35 撮影結果

b)処理方法

正規化した画像上のひび割れのトレースとひび割れ幅の判読を行う。トレースは、CAD ソフト等を使用するのが効率的である。正規化画像は画像自体に座標情報を持っているため、画像上のひび割れ幅の

画素数と分解能から逆算することでひび割れ幅を算定することができる。具体的には画像データ上に上 記スケールを計算した仮想的なクラックスケールを重畳表示することでひび割れ幅を判読することが できる。

c)結果

画像を正規化・接合した結果を図 7.4.1.36 に、ひび割れをトレースした結果を図 7.4.1.37 に示 す。柱のひび割れトレースにおいて、0.05mm 以下のひび割れを取得できていることが読み取れる。ま た、現状ではひび割れの幅の判読単位はトレースしたひび割れ毎としているが、判読単位を細分する ことで補修材を充填するための補修計画図も作成できると考えている。

図 7.4.1.36 正規化接合画像(左:柱 右:壁面)

図 7.4.1.37 ひび割れトレース結果(左:柱 右:壁面)

目視計測手法で取得した最大の曲げひび割れ幅とせん断ひび割れ幅に対して,高解像度写真計測で 取得したひび割れ幅を比較する。目視計測では幅の計測位置が特定されているため,高解像度写真計 測でも同じ位置のひび割れ幅を計測した。またひび割れ幅はひび割れ方向に対して直交方向の値とし ている。両者を比較した結果を表 7.4.1.4 に示す。両手法での算定結果は多少の差はあるものの,概 ね一致している。またこれらの残留ひび割れ幅より上部構造物の残留水平変形は極端に大きくないと 言える。

		ひび割れ幅 (mm)		
		目視計測	高解像度カメラ	
柱	曲げ	0.2	0.3	
	せん断	0.45	0.6	
壁面	曲げ	0.9	0.9	
	せん断	1.1	0.9	

表 7.4.1.4 ひび割れ幅の比較

(b) うき・剥落の取得

a)撮影方法

うき・剥落の取得を目的として、ドアの上部にある剥落箇所の撮影を行った。撮影状況を図 7.4.1.38 に、撮影対象範囲を図 7.4.1.39 に示す。撮影枚数は 1 枚ではなく複数枚としている。撮影時は、図 7.4.1.40 に示すように、対象に対して均一距離を保ちつつ、並行移動しながら、重複して撮影するのが 望ましい。特に今回の撮影については、図 7.4.1.41 に示すように蛇腹状に撮影した。

図 7.4.1.38 撮影状況

図 7.4.1.39 撮影対象範囲

b)処理方法

撮影した写真を Pix4D Mapper で合成し、三次元モデルを作成した。Pix4D Mapper は SfM (Structure fromMotion)と呼ばれる複数画像からカメラの位置姿勢と三次元モデルを復元する技術を使用したソフ

トであり,近年様々な場面で利用されている。作成した三次元モデルから,奥行き方向の値を持った画像である DSM (Digital Surface Model)を作成することで,浮き・剥落箇所を抽出することができる。

c)結果

画像と DSM を重ねた結果を図 7.4.1.42 に示す。画像上で表面が欠けている箇所や亀裂が入っている 箇所の位置関係を踏まえ,奥行方向が 0.53mm 以上を浮き,−1.51mm 以下を剥落範囲として取得した。 うき・剥落取得位置を図 7.4.1.43 に示す。図 7.4.1.43 より剝落中心部から浮きの部分までの 3 次元 の損傷状態が計測できている事が分かる。

図 7.4.1.42 画像とDSMの重畳

図 7.4.1.43 うき・剥落取得位置(左:DSM・画像上 右:画像上)(青:うき 緑:剥落)

浮き・剥落の面積・体積について、マニュアル計測との比較評価を実施した。比較結果を図 7.4.1.44 に示す。マニュアル計測による浮きと剝落面積は、それぞれ 8410 mm²、34490mm²であり、高解像度計測 によるそれらの値はそれぞれ 33579 mm²、29366mm²であり、高解像度画像手法のうきの面積は多めに算 定された。これは、マニュアル手法では取得できていない箇所も含めたためである。剥落の面積は、マ ニュアル計測の値がやや大きい結果となった。なお高解像度計測は 3 次元情報であることから、剥落部 分の体積を 361333mm³と算定できている点が特徴である。

図 7.4.1.44 うき・剥落の比較(左上:DSM・画像重畳 右上:画像重畳 左下:重畳なし)

手法	うき	剥落		
	面積(mm ²)	面積(mm ²)	体積(mm ³)	
マニュアル手法	8, 410	34, 490	-	
高解像度画像	33, 579	29, 366	361, 333	

表 7.4.1.5 うき・剥落の面積・体積の比較

(c) ベランダの損傷取得

a)概要

ベランダから見える範囲における損傷状況を速やかに記録するための方法について検討することを目 的とし、撮影を実施した。奥行きが限られるため、撮影範囲が狭くなるという課題がある。本撮影では、 広角レンズを使って連続的に静止画を撮影し、うき・剥落の計測と同様に SfM ソフトを用いて 3D モデ ルを作成することで、損傷の把握を試みた。

b)撮影方法

対象は、ベランダから見える範囲の建物壁面である。壁面と撮影位置の距離をなるべく大きく取るために、カメラは三脚ではなく手持ちで撮影した。撮影状況写真を図 7.4.1.45 に、撮影結果を図 7.4.1.46 に示す。

図 7.4.1.45 撮影状況

図 7.4.1.46 撮影結果

c)処理方法

浮き・剥離の処理と同様, SfM ソフトを用いて高密度点群と壁面オルソを作成・出力した。これらのデ ータ上で,損傷状況の把握を試みた。なお SfM ソフトによるこれらの結果の出力方法については,ソフ ト購入時に付属されるマニュアルを参考にすると良い。

d)結果

本対象壁面はブロックによるものであるため、特徴点を捉えやすい。そのため SfM ソフトによる画 像マッチングは良好であった。特徴の少ない壁面(例えば,一面が白で損傷がほぼ無い壁面)の場 合、本手法が適用できない可能性があるため、それらの適用性については追加の検討が必要である。 高密度点群を図 7.4.1.47 に、壁面オルソを図 7.4.1.48 に示す。いずれの結果からも、ひび割れ箇所 を明瞭が示されていることから、本手法によって壁面の損傷を捉えられる可能性があることが示され た。

図 7.4.1.47 高密度点群(上:全体 右下·左下:部分拡大)

図 7.4.1.48 壁面オルソ(上:全体 右下・左下:部分拡大)

(d) 屋外壁面の損傷取得

a)概要

足場のない屋外壁面は、マニュアル調査では確認することができない箇所である。そこ望遠レンズを用いて屋外壁面を撮影することで、マニュアル計測では確認できない箇所の損傷状況把握の可能性を検討した。

b)現地撮影および処理方法

撮影対象は,2階部分と3階部分である。2階部分は、ベランダからクラックスケールを貼り付けた上で、近距離からと遠距離からの2箇所からそれぞれ撮影した。3階部分は、ひび割れやタイル剥がれな

どの損傷が見られるため、全体を撮影して正対補正画像を作成し、これらの損傷位置の把握を試みた。 いずれも撮影は町役場の地上駐車場から行った。撮影状況写真を図 7.4.1.49 に、撮影結果を図 7.4.1.50 に示す。また今回、3 階部分の正対補正は窓枠の形状が長方形になるよう簡易補正することで 実施している。もしレーザスキャナや図面を使用できる状況であれば、柱や壁面の補正と同様、精緻な 正対補正も可能である。

図 7.4.1.49 撮影状況

図 7.4.1.50 撮影結果(2階部分)

図 7.4.1.51 撮影位置概略図

c)結果

図 7.4.1.52, 図 7.4.1.53 に, それぞれの位置から撮影した 2 階の画像の比較結果を示す。図 7.4.1.53 から, 85mm レンズを用いて近距離から撮影した画像よりも, 300mm レンズを用いて遠距離から撮影した画像の判読性能が高いことが読み取れる。これは,近距離から撮影すると撮影対象に対するカメラの角度が大きくなり,分解能が落ちるためと考えられる。本結果から,地形や他の建物の状況によっては遠方から撮影できない屋外壁面でない限りは,なるべく望遠レンズで遠方から撮影することが望ましいことが明らかとなった。

図 7.4.1.52 2階の撮影画像の比較 (左:レンズ焦点距離 85mm 対象までの射距離 8m 右:レンズ焦点距離 300mm 対象までの射距離 27.5m)

図 7.4.1.53 クラックスケールとひび割れの比較

3階部分の正対補正画像を図 7.4.1.54 に示す。これは1枚の撮影画像ではなく、分割して撮影した複数の画像を接合したものである。窓の右上部分にあるひび割れとタイル剥離を明瞭に把握することが可能であり、本手法による有効性が示された。

図 7.4.1.54 3階の正対補正画像

4) 地上型レーザースキャナーを用いた調査(D班)

地上レーザースキャナーは測定誤差が±5mm(確度±3mm),測定挙可能距離は0.5~800m,計測レート は最大50万点/秒の仕様を用い,計測情報として対象物の座標値,表面の反射強度,色情報を取得でき る。本調査においては,建物外周部に加え,建物内においても計測を実施し,建物や柱部材の残留傾斜 や室内床面の傾斜を計測する計画とした。建物内の計測は,調査対象である柱部材や床面が欠損なく+ 分な点密度で計測できるよう,1階49地点,2階37地点,3階48地点に地上型レーザースキャナーを設置 し,計測を行った。またそれぞれの計測地点からの主要な計測対象において,1平方cm当たり少なくとも 数点の計測点が含まれるよう,計測点群の解像度を計測機から10mの距離で8mm程度となる設定とした。

以下に地上型レーザースキャナーによる調査結果を示す。まずここでは計測ポジションを以下の図に 示す。**写真 7.4.1.20**にバルコニーと室内それぞれで計測している状況を示す。レーザースキャナーは 三脚上部に固定し,1周約5分未満で計測を行っている。

(a) バルコニー

(b) 室内

写真 7.4.1.20 計測状況 ここで計測した地上および各階での位置を図 7.4.1.55~図 7.4.1.59に示す。

図 7.4.1.55 地上(建物外周部)での計測位置

図 7.4.1.56 室内1階での計測位置

図 7.4.1.57 室内2階での計測位置

図 7.4.1.58 室内3階での計測位置

図 7.4.1.59 屋上での計測位置

以上の位置から計測したことで建物外観および室内部分の3次元化を行った。その結果を以下の図に示す。ここで計測された点群は3次元の座標値を有するため,図 7.4.1.60に高さ方向に色分けした情報

を示す。

図 7.4.1.60 高さ方向に色分けした南西側からみた外観立体図

図 7.4.1.61 南東側からみた外観立体図

次に計測密度の違いを示す。実際の計測では1階部分において41カ所で計測した結果とその約半分の 19カ所で計測した結果を図 7.4.1.62, 図 7.4.1.63に示す。図 7.4.1.62はほとんどが赤色であり、こ れは1cm²に少なくとも1.5点以上点密度があることを示しており、十分な計測ができているが、その分多 くの時間を要している。それに対して計測時間半分を想定した図 7.4.1.63をみると、いくつか青色の 箇所があるが、これは1cm²に0.7点以下であることを示す。図より床の多くは赤や緑であり、柱部材もほ ぼ赤色であることから、効率的な計測箇所が存在することが分かる。

図 7.4.1.62 41箇所から計測した1階室内の点密度

図 7.4.1.63 19箇所から計測した1階室内の点密度

上記の3次元データを用いて、床面の沈下性状および各階柱の傾斜・沈下性状を分析する。

(a) 床面の沈下性状

図 7.4.1.64 に 2 階床上面で計測された点群情報を等高線表示した結果を示す。図の上部が北の方角 を示す。各階の床面で一番高い位置(Y1 構面 X6-7 間)を基準高さとし、それを緑色、10cm 低い部分 を黄色、20cm 低い部分を赤色、30cm 低い部分を紫色で、逆に高い部分は青入りでグラデーション表示 している。それ以外の色の部分は点群による計測ができていない部分である。なお1cm ごとに白色の 等高線を示す。図より北側に向かって床が傾斜している事が分かる。特に北西部の床位置が下がって おり、前述の最高高さ位置に比べ、その相対差は約233mm と大きい。今回の調査では地上型レーザー スキャナーにより各階の床全面も詳細に3次元計測できたことで、限られた個別部位の沈下量ではな く、床全面の精細な沈下性状を得ることができている。

図 7.4.1.64 2 階床レベルの高低差を示す観測結果(図の上部が北(Y4 構面)を示す)

次に、図 7.4.1.63 で示した点密度データ群から点を 1cm2 に 1 点と 10cm 2 に 1 点に間引いた場合の 2 階床レベルの変状分布を図 7.4.1.65 に示す。図より(b)で大きく間引いた方の点密度が薄いこと が分かるが、北西方向の床の変状は明確に分かることから、床の変状を把握するのであればこの程度 の点密度であったとしても損傷の評価を行うことは十分にできることが分かる。このように被災現場 で効率的な計測を行い、かつ損傷性状を把握するのに十分な計測計画を立てることが重要となる。

(a) 1cm²に1点程度

(b) 10cm²に1点程度

(b) 柱の傾斜と沈下性状

柱の傾斜は,次の手順で求めた。(1) 計測点群から各柱の上部と下部の表面のデータを取得(図 7.4.1.66(a))し、両者の南北方向および東西方向の水平変位量(図7.4.1.66(b))をそれぞれ計 測した。(2)前述の変位量を、使用した上部と下部のデータの中心距離(高低差)で除すことで柱の 傾斜を求めた。(3)この手順で柱の傾きを計測するためには、計測点群を利用する柱の上部と下部が 同一形状(水平断面)で垂直に形成されているとともに、表面形状が明確に取得されている必要があ るため、それに適した柱頭柱脚部の点群を取得した。また計測値の精度と安定性を高めるために、上 部と下部の距離をできるだけ大きくとれるように配慮し、上部と下部の点群の中心距離は2100mmに統 ーしてデータの取得と処理を行った。表 7.4.1.6に各柱の南北方向および東西方向の傾斜角を示す。 なお正の値は北または東に傾斜している事を示している。表 7.4.1.6(a)より、有意な傾きが計測さ れなかった1本を除き、全ての柱が北方向に傾斜していた。表より北側ほど柱の傾斜が大きい傾向にあ ることが分かる。一方、東西方向の傾斜はこれらの値よりかなり小さい値であるとともに、傾斜方向 が東方向および西方向のものが混在する状況であった。

図 7.4.1.67に1Fベランダの天井部分の南北方向の梁に注目してYO(補強構面),Y1(既存の南側構面)の各構面での相対沈下量を示す。YCは短スパン梁中央位置の値である。図よりいずれの構面も西側の柱の沈下量が大きいことが分かる。

(a) 傾斜角計算用に選定した柱頭柱脚位置
(b) 柱頭と柱脚の水平方向のずれ
図 7.4.1.66 柱の傾斜角を算定するために着目した点群情報

表 7.4.1.6 柱の傾斜角

(a)南北方向

構面	階	X1	X2	Х3	X4	X5	X6	X7	X8	X9	X10
	3F	-	1/203	1/212	1/466	1/291	1/244	1/291	1/185	1/146	1/194
V1	2F	-	1/151	1/172	1/187	1/223	1/166	1/233	1/133	1/130	1/145
11	1F	-	1/338	1/198	1/152	1/223	1/203	1/181	1/147	1/147	1/102
	平均	-	1/207	1/192	1/213	1/242	1/200	1/226	1/152	1/141	1/137
	3F	-	1/168	1/223	1/139	1/114	1/214	1/130	1/141	1/152	1/108
V2	2F	-	1/190	1/146	1/181	1/105	1/120	1/106	1/162	1/114	1/123
12	1F	-	1/187	1/166	1/152	1/117	1/131	1/114	1/131	1/142	1/142
	<mark>平均</mark>	-	1/181	1/173	1/155	1/112	1/145	1/116	1/144	1/134	1/123
	3F	1/276	1/141	1/168	1/179	1/132	1/173	1/230	1/212	1/161	1/151
V2	2F	1/216	1/265	0	1/175	1/173	1/143	1/152	1/146	1/112	1/107
13	1F	1/126	1/179	1/111	1/138	1/156	1/101	1/139	1/122	1/140	1/150
	<mark>平均</mark>	1/185	1/183	1/200	1/161	1/152	1/133	1/165	1/152	1/135	1/132
	3F	1/92	1/117	1/108	1/116	1/105	1/121	1/128	1/140	1/81	1/99
V4	2F	1/104	1/146	1/147	1/160	1/156	1/189	1/428	1/155	1/156	1/82
4	1F	1/187	1/142	1/146	1/99	1/123	1/166	1/123	1/124	1/111	1/137
	平均	1/116	1/134	1/131	1/120	1/125	1/153	1/164	1/138	1/108	1/101

(b) 東西方向

		X0	X2	X3	X4	X5	X6	X7	X8	Х9	X10
	3F		1/-808	1/-778	1/-700	1/-553	1/-955	1/-678	1/-3500	1/-2625	0
V1	2F		1/-1236	0	0	1/-1236	1/-1000	1/617	1/-584	1/-657	0
11	1F		1/954	1/1000	1/2333	1/1615	1/-1236	1/-284	1/-356	1/-334	1/1750
	平均		1/-3000	1/-10500	1/-3000	1/-1500	1/-1050	1/-888	1/-624	1/-612	1/5250
	3F		0	1/-3000	1/-525	1/-525	1/-618	1/-700	1/-600	1/-254	1/-840
VD	2F		1/-808	1/-778	1/-955	0	1/-1050	1/-955	1/-334	1/-250	1/-525
12	1F		1/-467	1/-2625	1/-3000	1/-1400	1/-1400	1/-553	1/-438	1/-637	1/-600
	平均		1/-888	1/-1500	1/-914	1/-1146	1/-914	1/-700	1/-432	1/-315	1/-630
	3F	1/-467	0	1/-438	1/-840	1/-397	1/-1236	1/-363	1/-955	0	1/-438
V2	2F	1/-339	1/2100	1/-467	0	1/-397	1/-525	1/-215	1/-248	1/-808	1/368
15	1F	1/-700	1/-955	1/411	0	1/-1750	1/-2100	1/-750	1/-657	1/-875	1/-1106
	平均	1/-460	1/-5250	1/-1500	1/-2520	1/-534	1/-941	1/-343	1/-454	1/-1260	1/-6300
	3F	1/-1236	0	1/189	1/466	1/500	1/466	1/477	1/-2100	1/-2100	0
VA	2F	1/700	1/428	1/1615	1/636	1/428	1/-840	1/-166	1/-224	1/-174	1/-429
14	1F	1/-1616	1/-319	1/-420	1/1050	1/1615	1/1500	0	1/-584	1/-525	0
	平均	0	1/-3706	1/851	1/642	1/605	1/1852	1/-760	1/-450	1/-369	1/-1286

図 7.4.1.67 南側Y0,Y1構面の沈下量

5) 常時微動計測

(a) 計測概要

対象建物の固有周期の把握および地盤ばねの推定のため、常時微動計測を行った。

- 日時:2018年2月18日 9:00~17:00
- 計測箇所:
- 0 建築物 E 内部: 屋上 4 箇所, 1 F 4 箇所(図 7.4.1.68 参照)
- 0 地盤:建屋南面駐車場中央1箇所(建屋外壁から15mの位置)
- 使用機材:サーボ型速度計(配置は図 7.4.1.68 に示す)
- データ収録条件: 200Hz サンプリング, 各計測ケース(機器配置) 20 分間

🕇 GL

(a) NS 方向配置

(b) EW 方向配置

(b) 固有周期と増幅率

微動計測結果より得られた対象建物の振動特性をまとめて、図 7.4.1.69、図 7.4.1.70、表 7.4.1.7 に示す。これらの図にある通り、微動には明瞭な卓越周波数が現れており、ARX モデルで同定された建 物の固有周波数は一貫計算プログラムにより算出された1次固有周期とも概ね対応している(7.5 節参 照)。また護ら^{[7.4:2][7.4:3]}による調査結果とも整合的であり、妥当な結果が得られているものと考える。

建物1Fを分母にとったスペクトル比と地盤を分母にとったスペクトル比の違い(図 7.4.1.70)に 着目すると、地盤を分母にとったスペクトル比の方が、ピーク周波数が顕著に低いのが特徴的である(通 常はどちらを分母にとっても大差ない場合が多い)。このことは、建物基礎の地盤ばねが非常に小さい こと、つまり、建物の基礎ぐいおよびその周辺地盤の剛性が大きく低下していること示しており、基礎 の被害状況(7.4.2項, 7.5.6項参照)と整合的である。

図 7.4.1.70 ARX モデル(次数100)の同定結果とフーリエスペクトル比

モテ	ール	固有周波数 (Hz)	増幅率
GL 入力 – RF 出力	Y 方向	2.6	3.4
	X 方向	2.6	3.0
1F 入力 – RF 出力	Y 方向	4.2	7.6
	X 方向	3.9	9.4

表 7.4.1.7 ARX モデルによる1次固有周波数と増幅率

(c) 地盤ばねの推定(スウェイばね)

建物設計図書より算出した以下の建物質量を用いて、地盤ばねを介した多質点系モデルの固有周波数 が、表7.4.1.8の値になるようにばねを決定する。表7.4.1.9が、その結果である。

階	階高 (m)	高さ(m)	質量 (t)	慣性モーメント(t・m²)		
				重心の転倒	重心周りの回転	
				I _g	I _N	I _x
RF	3.83	12.92	1,626	2.71.E+05	3.66.E+05	7.81.E+04
3F	3.815	9.09	1,594	1.32.E+05	3.59.E+05	7.65.E+04
2F	5.275	5.275	1,888	5.25.E+04	4.25.E+05	9.06.E+04
1F	-	0	2,575	0.00.E+00	5.80.E+05	1.24.E+05
合計			7,683	4.56.E+05	1.73.E+06	3.69.E+05

表 7.4.1.8 想定質量

表 7.4.1.9 スウェイばね推定値(NS 方向, EW 方向共通)

ばね (kN/m)	$2.86 imes 10^{6}$
ダッシュポッド (kN/(m/s))	$9.77\! imes\!10^4$

(d) 地盤ばねの推定(ロッキングばね)

建物周辺地盤の計測機器設置可能範囲の都合上,地盤のロッキング入力に対する建物屋上のロッキン グ応答のスペクトル比がとれるような計測が不可能であったため,建物屋上の上下動の建物両端での差 分は、ロッキング応答が卓越しているものと仮定して、建物屋上の上下動の差分データのみを用いて、 自己相関関数法^[7,4-4]によりロッキングの固有周波数を求め、それと表 7.4.1.8 の慣性モーメントが整合 するようにロッキングばねの値を決定する。微動を用いたロッキングばねの推定は、ロッキング動の比 較的顕著な NS 方向(EW 軸周りの回転)についてのみ行い、EW 方向(NS 軸周りの回転)のばねに ついては、ロッキングばねの値が基礎幅の3乗に比例する^[7,4-5]性質を用いて、NS 方向のばね値をもと に算出する。

NS 方向の屋上上下動の差分より得られる自己相関関数を図 7.4.1.71 に示す。このフィッティング 結果と表 7.4.1.8 の慣性モーメントから算出される NS 方向のロッキングばね,およびそれをもとに算 出される EW 方向のロッキングばねは表 7.4.1.10 の通りである。

図 7.4.1.71 屋上ロッキング動(上下動の差分)の自己相関関数

NS 方向	ばね (kN/rad)	1.31×10^{9}
	ダッシュポッド (kN/(rad/s))	$1.78 imes 10^{6}$
EW 方向	ばね (kN/rad)	$1.33 imes 10^{10}$
	ダッシュポッド (kN/(rad/s))	1.81×10^{7}

表 7.4.1.10 ロッキングばね推定値

(e) 地盤ばね低減率(スウェイ・ロッキングとも)

以上推定したばね値は、微動計測結果から推定した値、つまり微小ひずみ領域での推定値であり、地 震応答解析に用いる際には、7.5.3 の地盤の地震応答解析結果より等価せん断ひずみを算出し、想定し た地盤の $\gamma - G/G_0$ 関係に基づいて、地盤ばねを低減する。具体的には以下の低減率を用いる。

前震での地盤ばね低減率: 0.44

本震での地盤ばね低減率: 0.36

7.4.2 基礎構造の被害状況

基礎構造の被害調査は、2016年8月に地方自治体が第1回目の調査を、2018年5月に建築研究所が 第5回目の調査を実施した。本項では、その1回目と5回目の調査について調査結果を報告する。

(1) 被害調查1回目

図 7.4.2.1に被害調査1回目で計測された建築物の相対沈下量を示す。この沈下量は、南側面、北側面、東側面の3側面の相対沈下量を示している。この値は、建設時には水平であったと推測される建築物 1階の外装材の目地の高さを計測することで、相対沈下量を計測している。この相対沈下量とは、各側面 の中で最も高い地点を0として、そこからの相対沈下量を表している。図 7.4.2.1を見ると、西側のX2通 りの相対沈下量が北側で60mm、南側で98mmと大きな値を記録している。また、張間方向では、北側に向 かって傾いており上部構造物の傾斜方向と一致した。また、これらの沈下量の大きい3ヶ所について基 礎周辺を掘削し、杭頭部分の被害について調査が行われた。その時の杭頭部の状況を写真 7.4.2.1およ び写真 7.4.2.2に示す。No.1(X2-Y1)の杭は、杭頭部が大きく斜めに破壊され、また軸方向鉄筋の座屈と ともに軸方向にも縮んでいる様子が観察された。No.2(X1-Y4)の杭は杭頭部が軸圧縮により破壊され軸 方向鉄筋の座屈が見られた。なお、No.3の杭頭部の被害状況が詳細に分かる資料はないものの、ヒアリ ングによりNo.3の杭頭部に顕著な被害は見られなかったという報告を得ている。

図 7.4.2.1 建築物の相対沈下量と調査した杭の位置

写真 7.4.2.1 No.1(X2-Y1)の杭頭部の状況

写真 7.4.2.2 No.2(X1-Y4)の杭頭部の状況

(2) 被害調査5回目

1) 基礎構造物の相対沈下量

図 7.4.2.2に建築物の相対沈下量を示す。計測は,既存建築物側と補強フレーム側でそれぞれ分けて 行った。既存建築物側の計測点数は18点,補強フレーム側の計測点数は7点である。この相対沈下量は, 既存建築物側においては,露出させた基礎フーチングの上天端の相対的な鉛直沈下量を計測した値を用 いている。一方,補強フレーム側は基礎梁に取付いたモルタルの化粧材を基準に計測したため,誤差を 含む計測値である。図 7.4.2.2では,既存建築物側と補強フレーム側のそれぞれにおいて,最も高い地 点を基準地点として,そこからの相対沈下量を表している。なお,既存建築物側と補強フレーム側の基 準地点のレベル差は2261mmであった。図 7.4.2.2を見ると,南側計測点と比べ北側計測点の沈下量が大 きく,建築物が北方向に向かって大きく傾いていることが分かる。一方東西方向については,西側外側 構面のX1構面の沈下量が大きくなっていることが分かる。特に北西隅は沈下量が大きく,建築物の最大 沈下量は194mmを記録している。

図 7.4.2.2 建築物の相対沈下量

7-108

第7章 建築物 E に関する調査分析

2) 杭, 基礎フーチング, 基礎梁の被害状況概要

杭,基礎フーチング,基礎梁の地震被害の把握を目的として,上部構造解体後に基礎フーチング周辺の土砂を掘削し,損傷度の調査を行った。今回は,杭頭部から約1.0m下まで掘削した。調査範囲を図7.4.2.3に示す。掘削を実施したのは21箇所の基礎フーチングの周辺であり,この基礎フーチングを図7.4.2.3のように①~②の名前を付けた。Y1~Y4通りの既存建築物の基礎フーチングは北側から掘削し,Y0通りの補強フレーム側は南側から掘削した。また,調査した27本の杭の位置とその番号を図7.4.2.4に示す。調査した基礎フーチングの周辺状況を写真7.4.2.3~写真7.4.2.23に示す。また,代表的な被害状況を以下に示す。

(杭の被害)

調査した全ての杭で、何らかの被害が確認された。確認された被害は、杭のひび割れ、杭の圧壊、杭の傾斜、杭の水平せん断破壊、杭外周鋼管の座屈、杭のつぶれ破壊などである。被害の詳細は、「3)杭の被害状況」で詳しく述べる。

(基礎フーチングの被害)

基礎フーチング②(写真 7.4.2.4)において、0.65mmのひび割れが確認された。このひび割れは、基礎フーチングの北側に取付く基礎梁(X10, Y2-Y3)の端部に曲げひび割れと繋がっていた。また、基礎フーチング⑥(写真 7.4.2.8, 写真 7.4.2.9)にも被害が認められた。詳細は後述する。

(基礎梁の被害)

調査したほとんどの基礎梁において,基礎フーチング天端から斜め下に伸びていくように打ち継ぎ面 が確認出来た(例えば写真 7.4.2.5)。基礎フーチング②(写真 7.4.2.4)では,北側に取付く基礎梁 (X10, Y2-Y3)の端部に曲げひび割れが確認出来た。基礎フーチング③(写真 7.4.2.5)では,北側に 取付く基礎梁(X6, Y1-Y2)部材端部から2.13mの部分にひび割れ幅4.0の鉛直方向ひび割れが確認出来 た。

(基礎構造と地盤との隙間)

今回調査した基礎フーチングの一部では,基礎フーチングや基礎梁と地盤との間に隙間が見られた (例えば**写真 7.4.2.5**)。これは地震によって地盤が沈下したためと考えられる。被害の詳細は,「4)基 礎構造と地盤との隙間」で詳しく述べる。

(基礎梁が偏心して取付く基礎フーチングの被害)

基礎フーチング⑥(写真 7.4.2.8, 写真 7.4.2.9)では、北側に取付く基礎梁(X6, Y4-Y5)が柱芯 および基礎フーチング芯から1m程度西にずれて取付いていた。そのため、南北方向の基礎梁(X6, Y4-Y5)の部材下の基礎フーチング部分に大きなひび割れが発生しているのが確認出来た。これは、基礎梁 (X6, Y4-Y5)が基礎フーチングに偏心して取付くことにより、基礎フーチングと基礎梁の接合部分に 設計で想定しているよりも大きな応力が発生したことが原因と考えられる。

7-110

第7章 建築物 E に関する調査分析

7-111

第7章 建築物Eに関する調査分析

写真 7.4.2.3 基礎フーチング①周辺の状況

写真 7.4.2.4 基礎フーチング②周辺の状況

写真 7.4.2.5 基礎フーチング③周辺の状況

写真 7.4.2.6 基礎フーチング④周辺の状況

写真 7.4.2.7 基礎フーチング⑤周辺の状況

写真 7.4.2.8 基礎フーチング⑥周辺の状況

写真 7.4.2.9 基礎フーチング⑥周辺の状況

写真 7.4.2.10 基礎フーチング⑦周辺の状況

写真 7.4.2.11 基礎フーチング⑦周辺の状況

写真 7.4.2.12 基礎フーチング⑧周辺の状況

写真 7.4.2.13 基礎フーチング⑨周辺の状況

写真 7.4.2.14 基礎フーチング⑩周辺の状況

写真 7.4.2.15 基礎フーチング⑪周辺の状況

写真 7.4.2.16 基礎フーチング 12 周辺の状況

写真 7.4.2.17 基礎フーチング13周辺の状況

写真 7.4.2.18 基礎フーチング(4)周辺の状況

写真 7.4.2.19 基礎フーチング15周辺の状況

写真 7.4.2.20 基礎フーチング16周辺の状況

写真 7.4.2.21 基礎フーチング①および18周辺の状況

写真 7.4.2.22 基礎フーチング19周辺の状況

写真 7.4.2.23 基礎フーチング20および20周辺の状況

3) 杭の被害状況

杭の被害状況の一覧を表 7.4.2.1に示す。ここで、フーチングの残留水平移動量は基礎フーチングに 残っている杭の跡と、調査時の杭とのずれ量を南北方向と東西方向のそれぞれで計測した値を用いてい る。また、杭が水平方向にずれてさらに鉛直方向にもずれていることが確認された場合は、鉛直方向の ずれている長さを、杭の残留沈下量とした。また、鋼管杭が座屈している場合は、座屈によって水平方 向にはらみだした距離を計測し、その距離の二倍を杭の残留沈下量とした。ただし、いずれの計測値で あっても正確に計測した値ではなく誤差を含む値であることに注意が必要である。杭の残留傾斜角度は、 杭頭部の破壊された部分を避けて、その下から下げ振りを当てて傾斜角度の測定を行った。また、調査 した27本の杭の杭頭部の状況を写真 7.4.2.24~写真 7.4.2.52に示す。既存建築物側は北側から、補強 フレーム側は南側から撮影した写真である。

		DC谷田 ナナ	DC 谷田 ナナ				フーき	チング	ᄷᇛᆁᅓ	计中国	ᆉᆂᅗᅷᄧᄱ	的 在 在 ※2
杭番号	鋼管座屈	「し剄が」	FU 剩 构	コンクリート剥落	杭径	肉厚	残留水平	移動量 ^{※1}	 10.00 <l< td=""><td>机座曲</td><td>机残留限</td><td>科月皮</td></l<>	机座曲	机残留限	科月皮
		10X EVI	庄冶	1 2017			南北方向	東西方向	RC	КC	南北方向	東西方向
1-1	/	—	一部	杭頭全周	400mm	65mm	45mm	35mm	ほぼ0mm		-1.0%	3.4%
1)-2	/	ほぼ全部	-	杭頭全周	未計測	未計測	50mm	50mm	160mm	/	-1.0%	3.8%
<u>(2</u> -1	/	ほぼ全部	-	杭頭全周	未計測	70mm	20mm	100mm	100mm		0.0%	3.0%
3-1	/	ほぼ全部	—	杭頭全周	400mm	未計測	ほぼOmm	ほぼOmm	100mm		-1.6%	2.9%
(4) -1	/	-	ほぼ全部	杭頭全周	400mm	未計測	60mm	ほぼOmm	ほぼOmm	/	-2.1%	8.0%
<u>(5)</u> –1	. /	-	-	一部	400mm	未計測	ほぼOmm	ほぼOmm	ほぼOmm	/	-1.7%	7.6%
6-1	. /	-	-	-	400mm	未計測	ほぼOmm	ほぼOmm	ほぼOmm	/	-4.3%	8.0%
6-2		-	-	-	未計測	未計測	ほぼOmm	ほぼOmm	ほぼOmm	/	-3.0%	5.0%
⑦-1		ほぼ全部	一部	杭頭全周	未計測	65mm	90mm	-50mm	ほぼOmm		-3.7%	6.4%
⑦-2	/	ほぼ全部	一部	杭頭全周	未計測	未計測	90mm	-80mm	ほぼOmm	/	不明	不明
8-1	/	-	_	一部	未計測	未計測	ほぼOmm	ほぼOmm	ほぼOmm	/	-1.4%	4.1%
(9)-1	/	ほぼ全部	一部	杭頭全周	未計測	未計測	60mm	-190mm	ほぼOmm	/	-1.9%	13.7%
10-1	/	-	ほぼ全部	杭頭全周	未計測	65mm	ほぼOmm	ほぼOmm	ほぼOmm	/	2.3%	5.4%
<u>(1</u>)-1	/	-	-	一部	未計測	未計測	ほぼOmm	ほぼOmm	ほぼOmm	/	-1.9%	-2.0%
12-1	/	-	ほぼ全部	杭頭全周	400mm	未計測	ほぼOmm	ほぼOmm	ほぼOmm	/	1.3%	5.7%
12-2	/	-	_	_	400mm	未計測	ほぼOmm	ほぼOmm	ほぼOmm	/	-2.9%	7.1%
(13)-1	ほぼ全部				318mm	未計測	ほぼOmm	ほぼOmm		20mm	0.9%	4.0%
(13-2	一部				318mm	未計測	ほぼOmm	ほぼOmm		ほぼOmm	不明	不明
14-1	ほぼ全部				未計測	未計測	ほぼOmm	ほぼOmm		ほぼ0mm	不明	不明
14)−2	ほぼ全部				未計測	未計測	ほぼOmm	ほぼOmm		60mm	-2.4%	4.4%
(15)-1	/	—	—	-	400mm	未計測	ほぼOmm	ほぼOmm	ほぼOmm	/	-2.0%	7.9%
16-1		-	-	一部	400mm	未計測	ほぼOmm	ほぼOmm	ほぼOmm		-3.6%	6.7%
1)-1		-	—	一部	未計測	未計測	ほぼOmm	ほぼOmm	ほぼOmm		-1.0%	2.3%
18-1		-	_	一部	未計測	未計測	ほぼOmm	ほぼOmm	ほぼOmm		0.7%	2.6%
(19-1		_	ほぼ全部	杭頭全周	未計測	未計測	ほぼOmm	ほぼOmm	ほぼOmm		1.7%	2.6%
20-1		_	_	一部	未計測	未計測	ほぼOmm	ほぼOmm	ほぼOmm		2.9%	4.4%
@1-1	V	_	_	一部	未計測	未計測	ほぼOmm	ほぼOmm	ほぼOmm	/	-1.4%	7.1%
	※1:杭(に対して、基礎	#フーチングが	北 (または西)	 方向に動・ 	く場合を正の	の値とする。	※2:杭頭:	8が北 (または	西) 方向に傾	斜した場合を	正の値とする。

表 7.4.2.1 杭の被害状況一覧

杭の被害を見てみると、北側構面の被害は少ないが、南側構面の被害が大きくなっていることがわかった。また、杭は全て傾斜しており、特に東西方向には、⑪-1を除くと全て西側方向に傾いていた。傾斜角度は2.6%~13.7%である。また、⑮-1の杭(傾斜角:南に3.9%)は、杭頭部から下に1050mm~1700mmの区間の杭中間部の南側側面に圧壊が生じていた。他の杭は1.0mまでしか掘削していないため、それより下の被害は不明だが、杭の傾斜角が大きいことから⑯-1の杭と同様に杭中間部で何らかの被害が発生していることが推測できる。杭①-2、杭②-1などの杭のようにPC鋼棒の破断が観測できた杭は、フーチングの残留水平移動が生じており、杭が地震時に引張破断し建物が浮き上がった後、建物(フーチング)が杭に着地しその時水平方向にずれたことが推測される。

写真 7.4.2.24 杭①-1の杭頭部の状況

写真 7.4.2.25 杭①-2の杭頭部の状況

写真 7.4.2.26 杭②-1の杭頭部の状況

写真 7.4.2.27 杭3-1の杭頭部の状況

写真 7.4.2.28 杭④-1の杭頭部の状況

写真 7.4.2.29 杭⑤-1の杭頭部の状況

写真 7.4.2.30 杭⑥-1の杭頭部の状況

写真 7.4.2.31 杭⑥-2の杭頭部の状況

写真 7.4.2.32 杭⑦-1の杭頭部の状況

写真 7.4.2.33 杭⑦-2の杭頭部の状況

写真 7.4.2.34 杭⑧-1の杭頭部の状況

写真 7.4.2.35 杭⑨-1の杭頭部の状況

写真 7.4.2.36 杭⑨-1の杭頭部の状況

写真 7.4.2.37 杭⑪-1の杭頭部の状況

写真 7.4.2.38 杭⑪-1の杭頭部の状況

写真 7.4.2.39 杭迎-1の杭頭部の状況

写真 7.4.2.40 杭⑫-2の杭頭部の状況

写真 7.4.2.41 杭⑬-1の杭頭部の状況

写真 7.4.2.42 杭⑬-2の杭頭部の状況

写真 7.4.2.43 杭⑭-1の杭頭部の状況

写真 7.4.2.44 杭⑭-2の杭頭部の状況

写真 7.4.2.45 杭⑮-1の杭頭部の状況

写真 7.4.2.46 杭⑯-1の杭頭部の状況

写真 7.4.2.47 杭⑯-1の杭頭部の状況

写真 7.4.2.48 杭①-1の杭頭部の状況

写真 7.4.2.49 杭18-1の杭頭部の状況

写真 7.4.2.50 杭⑲-1の杭頭部の状況

写真 7.4.2.51 杭20-1の杭頭部の状況

写真 7.4.2.52 杭創-1の杭頭部の状況

4) 基礎構造と地盤との隙間

今回調査した基礎フーチングの一部では、基礎フーチングや基礎梁と地盤との間に隙間が見られた。 これは地震によって地盤が沈下したためと考えられる。計測出来た基礎フーチングや基礎梁と地盤との 隙間量の一覧を表 7.4.2.2に示す。基礎フーチング①、③、⑦、⑩、⑭における、基礎フーチングと地 盤との隙間が大きい結果となった。これらの基礎フーチングではいずれも杭の被害の大きかった場所で ある。

フーチング	コーエンガエ	基礎梁下	基礎梁下		
番号	ノーテングド	(南北方向)	(東西方向)		
1	60mm	40mm	200mm		
2	なし	130mm	100mm		
3	200mm	20mm	150mm		
4	なし	10mm	?		
5	なし	なし	なし		
6	なし	なし	1 Omm		
$\overline{\mathcal{I}}$	90mm	60mm	130mm		
8	なし	なし	15mm		
9	30mm	なし	20mm		
10	50mm	_	1 Omm		
11	なし	なし	20mm		
(12)	30mm	_	25mm		
(13)	15mm	_	_		
14)	100mm	-	_		
15	なし	なし	なし		
16	なし	なし	15mm		
1)	なし	-	140mm		
18	なし	60mm	なし		
19	なし	なし	なし		
20	なし	-	30mm		
21)	なし	なし	なし		

表 7.4.2.2 地盤との隙間量一覧

5) 基礎構造の変形状態のまとめ

各構面における基礎構造の変形状況について,図 7.4.2.5~図 7.4.2.13 に示す。ただし,図は模式図の ため正確なサイズで書いているわけではない。図中には,杭の残留傾斜角,杭の残留めり込み量,基礎 フーチングの相対沈下量,フーチングと杭との相対水平移動量を示している。記載がない場合はほぼ Ommの場合である。また,杭頭部のコンクリート剥落の程度によって分類し,杭の色を変えている。赤 は杭頭全周のコンクリート剥落が見られたもの,黄色は杭頭の一部にコンクリート剥落が見られたもの, 青は杭頭にコンクリート剥落が見られなかったものである。

7.4.3 材料試験

本項では,対象とする建築物の材料強度試験結果を報告する。対象建築物の実情に応じたコンクリートの材料強度および鉄筋の強度を調査する目的で,2018年3月に上部構造の,2018年5月に基礎構造の材料試験用テストピースの採取を行った。採取したテストピースに対して,コンクリートの圧縮強度 試験および鉄筋の引張試験の結果を以下のように示す。

(1)上部構造

1) 採取位置

コンクリートコアの採取位置と鉄筋の採取位置を図 7.4.3.1~図 7.4.3.3 に示す。採取したコンク リートコアは,直径 100mmの円筒形である。場所によって採取した長さは異なる。採取したコンクリ ートコアの端部に鉄筋が含まれている場合は,その部分を切り落として鉄筋の内側をテストピースとし て採用した。また,テストピースの長さが 200mm となるように成形し,両端の面を平滑にした。採取 したコンクリートコアが十分長く,1本のコンクリートコアから複数のテストピースを成形出来た場合 は、テストピースの名前に枝番を付けた(表 7.4.3.1参照のこと)。

採取した鉄筋は,600mm以上の長さを持つ供試体とした。採取した本数は、A および F 地点では1本、それ以外の箇所は2本ずつ採取した。

図 7.4.3.1 採取位置(1階)

図 7.4.3.3 採取位置(3階)

2) コンクリート圧縮強度試験

コンクリートの圧縮強度試験結果の一覧を表 7.4.3.1 に示す。表中の「-」は、圧縮強度試験が適切 に出来なかった供試体のため、結果がない。表 7.4.3.2 には、採取位置ごとに平均した値を示す。また、 表 7.4.3.3 には、さらに採取した場所ごとにまとめて平均した値を示す。

供弐件友	圧縮強度	ヤング係数	圧縮時歪	
供試体名	(MPa)	(GPa)	(%)	
1-A	-	-	-	
1-B	74.6	39.6	0.306	
1-C	70.4	40.7	0.274	
2-A	72.7	40.6	0.280	
2-B	74.3	40.0	0.283	
2-C	71.3	38.0	0.276	
3-A	69.9	40.0	0.275	
3-B	-	-	-	
3-C	70.1	45.2	0.248	
4	42.7	28.2	0.244	
5	38.9	27.9	0.248	
6	35.7	24.3	0.227	
7	52.1	35.0	0.227	
8	46.9	32.2	0.204	
9	54.4	34.3	0.247	
10	28.8	20.6	0.306	
11	25.3	20.6	0.287	
12	19.2	17.2	0.292	
13-A	28.3	21.0	0.238	
13-B	31.8	25.9	0.228	
14-A	32.1	16.6	0.270	
14-B	30.1	22.0	0.239	

表 7.4.3.1 圧縮試験結果一覧

卅弐件々	圧縮強度	ヤング係数	圧縮時歪
供訊件名	(MPa)	(GPa)	(%)
15-A	28.0	15.5	0.298
15-B	28.2	16.4	0.290
15-C	28.2	19.2	0.259
16-A	18.8	14.1	0.310
16-B	20.7	15.1	0.306
16-C	20.8	17.1	0.247
17-A	21.7	12.7	0.358
17-B	21.3	17.0	0.257
18-A	19.6	15.8	0.287
18-B	19.9	13.8	0.303
19	46.3	34.7	0.210
20	46.2	30.8	0.253
21	47.6	34.1	0.236
22-A	22.3	16.1	0.285
22-B	20.4	16.4	0.269
23-A	21.3	18.7	0.212
23-B	23.4	18.7	0.276
23-C	20.2	15.3	0.289
24-A	23.5	17.7	0.282
24-B	22.8	17.8	0.226

表 7.4.3.2 採取位置ごとのまとめ

拉取位署	埠럆畑亜	垃圾市大粉	圧縮強度	ヤング係数	圧縮時歪
休奴位直	场川似女	休以个奴	(MPa)	(GPa)	(%)
1	補強フレーム 1F柱	2	72.5	40.1	0.290
2	補強フレーム 1F柱	3	72.7	39.5	0.280
3	補強フレーム 1F柱	2	70.0	42.6	0.261
4	補強フレーム 基礎梁	1	42.7	28.2	0.244
5	補強フレーム 基礎梁	1	38.9	27.9	0.248
6	補強フレーム 基礎梁	1	35.7	24.3	0.227
7	増打補強 1F壁	1	52.1	35.0	0.227
8	増打補強 1F壁	1	46.9	32.2	0.204
9	増打補強 1F壁	1	54.4	34.3	0.247
10	既存部 1F壁	1	28.8	20.6	0.306
11	既存部 1F壁	1	25.3	20.6	0.287
12	既存部 1F壁	1	19.2	17.2	0.292
13	既存部 1F柱	2	30.0	23.4	0.233
14	既存部 1F柱	2	31.1	19.3	0.255
15	既存部 1F柱	3	28.2	17.0	0.282
16	既存部 2F柱	3	20.1	15.4	0.287
17	既存部 2F柱	2	21.5	14.9	0.308
18	既存部 2F柱	2	19.7	14.8	0.295
19	補強フレーム 2F梁	1	46.3	34.7	0.210
20	補強フレーム 2F梁	1	46.2	30.8	0.253
21	補強フレーム 2F梁	1	47.6	34.1	0.236
22	既存部 3F柱	2	21.3	16.2	0.277
23	既存部 3F柱	3	21.6	17.6	0.259
24	既存部 3F柱	2	23.2	17.8	0.254

担託ゴレの立ち	圧縮強度	ヤング係数	圧縮時歪
物別ことの干均	(MPa)	(GPa)	(%)
補強フレーム 1F柱	71.8	40.7	0.277
補強フレーム 基礎梁	39.1	26.8	0.240
補強フレーム 2F梁	46.7	33.2	0.233
増打補強 1F壁	51.1	33.9	0.226
既存部 1F壁	24.4	19.5	0.295
既存部 1F柱	29.8	19.9	0.257
既存部 2F柱	20.4	15.0	0.297
既存部 3F柱	22.0	17.2	0.264

表 7.4.3.3 採取場所ごとのまとめ

3) 鉄筋引張試験

鉄筋引張試験の結果一覧を表 7.4.3.4 に示す。

供≕件々	<i>◆</i> 升 <i>4</i> 左 / 又	ヤング係数	降伏強度	降伏歪	引張強度	破断歪	
供試体名		$(\times 10^3 \text{ N/mm}^2)$	(N/mm^2)	(%)	(N/mm^2)	(%)	
Α	D29	183	435	0. 241	619	15. 7	降伏棚
B-1	D25	194	357	0. 190	540	16.9	降伏棚
B-2	D25	190	333	0. 180	510	17.5	降伏棚
C-1	D13	172	362	0. 421	505	15.5	0.2%オフセット法
C-2	D13	176	290	0.166	401	22. 8	降伏棚
D-1	D13	219	346	0. 188	490	19.3	降伏棚
D-2	D13	194	349	0. 191	505	19.1	降伏棚
E-1	D13	166	325	0. 433	565	17.3	0.2%オフセット法
E-2	D13	175	348	0. 400	497	14.8	0.2%オフセット法
F	D25	193	350	0. 188	539	17.6	降伏棚

表 7.4.3.4 鉄筋引張試験 結果一覧

(2) 基礎構造

1) 採取位置

コンクリートコアの採取位置と鉄筋の採取位置を図 7.4.3.4 に示す。採取したコンクリートコアは, 直径 100mmの円筒形である。採取した長さは全て 350mm 程度とした。採取したコンクリートコアの 端部に鉄筋が含まれている場合は,その部分を切り落として鉄筋の内側をテストピースとして採用した。 また,テストピースの長さが 200mm となるように成形し,両端の面を平滑にした。採取した1本のコ ンクリートコアから,1本のテストピースを成形した。

図 7.4.3.4 採取位置

2) コンクリート圧縮強度試験

コンクリートの圧縮強度試験結果の一覧を表 7.4.3.5 に示す。表 7.4.3.6 には,採取位置ごとに平均した値を示す。また,表 7.4.3.7 には,さらに採取した場所ごとにまとめて平均した値を示す。

供試体タ	圧縮強度	ヤング係数	圧縮時歪
供試体石	(MPa)	(GPa)	(%)
F12-A	35.7	24.7	0.262
F12-B	35.2	25.3	0.262
F12-C	34.3	25.8	0.232
F14-A	39.9	25.5	0.293
F14-B	37.4	29.7	0.251
F14-C	37.6	25.4	0.266
F14-D	38.8	25.9	0.276
F16-A	34.5	30.6	0.188
F16-B	33.4	30.8	0.200
F16-C	34.6	30.4	0.222
FG6-A	34.9	24.9	0.242
FG6-B	34.3	24.2	0.254
FG6-C	33.2	25.4	0.250
FG12-A	33.0	24.9	0.251
FG12-B	32.2	24.1	0.254
FG12-C	35.6	24.6	0.283
FG16-A	34.8	29.5	0.214
FG16-B	35.5	26.3	0.278
FG16-C	34.2	27.8	0.234

表 7.4.3.5 圧縮試験結果一覧

表 7.4.3.6 採取位置ごとのまとめ

拉取位罢	提 能概要		圧縮強度	ヤング係数	圧縮時歪
休奴位直	场川似女	休以个奴	(MPa)	(GPa)	(%)
F12	既存部 基礎フーチング	3	35.1	25.5	0.247
F14	補強部 基礎フーチング	4	38.4	26.8	0.270
F16	既存部 基礎フーチング	3	34.2	28.4	0.238
FG6	既存部 基礎梁	3	34.1	30.4	0.222
FG12	既存部 基礎梁	3	33.6	24.9	0.242
FG16	既存部 基礎梁	3	34.9	24.2	0.254

表 7.4.3.7 採取場所ごとのまとめ

坦応ごとの立ち	圧縮強度	ヤング係数	圧縮時歪
場所ことの十均	(MPa)	(GPa)	(%)
既存部 基礎フーチング	34.6	26.9	0.243
既存部 基礎梁	34.2	26.5	0.239
補強部 基礎フーチング	38.4	26.8	0.270

7.4.4 被災度区分判定

(1)上部構造の被災度区分判定

本項では、7.4.1項で示した、2017年5月に実施した第2回目の調査と、2018年2月に実施した第3回目の調査において調査した上部構造の被害をもとに被災度区分判定^[7,4-1]を実施した結果を報告する。

1) 被害調査2回目の結果

最も被害が大きい1階について,被災度区分判定^[7,4·1]を実施した。部材損傷度判定結果を図 7.4.4.1 に示す。本建築物は、プレキャスト外フレーム工法および鉄筋コンクリート造壁の増し打ち工法を用い た耐震補強を行っている建築物である。そこで、プレキャスト外フレームを無視した場合と、考慮した 場合のそれぞれについて、被災度区分判定を実施した。増し打ちされた耐震壁については両方の被災度 区分判定において考慮した。それぞれの結果について、長手方向、短手方向を表 7.4.4.1~表 7.4.4.4 に示す。ただし、本検討ではプレキャスト外フレームを鉄筋コンクリート造ラーメン架構と同様に扱う こととした。被災度区分判定を行った結果、1階の長手方向・短手方向の判定によって建築物の被災度 を中破とした。なお、判定の際にプレキャスト外フレームを考慮したところ、耐震性能残存率 R はわず かに値が上昇した程度であり、被災度は変わらず中破のままであった。

図 7.4.4.1 部材損傷度判定結果(1階)

表 7.4.4.1 被災度区分判定結果(長手方向・プレキャスト外フレーム無視)

長手方

方向											
			柱		梁			壁			
		せん断	曲げせん断	曲げ	せん断	曲げ	柱なし	片側柱付き	両側柱付き	소計	
		(\$)	(SM)	(M)	(SB)	(MB)	(W)	(CW)	(CWC)		
	調査部材数	9		11				5	6	31	I
		x 1+	× 1+	× 1+	x 1+	× 1+	× 1+	× 2+	$\times 6 =$	66	=Aoi
		. 2	•	1					1	9.0	-40
	<u>快伤皮</u>	C		7				1	1	3.0	
	<u>損湯度</u>	0		1				I		20.0	=A I
	損傷度Ⅱ	1		3				4	3	18.5	=A2
	損傷度皿								1	1.8	=A3
	損傷度Ⅳ									0.0	=A4
	指傷度 V									0.0	=45
									Σ Λ i-	10.2	1 //0
表	耐震性能死 7.4.4.2	^{残存率R=} 被災度∣	74.55 区分判定	結果	性能残存 (長手 フ	¤率Rに ら向・	ょる被災 プレキ	ℓ度区分: ヤスト外	中破 マレー <i>1</i>	_考慮)	
万回			柱		梁			壁			1
		まる新	日モナム等	曲げ	また新	曲げ	はたし	上側けけき	両側弁付き		İ
								/1 限1年19 ざ /0W/		合計	
		(3)	(311)		(20)	(WD)	(W)	(GW) _			ł
	調査部材数	9		15		3		5	6	38	ļ
		× 1+	× 1+	<u>×1+</u>	× 1+	× 1+	× 1+	× 2+	$\times 6 =$	73	=Ao
	損傷度0	2		2					1	10.0	=A0
	指復 庙 T	6		- 7				1	1	20 0	= 1
	旧作中市	1				2		4	1	20.0	-10
	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.			0		3		4	3	23.0	-#2
	損傷度Ⅲ							L	1	1.8	=A3
	損傷度Ⅳ									0.0	=A4
	損傷度Ⅴ									0.0	=A5
									ΣAi=	54 7	
表	耐震性能死 7.4.4.3	^{残存率R=} 被災度∣	74.93 区分判定	結果	(短手プ	「「「「」	プレキ	ヤスト外	マレー1	▲無視)	
表 ^{方向}	耐震性能死 7.4.4.3	^{残存率R=} 被災度	74.93 区分判定 	結果	住能残有 (短手ブ 梁	方向・	プレキ	ベニカ・ ヤスト外 <u>壁</u>	·フレー <i>1</i>	▲無視)]
表 ^{方向}	耐震性能死 7.4.4.3	残存率R= 被災度 せん断	74.93 区分判定 <u>柱</u> ^{曲げせん断}	結果	住能残行 (短手7 <u>柔</u> せん断	5向・	よっ プレキ 柱なし	やスト外 壁 _{片側柱付き}	、フレー <i>1</i> 両側柱付き	▲無視)	
表 ^{方向}	耐震性能死 7.4.4.3	残存率R= 被災度 せん断 (S)	74.93 区分判定 <u>柱</u> (SM)	結果 曲げ (M)	住能残石 (短手フ (短手フ 変 せん断 (SB)	中に 方向・ 曲げ (MB)	よっ _{秋5} プレキ 柱なし (W)	ヤスト外 壁 ^{片側柱付き} (CW)	、フレーム 両側柱付き (CWC)	▲無視) 合計	
表 ^{方向}	耐震性能死 7.4.4.3	残存率R= 被災度 せん断 (S)	74.93 区分判定 柱 ^{曲げせん断} (SM)	結果 曲げ (M) 10	住能残石 (短手ブ 堂ん断 (SB) 2	生化に 方向・ 曲げ (MB) 5	よる プレキ 柱なし (W)	ヤスト外 壁 ^{片側柱付き} (CW)	トロン フレーム 両側柱付き (CWC) 6	▲無視) 合計 24	
表	耐震性能死 7.4.4.3 調査部材数	残存率R= 被災度 せん断 (S)	74.93 区分判定 <u>柱</u> (SM) × 1+	結果 曲げ (M) 10 ×1+	住能残れ (短手ブ 一梁 せん断 (SB) 2 × 1+	生いで 方向・ 曲げ (MB) 5 × 1+	よる プレキ 柱なし (W) × 1+	ヤスト外 壁 ^{片側柱付き} (CW) 1 × 2+	トーで フレーム 両側柱付き (CWC) 6 × 6=	本無視) 合計 24 55	-40
表	耐震性能死 7.4.4.3 調査部材数	残存率R= 被災度 せん断 (S) ×1+	74.93 区分判定 <u>柱</u> 曲げせん断 (SM) × 1+	結果 曲げ (M) 10 ×1+	住能残れ (短手) せん断 (SB) × 1+	中に 方向・ 曲げ (MB) 5 × 1+	なる プレキ 柱なし (W) × 1+	ヤスト外 壁 ^{片側柱付き} (CW) 1 × 2+	トロン フレーム 両側柱付き (CWC) 6 ×6=	▲無視) 合計 24 55	<u>=Ao</u>
表	耐震性能死 7.4.4.3 調査部材数 損傷度0	残存率R= 被災度 せん断 (S) ×1+	74.93 区分判定 ^柱 ^{曲げせん断} (SM) × 1+	結果 曲げ (M) 10 ×1+ 2	住能残れ (短手プ 型をん断 (SB) × 1+	中に 方向・ 曲げ (MB) 5 × 1+	なる プレキ 柱なし (W) × 1+	やスト外 壁 ^{片側柱付き} (CW) 1 × 2+ 1	トックレーム 両側柱付き (CWC) 6 ×6=	▲無視) 合計 24 55 4	=Ao =A0
表 方向	耐震性能列 7.4.4.3 調査部材数 損傷度0 損傷度 I	残存率R= 被災度 せん断 (S) ×1+	74.93 区分判定 ^柱 (SM) × 1+	結果 曲げ (M) 10 ×1+ 2 6	住能残れ (短手7 せん断 (SB) 2 ×1+	5 一 一 一 一 一 一 一 一 一 一 一 一 一	よる プレキ 柱なし (W) ×1+	マスト外 <u>壁</u> 片側柱付き (CW) 1 × 2+ 1	トロックレーム 両側柱付き (CWC) 6 × 6= 2	▲無視) 合計 24 55 4 17.1	=Ao =A0 =A1
表 方向	耐震性能死 7.4.4.3 調査部材数 損傷度0 損傷度 I 損傷度 I	残存率R= 被災度 せん断 (S) ×1+	74.93 区分判定 ^柱 (SM) × 1+	結果 曲げ (M) ×1+ 2 6 2	住能残れ (短手) 変 せん断 (SB) ×1+	5向・ 曲げ (MB) ×1+	よる で プレキ 柱なし (W) × 1+	マスト外 壁 片側柱付き (CW) 1 × 2+ 1	トロックレーム 両側柱付き (CWC) 6 × 6= 2 4	本無視) 合計 24 55 4 17.1 16.6	=Ao =A0 =A1 =A2
表	耐震性能死 7.4.4.3 調査部材数 損傷度0 損傷度I 損傷度 I 損傷度 I 損傷度 I 損傷度 T	残存率R= 被災度 せん断 (S) ×1+	74.93 区分判定 ^{曲げせん断} (SM) × 1+	結果 曲げ (M) ×1+ 2 6 2	住能残れ (短手7 で数 (SB) ×1+	5向・ 曲げ (MB) ×1+	よる し プレキ 柱なし (W) × 1+	マスト外 <u>壁</u> 片側柱付き (CW) 1 × 2+ 1	「一次 両側柱付き (CWC) 6 × 6= 2 4	無視)	=Ao =A0 =A1 =A2
表	耐震性能死 7.4.4.3 調査部材数 損傷度0 損傷度 I 損傷度 I 損傷度 T	残存率R= 被災度 せん断 (S) ×1+	74.93 区分判定 ^{曲げせん断} (SM) × 1+	結果 曲げ (M) ×1+ 2 2	住能残れ (短手7 せん断 (SB) ×1+	5向・ 曲げ (MB) <u>5</u> ×1+	よる で プレキ 住なし (W) ×1+	マスト外 <u>壁</u> 片側柱付き (CW) 1 × 2+ 1	「一〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇	無視)	=Ao =A0 =A1 =A2 =A3
表	耐震性能死 7.4.4.3 <u>酒査部材数</u> <u>損傷度耳 損傷度耳 損傷度取</u>	残存率R= 被災度 せん断 (S) × 1+	74.93 区分判定 ^{曲げせん断} (SM) × 1+	結果 曲げ (M) 10 ×1+ 2 6 2	住能残れ (短手7 せん断 (SB) 2 ×1+	5向・ 曲げ (MB) 5 ×1+	よる し プレキ 柱なし (W) × 1+	マスト外 <u>壁</u>	「一 「一 「 「 「 「 「 」 「 」 「 」 「 」 「 」 「 」 「	無視)	=Ao =A0 =A1 =A2 =A3 =A4
表	耐震性能死 7.4.4.3 調査部材数 損傷度 損傷度 損傷度 損傷度 損傷度 取 損傷度 又	残存率R= 被災度 せん断 (S) ×1+	74.93 区分判定 ^{曲げせん断} (SM) × 1+	結果 曲げ (M) ×1+ 2 6 2	住能残れ (短手7 せん断 (SB) 2 ×1+	テロ・ 方向・ (MB) 5 ×1+ 5	よる し プレキ 柱なし (W) × 1+	マスト外 <u>壁</u>	両側柱付き (CWC) 6 × 6= 2 4	▲無視) 合計 24 55 4 17.1 16.6 2.9 0 0 0 0	=Ao =A0 =A1 =A2 =A3 =A4 =A5
方 向 表	耐震性能死 7.4.4.3 <u>調査部材数</u> 損傷度0 損傷度 I 損傷度 I 損傷度 I 損傷度 V 耐震性能死 7.4.4.4	残存率R= 被災度 せん断 (S) × 1+ 長存率R= 度	74.93 区分判定 ^{曲げせん断} (SM) × 1+ 73.82 区分判定	結果 曲げ (M) 10 2 6 2 点果	住能残存 (短手7 梁 せん断 (SB) ×1+ 1 生能残子7	5 曲 (MB) 5 × 1+ 5 5 5 5 6 6 6 6 6 7 8 8 8 8 8 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1	よ プレキ 柱 (W) × 1+ よ る レキ	ヤスト外 壁 ^{片側柱付き} (CW) 1 × 2+ 1 (CW) (CW) (CW) × 2+ 1 × 2+ 1 × 2+	 ブレーム ブレーム 	▲無視) 合計 24 55 4 17.1 16.6 2.9 0 0 40.6	=A0 =A1 =A2 =A3 =A4 =A5
方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方	耐震性能死 7.4.4.3 調査部材数 損傷度0 損傷度 I 損傷度 I 損傷度 V 耐震性能死 7.4.4.4	残存率R= 被災度 せん断 (S) ×1+ 残存率R= 被災度	74.93 区分判定 ^{曲げせん断} (SM) ×1+ 73.82 区分判定	結果 曲げ (M) ×1+ 2 6 2 名 果	住 能残行 (短手7)	⇒ + RIC 方向・ (MB) 5 × 1+ 5 5 方向・	な プレキ 柱 なし (₩) × 1+ よ る なレキ	マスト外 <u>壁</u> 片側柱付き (CW) 1 × 2+ 1 ミ度区分: マスト外	ト マレーム 両側柱付き (CWC) 6 × 6= 2 4 ・ ア ムj= 中破 ・ フ レーム	▲無視) 合計 <u>24</u> 55 4 17.1 16.6 2.9 0 0 40.6	=A0 =A1 =A2 =A3 =A4 =A5
方 方 方 表 向	耐震性能列 7.4.4.3 調査部材数 損傷度0 損傷度I 損傷度I 損傷度W 耐震性能列 7.4.4.4	残存率R= 被災度 せん断 (S) ×1+ 残存率R= 被災度	74.93 区分判定 ^{曲(ftet人断} (SM) ×1+ 73.82 区分判定 柱	結果 曲げ (M) 10 ×1+ 2 6 2 名 果	住 能残行 (短手フ 梁 せん断 (SB) 2 ×1+ 1 1 1 1 能残子フ	⇒ + R(C 方向・ (MB) 5 × 1+ 5 5 方向・	よって プレキ 柱 (W) × 1+ よる被災 よる レキ	マスト外 <u>壁</u> 片側柱付き (CW) 1 × 2+ 1 ション を 、 (CW) 1 × 2+ 1 ・ 、 2 ・ 、 2 ・ 、 、 、 、 、 、 、 、 、 、 、 、 、	ト 100 両側柱付き (CWC) 6 × 6= 2 4 ・フレーム	▲無視) 合計 24 55 4 17.1 16.6 2.9 0 40.6 40.6	= <u>Ao</u> =A0 =A1 =A2 =A3 =A4
方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方	耐震性能列 7.4.4.3 調査部材数 損傷度0 損傷度Ⅱ 損傷度Ⅲ 損傷度Ⅳ 損傷度Ⅳ 損傷度Ⅳ 不,4.4.4	残存率R= 被災度 せん町 (S) ×1+ 残存率R= 被災度	74.93 区分判定 柱 ^{曲げせん断} (SM) ×1+ 73.82 区分判定 柱 曲げせん断	結果 曲げ (M) 10 ×1+ 2 6 2 4 に 一 に 一 の 10 ×1+ 10 年 に 一 の 10 ・ 1 ・ 10 ・ 1 ・ 1 ・ 1 ・ 1 ・ 1 ・ 1 ・ 1 ・ 1 ・ 10 ・ 1 ・ 1 ・ 1 ・ 1 ・ 1 ・ 1 ・ 1 ・ 1 ・	性能残行 (短手7) 梁 せん断 (SB) 2 ×1+ 1 1 1 1 1 1 1 1 1	中にに 方向・ (MB) 5 ×1+ 5 5 方向・ 5 6 6 6	よ プレキ (W) × 1+ よ プレなし 被 キ し な し な し と て し	マスト外 <u>壁</u> 片側柱付き (CW) 1 × 2+ 1 1 を 度区分: マスト外 <u>壁</u> 片側柱付き に の 日 大側柱付き (CW)	ト (QWC) 両側柱付き (CWC) 6 × 6= 2 4 Σ Aj= 中破 マレーノ 両側柱付き	▲無視) 合計 24 55 4 17.1 16.6 2.9 0 40.6 40.6	=A0 =A1 =A2 =A3 =A4 =A5
方 方 天向 大 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 うろう うろう	耐震性能死 7.4.4.3 調査部材数 損傷度度 損傷度度Ⅱ 損傷度度Ⅲ 損傷度 Ⅳ 損傷度 Ⅳ 損傷度 Ⅳ 有 震性能死 7.4.4.4	残存率R= 被災度 せん町 (S) ×1+ 残存率R= 被災度	74.93 区分判定 柱 曲げせん断 (SM) ×1+ 73.82 区分判定 柱 単げせん断 (SM)	結果 曲げ (M) 10 ×1+ 2 6 2 4 (M) 結果 (M)	住能残行 (短手フ 梁町 (SB) ×1+ 1 1 1 1 1 1 2 ×1+ 2 ×1+ 2 ×1+ 2 ×1+ 2 ×1+ 2 ×1+ 2 ×1+ 2 ×1+ 2 ×1+ 2 ×1+	→ RIC 方向・ 曲げ (MB) 5 ×1+ 5 方向・ 5 下 5 一 5 6 6 5 6 6 5 5 5 6 5 6 5 5 6 5 5 5 6 5 5 5 5 5 5 5 5 5 5 5 5 5	よ プレキ 柱 (W) ×1+ よ る レ キ せ (W)	マスト外 壁 片側柱付き (CW) 1 × 2+ 1 1 × 2+ 1 ・ 度区分: 「 の 、 の の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の の 、 の の の 、 の 、 の 、 の の 、 の の 、 の の の 、 の の の の の の 、 の の 、 の の の 、 の の の の の 、 の の の 、 の の の 、 の の の 、 の の の の の の の の 、 の の の 、 、 の の の の の の の の の の の の の	T W M A S A	▲無視) 合計 24 55 4 17.1 16.6 2.9 0 0 40.6 40.6 3 ★ 属)	=A0 =A1 =A2 =A3 =A4
方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方	耐震性能死 7.4.4.3 <u>調査部材数</u> <u>損傷度0</u> <u>損傷度工 損傷度工</u> <u>損傷度 取</u> <u>損傷度 取</u> <u>損傷度 取</u> <u>損傷度 取</u> <u>損傷度 №</u> .7.4.4.4	残存率R= 被災度 せん断 (S) ×1+ 残存率R= 被災度	74.93 区分判定 柱 曲げせん断 (SM) × 1+ 73.82 区分判定 柱 単げせん断 (SM)	結果 曲げ (M) ×1+ 2 6 2 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	住能残行 (短手フ 梁 せん断 (SB) 2 ×1+ 1 1 1 1 1 1 2 ※ (SB) 2	⇒ + RIC 方向・ (MB) 5 ×1+ 5 5 5 5 6 1 5 5 5 5 5 5 5 5 5 5 5 5 5	よ つ し 、 し 、 し 、 し 、 し 、 し 、 し 、 、 し 、 、 し 、 、 、 、 、 、 、 、 、 、 、 、 、	マスト外 壁 片側柱付き (CW) 1 × 2+ 1 (CW) 度区分: り 安 大側柱付き (CW) 1 × 2+ 1 1 1 (CW) 1 (CW) 1 1 × 2+ 1 1 1 (CW) 1 1 × 2+ 1 1 (CW) 1 1 × 2+ 1 1 (CW) 1 1 × 2+ 1 1 (CW) 1 1 × 2+ 1 1 1 1 1 1 1 1 1 1 1 1 1	→フレーム 両側柱付き (CWC) 6 ×6= 2 4 - - - - - - - - -	無視)	=A0 =A1 =A2 =A3 =A4 =A5
方方方方方	耐震性能列 7.4.4.3 調査部材数 損傷度0 損傷度1 損傷度工 損傷度工 損傷度 V 耐震性能列 7.4.4.4	残存率R= せん断 (S) ×1+ せん断 (S) ま存率R= せん 数 での またの 、 、 、 、 、 、 、 、 、 、 、 、 、	74.93 区分判定 曲げせん断 (SM) × 1+ 73.82 区分判定 柱 曲げせん断 (SM) × 1+	結果 曲げ(M) 10 ×1+ 2 6 2 第 第 (M) 11 ×1+ 1+ ×1+	住能残れ (短手) 梁 せん断 (SB) 2 × 1+ 1 1 1 1 1 (SB) 2 × 1+	→ mic 方向・ 曲げ (MB) 5 × 1+ 5 5 一 5 6 6 6 6 5 × 1+	よ プレキ 柱 (W) ×1+	ヤスト外 壁 片側柱付き (CW) 1 × 2+ 1 (CW) を を た の た の た の た の た の し で し の し し し し し し し し し し し し し	 ブレーム 両側柱付き (CWC) 6 × 6= 2 4 Σ A j= 中破 フレーム 両側柱付き (CWC) 6 × 6= 	★親親) 合計 24 55 4 17.1 16.6 2.9 0 40.6 40.6 ★3 ★3 ★6 1 25 56	=A0 =A1 =A2 =A3 =A4 =A5
方方方方方	耐震性能列 7.4.4.3 <u>調査部材数</u> <u>損傷度取</u> <u>損傷度取</u> <u>損傷度取</u> <u>損傷度</u> 取 <u>損傷度</u> 取 <u>損傷度</u> 取 <u>損傷度</u> 取 <u>損傷度</u> 取 <u>損傷度</u> 取 <u>損傷度</u> <u>而</u> <u>而</u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u>	残存率R= せん断 (S) ×1+ せんS ×1+ せんS ×1+	74.93 区分判定 曲げせん断 (SM) ×1+ 73.82 区分判定 柱 曲げせん断 (SM) ×1+	結果 曲げ (M) 10 ×1+ 2 6 2 5 4 年 げ (M) 11 ×1+	住 (短手7) 梁 せ (SB) 2 ×1+ 1 1 1 1 1 1 1 1 1 1 2 ×1+ 2 ×1+	⇒+RIC 方向・ 曲げ (MB) 5 × 1+ 5 方向・ 曲げ (MB) 5 × 1+	よ プ せ (W) × 1+	ヤスト外 壁 片側柱付き (CW) 1 × 2+ 1 く 度区分: イスト外 壁 片側柱付き (CW) 1 × 2+ 1 × 2+ 1	ト 100 両側柱付き (CWC) 6 × 6= 2 4 ・フレーム 両側柱付き (CWC) 6 × 6=	▲無視) 合計 <u>24</u> <u>55</u> <u>4</u> <u>17.1</u> <u>16.6</u> <u>2.9</u> 0 0 40.6 <u>3</u> 余慮) 合計 <u>25</u> <u>6</u> 計	=A0 =A1 =A2 =A3 =A4 =A5
方 方 方 方 方 方 方 方 方 方 方 うちょう うちょう たいしょう ちょうせいせいしょ うちょう ちょうしょう ちょうきょう ちょう ちょうきょう ちょうしょう ちょうしょう ちょうしょう ちょうしょう ちょうしょう ちょうしょう ちょうしょう ちょうり ちょうしょう ちょうしょう ちょうしょう ちょうしょう ちょうしょう ちょうしょう ちょうりょう ちょうしょう ちょうりょう ちょうしょう ちょうりょう ひょうりょう ちょうりょう ひょう ちょうりょう ひょう ひょう ひょう ひょう ひょう ひょう ひょう ひょう ひょう ひ	耐震性能列 7.4.4.3 調査部材数 損傷度0 損傷度Ⅱ 損傷度Ⅲ 損傷度 Ⅳ 耐震性能列 7.4.4.4 調査部材数 現像度0	残存率R= せん断 (S) ×1+ ま存率R= せん断 (S) せんS ×1+	74.93 区分判定 ^{曲げせん断} (SM) ×1+ 73.82 区分判定 単げせん断 (SM) ×1+	結果 曲げ (M) 10 ×1+ 2 6 2 6 2 6 2 6 2 6 2 11 ×1+ 3 11 ×1+ 3	住能残行 (短手) 梁 せん断 (SB) ×1+ 1 1 1 1 1 1 1 2 ×1+ 2 ×1+ 2 ×1+	⇒ + RIC 方向・ (MB) 5 × 1+ 5 方向・ ■ (MB) 5 × 1+ ■ 5 × 1+	よ プレキ	マスト外 壁 片側柱付き (CW) 1 × 2+ 1 ・ を 度区分: 日 ・ 、 の ・ 、 の ・ ・ の ・ ・ の の の の ・ の ・ の ・ の の ・ の の の の ・ の の の の の の の の の の の の の	ト 100 両側柱付き (CWC) 6 × 6= 2 4 ・フレーム 両側柱付き (CWC) 6 × 6= 0 0 0 0 0 0 0 0 0 0 0 0 0	▲無視) 合計 <u>24</u> 55 <u>4</u> 17.1 <u>16.6</u> <u>2.9</u> 0 40.6 <u>4</u> 40.6 <u>5</u> 56 56 56	= <u>Ao</u> =A0 =A1 =A2 =A3 =A4 =A5
方 方 方 方	耐震性能列 7.4.4.3 調査部材数 損傷度度I 損傷度度I 損傷度度I 損傷度度Ⅳ 損傷度度V 耐震性能列 7.4.4.4 調査 高度度0 損傷度度Ⅰ 損損傷度度Ⅰ 損損傷度度Ⅰ 損損傷度度Ⅰ 損損傷度度Ⅰ 損損傷度度Ⅰ 損損傷度度Ⅰ 損損傷度度Ⅰ Ⅰ 損損傷度度Ⅰ 損損傷度度Ⅰ Ⅰ 損損傷度度Ⅰ Ⅰ	残存率R= せん町 (S) ×1+ 残夜災度 せん気 ×1+	74.93 区分判定 ^曲 (『せん断 (SM) ×1+ 73.82 区分判定 柱	結果 曲げ (M) 10 ×1+ 2 6 2 6 4 (M) 11 ×1+ 3 6	住 (短手7) 梁町 (SB) 2 ×1+ 1 1 1 1 1 1 1 1 2 ×1+ 2 ×1+ 2 ×1+	+ RIC 方向・ (MB) 5 × 1+ 5 方向・ 世げ (MB) 5 × 1+ 5 × 1+	よ プレキ (W) × 1+ よ プレ も て し (W) × 1+	マスト外 壁 片側柱付き (CW) 1 × 2+ 1 く 度区分: 1 ・ 、 2+ 1 ・ (CW) 1 × 2+ 1 ・ (CW) 1 × 2+ 1 ・ (CW) 1 × 2+ 1 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	ト (CWC) 両側柱付き (CWC) 6 × 6= 2 4 シスj= 中破 、フレーム 両側柱付き (CWC) 6 × 6= 2 2 2 4	▲無視) 合計 24 55 4 17.1 16.6 2.9 0 40.6 40.6 40.6 40.6 5 6計 25 56 56 55 17.1	=A0 =A1 =A2 =A3 =A4 =A5 =A0 =A0
方 方 天 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方 方	耐震性能死 7.4.4.3 <u>調 傷傷度度 I</u> <u>損傷傷度度 I</u> <u>損傷傷度度 I</u> <u>損傷傷度 V</u> 耐 4.4.4 <u>調 傷傷度 V</u> 7.4.4.4 <u>調 損傷傷度 I</u> <u>損傷傷度 I</u> <u>損傷傷度 I</u> <u>損傷傷度 I</u>	残存率R= せん断 (S) ×1+ ま存率R= せん断 (S) せん断 (S) ×1+	74.93 区分判定 ^曲 (『せん断 (SM) ×1+ 73.82 区分判定 単 「せん断 (SM) ×1+	結果 曲げ (M) ×1+ 2 6 2 6 2 (M) 11 ×1+ 3 6 2	住能残れ (短手7 梁 せん町 (SB) ×1+ 1 1 1 1 1 1 1 2 ×1+ ※ (SB) 2 ×1+	+ RIC 方向・ (MB) 5 ×1+ 5 方向・ 5 下 (MB) 5 ×1+ 5 ×1+	よ プレキ 柱 (W) ×1+ よる レ よ なし (W) ×1+ し 、 なし 、 なし 、 、 、 、 、 、 、 、 、 、 、 、 、	マスト外 壁 片側柱付き (CW) 1 × 2+ 1 ・ 度区分: り 使 マスト外 壁 片側柱付き (CW) 1 × 2+ 1 ・ (CW) 1 × 2+ 1 1 ・ 1 × 2+ 1 1 ・ 1 × 2+ 1 1 ・ 1 × 2+ 1 1 × 2+ 1 1 × 2+ 1 1 × 2+ 1 1 × 2+ 1 1 × 2+ 1 1 × 2+ 1 1 × 2+ 1 1 1 1 × 2+ 1 1 1 1 1 1 1 1 1 1 1 1 1	T W M M A M A M A M A	▲無視) 合計 24 55 4 17.1 16.6 2.9 0 0 0 40.6 40.6 40.6 5 5 5 5 5 17.1 16.6	=A0 =A1 =A2 =A3 =A4 =A5 =A0 =A1 =A2
方 方 方	耐震性能列 7.4.4.3 調査 <u>備傷度 I</u> <u>損傷傷度 I</u> <u>損傷傷度 I</u> <u>損傷傷度 I</u> <u>損傷傷度 V</u> 7.4.4.4 <u>調 損傷傷度 I</u> <u>損傷傷度 I</u> <u>損傷傷度 I</u> <u>損傷傷度 I</u> <u>損傷傷度 I</u> <u>損傷傷度 I</u> <u>損</u> 損傷度 I	残存率R= せん断 (S) ×1+ せん断 (S) ×1+	74.93 区分判定	結果 曲げ (M) 11+ 2 6 2 6 2 (M) 11 ×1+ 3 6 2 (M) 11 ×1+ 3 6 2 (M) (M) (M) (M) (M) (M) (M) (M)	住能残存 (短手7 梁 せん断 (SB) 2 ×1+	⇒ + Kic 方向・	よ プレキ 柱 (W) × 1+ よ る レキ 柱 (W) × 1+	マスト外 壁 片側柱付き (CW) 1 × 2+ 1 (CW) 度区分: 4 マスト外 壁 片側柱付き (CW) 1 × 2+ 1 1 × 2+ 1 1 1 × 2+ 1 1 1 1 1 1 1 1 1 1 1 1 1	 ブレーゴ 両側柱付き (CWC) 6 × 6= 2 4 Σ Aj= 中破 フレーゴ 両側柱付き (CWC) 6 × 6= 2 4 	★親親) 合計 24 55 44 17.1 16.6 2.9 0 40.6 ★40.6 5 56 56 17.1 16.6 2.9 2.9 2.9 3.7	=A0 $=A1$ $=A2$ $=A3$ $=A5$ $=A0$ $=A0$ $=A1$ $=A2$ $=A3$
方 方 表向	耐震性能列 7.4.4.3 調査 (協度 I) 損傷傷度 I 損傷傷度 I) 損傷傷度 I) 損傷傷度 I) 耐震性能列 7.4.4.4 調査 (協度 E) 耐震性能列 7.4.4.4 調査 (協度 E) 一 一 一 一 一 一 一 一 一 一 一 一 一	残存率R= せん断 (S) ×1+ せんS ×1+ せんS ×1+	74.93 区分判定 曲げせん断 (SM) × 1+ 田	結果 曲げ (M) 10 ×1+ 2 6 2 6 2 6 2 (M) 11 ×1+ 3 6 2 (M) 11+ 3 6 2 (M)	住 能残行 (短手7) 梁 せ (SB) 2 ×1+ 1 1 1 1 1 (SB) 2 ×1+ (SB) 2 ×1+ 1 1	⇒+ RIC 方向・	よ つ し た (W) × 1+ よ る レ キ せ (W) × 1+	マスト外 壁 片側柱付き (CW) 1 × 2+ 1 く 度区分: マスト外 壁 片側柱付き (CW) 1 × 2+ 1 1 × 2+ 1 1 × 2+ 1 1 × 2+ 1 1 × 2+ 1 1 1 1 1 1 1 1 1 1 1 1 1	ト マレーム 両側柱付き (CWC) 6 × 6= 2 4 ・ アレーム 両側柱付き (CWC) 6 × 6= 2 4 · · · · · · · · · · · · ·	★親視) 合計 24 55 4 17.1 16.6 2.9 0 40.6 40.6 5 6計 25 56 56 17.1 16.6 2.9 0	=A0 =A1 =A2 =A3 =A4 =A5 =A0 =A1 =A2 =A2
方 方 表向	耐震性能列 一 一 一 一 一 一 一 一 一 一 一 一 一	残存率R= せん断 (S) ×1+ せん断 (S) せん断 (S) ×1+	74.93 区分判定 曲げせん断 (SM) ×1+ 73.82 区分判定 柱 曲げせん断 (SM) ×1+	結 曲 (M) 10 ×1+ 2 6 2 (M) 11 ×1+ 3 6 2 (M)	住能残行 (短手7) 梁 せん断 (SB) 2 ×1+ 1 1 1 1 1 1 1 1	中 RIC 方向・ (MB) 5 × 1+ 5 方向・ 5 (MB) 5 × 1+ 5 × 1+ 5	よ プレキ (W) × 1+ よ る レ キ せ (W) × 1+	マスト外 壁 片側柱付き (CW) 1 × 2+ 1 ※ 2+ 1 ※ 2+ 1 ※ 2+ 1 ※ 2+ 1 ※ 2+ 1 ※ 2+ 1 ※ 2+ 1 ※ 2+ 1 ※ 2+ 1 ※ 2+ 1 ※ 2+ 1 ※ 2+	ト マレーム 両側柱付き (CWC) 6 × 6= 2 4 ・フレーム 両側柱付き (CWC) 6 × 6= 2 4 5 4 5 4 5 4 5 4 5 4 5 6 2 4 5 6 5 6 5 6 7 7 1 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 1 1 7 1 7 1 7 1 7 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1	▲無視) 合計 <u>24</u> 55 <u>4</u> 17.1 <u>16.6</u> <u>2.9</u> <u>0</u> 40.6 <u>4</u> 40.6 <u>2.9</u> <u>0</u> <u>4</u> 40.6 <u>5</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>57</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u> <u>77</u>	=A0 =A1 =A2 =A3 =A4 =A5 =A0 =A1 =A2 =A4
方 方 表向	耐震性能死 7.4.4.3 調査度0 損傷傷度度I 損傷傷度度I 損傷傷度度I 損傷傷度度I 損傷傷度度I 利損傷傷度度I 7.4.4.4 調査 傷度度I 損傷傷度度I 損傷傷度度I 損損傷傷度度I 損損傷傷度度I 損損傷傷度度I 損損傷傷度で 7.4.4.4	残存率R= せん町 (S) ×1+ せん町 (S) せん気 (S) ×1+	74.93 区分判定 ^曲 (『せん断 (SM) ×1+ 73.82 区分判定 柱	結果 曲げ (M) 10 ×1+ 2 6 2 (M) 11 ×1+ 3 6 2 (M) 11 ×1+ 3 6 2	住 (短手7) 梁町 (SB) 2 ×1+ 1 1 1 1 1 1 (SB) 2 ×1+ 2 ×1+	+ RIC 方向・ 曲げ (MB) 5 ×1+ 5 方向・ 世げ (MB) 5 ×1+ 5 ×1+ 5 ×1+ 5 ×1+ 5 5 ×1+ 5 5 5 5 5 5 5 5 5 5 5 5 5	よ プレキ (W) × 1+ よ プレ も て し (W) × 1+	マスト外 壁 片側柱付き (CW) 1 × 2+ 1 ※ 2+ 1 ※ 2+ 1 ※ 2+ 1 ※ 2+ 1 ※ 2+ 1 ※ 2+ 1 ※ 2+ 1 ※ 2+ 1 ※ 2+ 1 … … … … …	トリック 両側柱付き (CWC) 6 × 6= 2 4 シスj= 中破 シフレーノ 両側柱付き (CWC) 6 × 6= 2 4 0 2 4 0 2 4 0 0 0 0 0 0 0 0 0 0 0 0 0	▲無視) 合計 <u>24</u> 55 <u>4</u> 17.1 <u>16.6</u> <u>2.9</u> <u>0</u> 40.6 <u>3</u> 40.6 <u>5</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>56</u> <u>17.1</u> <u>16.6</u> <u>2.9</u> <u>0</u> <u>0</u> <u>0</u> <u>0</u> <u>0</u> <u>0</u> <u>0</u> <u>0</u>	=A0 =A1 =A2 =A3 =A4 =A5 =A0 =A1 =A2 =A3 =A4 =A5
	耐震性能死 7.4.4.3 調 <u>損傷傷度度I</u> <u>損傷傷度度II</u> <u>損傷傷度度II</u> <u>損傷傷度度V</u> 不.4.4.4 調 <u>損傷傷度度II</u> <u>損傷傷度度II</u> <u>損傷傷度度II</u> <u>損傷傷度度II</u> <u>損傷傷度度II</u> <u>損傷傷度度II</u> <u>損傷傷度度II</u> <u>損傷傷度度II</u> <u>損傷傷度度II</u> <u>損傷傷度度II</u> <u>損傷傷度度II</u>	<pre>残存率R= 被災度 せん断 (S) × 1+ せん (S) せん (S) × 1+</pre>	74.93 区分判定 ^曲 (^f せん断 (SM) ×1+ 73.82 区分判定	結果 曲げ (M) ×1+ 2 6 2 3 (M) 11 ×1+ 3 6 2	住 (短手7 梁 せん町 (SB) 2 ×1+ 1 1 1 1 1 1 2 ×1+ 2 ×1+ 1 1 1 1	→ (ICC 方向・ (MB) 5 ×1+ 5 5 5 5 ×1+ 5 ×1+ 5 5 ×1+ 5 5 ×1+ 5 5 ×1+ 5 5 ×1+ 5 5 5 5 5 5 5 5 5 5 5 5 5	よ プレキ (W) ×1+ よ る レ キ ー は (W) ×1+	マスト外 壁 片側柱付き (CW) 1 × 2+ 1 (CW) 集 皮区分: 火田 上 1 (CW) 1 上 1 - 1 - 1 - - 1 - - - - - - - - - - - - -	トリック 両側柱付き (CWC) 6 × 6= 2 4 5 A j= 中破 マレーノ 両側柱付き (CWC) 6 × 6= 2 4 5 A j= 2 4 2 4 5 2 4 5 2 4 5 5 5 5 5 5 5 5 5 5 5 5 5	▲無視) 合計 24 55 4 17.1 16.6 2.9 0 0 40.6 2.9 0 40.6 5 17.1 16.6 5 56 55 17.1 16.6 2.9 0 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 0 40.6 0 40.6 0 0 0 40.6 0 0 0 40.6 0 0 0 40.6 0 0 0 0 0 0 0 0 0 0 0 0 0	=A0 =A0 =A1 =A2 =A3 =A4 =A5 =A0 =A1 =A2 =A3 =A4 =A5

2) 被害調査3回目,B班の結果

対象建築物の各階について、部材の損傷度を被災度区分判定^{エラー! 参展元が見つかりません。}[7.4·1]に従って判定 した。損傷度判定結果を図 7.4.4.2~図 7.4.4.5 に示す。また、部材の損傷度から各階の被災度を判定 した。判定時の計算を表 7.4.4.5~表 7.4.4.10 に、判定結果の一覧を表 7.4.4.11 に示す。被害調査 2 回目では、外付けフレームだけの有無で判定を 2 種類行っているが、今回は耐震補強要素(耐震壁増 設と外付けフレーム)の考慮/無視で判定を 2 種類行った。前回は 1F のみ実施し、耐震補強を考慮し た場合の判定結果は、長手方向も短手方向も中破だった。今回は長手方向が耐震補強を無視しても、 考慮しても大破と被害が重くなる判定となった。これは、長手方向の両側耐震壁の仕上げ材を除去し たことによって、損傷度が 0~III程度だったものが、そのほとんどが損傷度IIIまたはIVの判定になった ことによる影響が大きかった。一方、短手方向の判定結果は中破から小破と軽くなった。これは、前 回北側の部材を調査していなかったが、今回調査した結果そのほとんどの損傷が 0 または I だったた めである。

今回は、天井が除去されていたため、ほとんどの場合で梁の被害状況を観察することが出来た。そこで、調査した柱のうち、梁支配型柱と判定された柱の比率を表 7.4.4.12 に示す。これを見ると、いくつかの梁に損傷はあったものの、梁支配型柱(梁の損傷が柱よりも重くなるケース)はそれほど多くなく、最大でも 1/3 程度であった。また、今回は柱よりも壁部材のせん断ひび割れによる損傷が大きくなる傾向があったため、これらを総合して考えると、今回は層崩壊形の判定方法を採用することとした。一番被害の大きかった1階の長手方向の判定から、本建築物の被災度は大破と判定した。一方、耐震補強を無視すると、耐震性能残存率 R は 56.2 から 48.8 に減り、大破の判定となった。このことから、既存部のほうが耐震補強部よりも被害を受けていたことが分かる。

図 7.4.4.2 1階の損傷度

図 7.4.4.4 3階の損傷度

凡例	S: せん断柱	SM:曲げせん断柱	M:曲げ柱	SB:梁	支配型せん断柱
	MB:梁支配型的	曲げ柱 W:柱無し壁	CW:片側柱	付き壁	CWC:両側柱付き壁
	U:不明				

図 7.4.4.5 PH 階の損傷度

表 7.4.4.5 被災度区分判定結果(1F, 耐震補強無視)

長手方向,1F,耐震補強無視

		柱		梁支配型柱		壁				
	せん断 (S)	曲げせん断 (SM)	曲げ (M)	せん断 (SB)	曲げ (MB)	柱なし (W)	片側柱付き (CW)	両側柱付き (CWC)	合計	
調査部材数			15		6		5	5	31	
	× 1+	× 1+	× 1+	× 1+	× 1+	× 1+	× 2+	$\times 6 =$	61	=A _{or}
損傷度0			6				1		8.0	$=A_0$
損傷度 I			8		1		2		12.4	= A ₁
損傷度Ⅱ			1		5		2		6.9	$=A_2$
損傷度Ⅲ								2	3.6	$=A_3$
損傷度Ⅳ								3	0.0	$=A_4$
損傷度V									0.0	$=A_5$
								ΣAj=	30.9	-

耐震性能残存率R= 50.57 上部構造の耐震性能残存率Rによる被災度区分:大破

<u>短手方向,1F,耐震補強無視</u>

		柱		梁支霄	記型柱		壁			
	せん断 (S)	曲げせん断 (SM)	曲げ (M)	せん断 (SB)	曲げ (MB)	柱なし (W)	片側柱付き (CW)	両側柱付き (CWC)	合計	
調査部材数			23		1		3	5	32	
	× 1+	× 1+	× 1+	× 1+	× 1+	× 1+	× 2+	$\times 6 =$	60	=A _{org}
損傷度0			11					1	17	=A ₀
損傷度I			11		1		2	2	26.6	= A ₁
損傷度Ⅱ			1				1	2	9.15	$=A_2$
損傷度Ⅲ									0	= A ₃
損傷度Ⅳ									0	$=A_4$
損傷度V									0	= A ₅
								ΣAj=	52.75	
耐震性能	₿残存率R=	87.92	上部構造	の耐震性	能残存率R	による被災	〔度区分:	小破	J	

表 7.4.4.6 被災度区分判定結果(1F, 耐震補強考慮)

長手方向, 1F. 耐震補強考慮

		柱		梁支霄	记型柱		壁]
	せん断 (S)	曲げせん断 (SM)	曲げ (M)	せん断 (SB)	曲げ (MB)	柱なし (W)	片側柱付き (CW)	両側柱付き (CWC)	合計	
調査部材数			22		6		5	6	39	
	× 1+	× 1+	× 1+	× 1+	× 1+	× 1+	× 2+	$\times 6 =$	74	=A _{org}
損傷度0			6				1		8.0	= A ₀
損傷度I			13		1		2	1	22.8	= A ₁
損傷度Ⅱ			3		5		2		8.4	=A ₂
損傷度Ⅲ								2	3.6	= A ₃
損傷度Ⅳ								3	0.0	$=A_4$
損傷度V									0.0	= A ₅
								Ξ A j=	42.8	-

耐震性能残存率R= 57.84 上部構造の耐震性能残存率Rによる被災度区分:大破

<u>短手方向,1F,耐震補強考慮</u>

					记型柱	壁				
	せん断 (S)	曲げせん断 (SM)	曲げ (M)	せん断 (SB)	曲げ (MB)	柱なし (W)	片側柱付き (CW)	両側柱付き (CWC)	合計	
調査部材数			23		8		3	6	40	
	× 1+	× 1+	× 1+	× 1+	× 1+	× 1+	× 2+	$\times 6 =$	73	=A _{org}
損傷度0			11					1	17	$=A_0$
損傷度I			11		1		2	2	26.6	=A ₁
損傷度Ⅱ			1		2		1	3	14. 25	= A ₂
損傷度Ⅲ					5				2.5	= A ₃
損傷度Ⅳ									0	$=A_4$
損傷度V									0	$=A_5$
								ΣAi=	60.35	-

耐震性能残存率R= 82.67 上部構造の耐震性能残存率Rによる被災度区分: 小破

表 7.4.4.7 被災度区分判定結果(2F, 耐震補強無視)

<u>長手方向,2F,耐震補強無視</u>

					记型柱		壁			
	せん断 (S)	曲げせん断 (SM)	曲げ (M)	せん断 (SB)	曲げ (MB)	柱なし (W)	片側柱付き (CW)	両側柱付き (CWC)	合計	
調査部材数			21		9		2	3	35	
	× 1+	× 1+	× 1+	× 1+	× 1+	× 1+	× 2+	$\times 6 =$	52	=A _{org}
損傷度0			7						7.0	=A ₀
損傷度I			14		3				16.2	$=\mathbf{A}_1$
損傷度Ⅱ					6		2	3	17.7	$=A_2$
損傷度Ⅲ									0.0	$=A_3$
損傷度Ⅳ									0.0	$=A_4$
損傷度V									0.0	$=A_5$
								ΣAj=	40.9	
耐震性能	₿残存率R=	78.56	上部構造	の耐震性	能残存率R	による被災	〔度区分:	中破		

短手方向, 2F, 耐震補強無視

		柱		梁支霄	記型柱		壁]
	せん断 (S)	曲げせん断 (SM)	曲げ (M)	せん断 (SB)	曲げ (MB)	柱なし (W)	片側柱付き (CW)	両側柱付き (CWC)	合計	
調査部材数			23				6	5	34	
	× 1+	× 1+	× 1+	× 1+	× 1+	× 1+	× 2+	$\times 6 =$	65	=A _{org}
損傷度0			9				2	1	19	=A ₀
損傷度I			14				2	1	22.8	= A ₁
損傷度Ⅱ							2	3	13.2	= A ₂
損傷度Ⅲ									0	$=A_3$
損傷度Ⅳ									0	$=A_4$
損傷度V									0	= A ₅
								ΣAj=	55	-

表 7.4.4.8 被災度区分判定結果(2F, 耐震補強考慮)

長手方向, 2F, 耐震補強考慮

		柱		梁支霄	记型柱		壁			
	せん断	曲げせん断 (SM)	曲げ (M)	せん断	曲げ (MB)	柱なし	片側柱付き (CW)	両側柱付き (CWC)	合計	
調査部材数	(3)	(311)	23	(30)	12	(11)	2	3	40	
	× 1+	× 1+	× 1+	× 1+	× 1+	× 1+	× 2+	$\times 6 =$	57	=A _{org}
損傷度0			7						7.0	= A ₀
損傷度I			16		6				20.9	= A ₁
損傷度Ⅱ					6		2	3	17.7	= A ₂
損傷度Ⅲ									0.0	= A ₃
損傷度Ⅳ									0.0	=A ₄
損傷度V									0.0	= A ₅
								ΣAj=	45.6	-

耐震性能残存率R= 80.00 上部構造の耐震性能残存率Rによる被災度区分:<u>小破</u>

<u>短手方向,2F,耐震補強考慮</u>

					記型柱	壁				
	せん断 (S)	曲げせん断 (SM)	曲げ (M)	せん断 (SB)	曲げ (MB)	柱なし (W)	片側柱付き (CW)	両側柱付き (CWC)	合計	
調査部材数			25		3		6	5	39	
	× 1+	× 1+	× 1+	× 1+	× 1+	× 1+	× 2+	$\times 6 =$	70	=A _{org}
損傷度0			9				2	1	19	=A ₀
損傷度I			16				2	1	24. 7	=A ₁
損傷度Ⅱ					1		2	3	13.95	=A ₂
損傷度Ⅲ					2				1	= A ₃
損傷度Ⅳ									0	$=A_4$
損傷度V									0	$=A_5$
								ΣAi=	58.65	-

耐震性能残存率R= 83.79 上部構造の耐震性能残存率Rによる被災度区分:小破

表 7.4.4.9 被災度区分判定結果(3F)

<u>長手方向, 3F</u>

					记型柱		壁			
	せん断 (S)	曲げせん断 (SM)	曲げ (M)	せん断 (SB)	曲げ (MB)	柱なし (W)	片側柱付き (CW)	両側柱付き (CWC)	合計	
調査部材数			24		5		3	3	35	
	× 1+	× 1+	× 1+	× 1+	× 1+	× 1+	× 2+	×6=	53	=A _{org}
損傷度0			8						8.0	= A ₀
損傷度I			16		3				18.1	$=\mathbf{A}_1$
損傷度Ⅱ					1		2	2	10.4	$=A_2$
損傷度Ⅲ					1		1	1	2.9	$=A_3$
損傷度Ⅳ									0.0	$=A_4$
損傷度V									0.0	$=A_5$
								ΣAj=	39.3	
耐震性能	₿残存率R=	74.15	上部構造	の耐震性	能残存率R	による被災	〔度区分:	中破		

短手方向,3F

		柱		梁支霄	记型柱		壁]
	せん断 (S)	曲げせん断 (SM)	曲げ (M)	せん断 (SB)	曲げ (MB)	柱なし (W)	片側柱付き (CW)	両側柱付き (CWC)	合計	
調査部材数			19				5	7	31	
	× 1+	× 1+	× 1+	× 1+	× 1+	× 1+	× 2+	$\times 6 =$	71	=A _{org}
損傷度0			8				2	1	18	= A ₀
損傷度I			11				3	3	33.25	= A ₁
損傷度Ⅱ								3	10.8	= A ₂
損傷度Ⅲ									0	$=A_3$
損傷度Ⅳ									0	$=A_4$
損傷度V									0	= A ₅
								ΣAj=	62.05	-

耐震性能残存率R= 87.39 上部構造の耐震性能残存率Rによる被災度区分:<u>小破</u>

表 7.4.4.10 被災度区分判定	2結果	(PHF)
--------------------	-----	-------

長手方向, RF

		柱		梁支西	记型柱		壁]
	せん断 (S)	曲げせん断 (SM)	曲げ (M)	せん断 (SB)	曲げ (MB)	柱なし (W)	片側柱付き (CW)	両側柱付き (CWC)	合計	
調査部材数								4	4	
	× 1+	× 1+	× 1+	× 1+	× 1+	× 1+	× 2+	$\times 6 =$	24	=A _{org}
損傷度0									0.0	= A ₀
損傷度I								4	22.8	= A ₁
損傷度Ⅱ									0.0	=A ₂
損傷度Ⅲ									0.0	$=A_3$
損傷度Ⅳ									0.0	$=A_4$
損傷度V									0.0	= A ₅
								ΣAj=	22.8	-

耐震性能残存率R= 95.00 上部構造の耐震性能残存率Rによる被災度区分:軽微

短手方向、RF

		柱		梁支霄	记型柱		壁			
	せん断 (S)	曲げせん断 (SM)	曲げ (M)	せん断 (SB)	曲げ (MB)	柱なし (W)	片側柱付き (CW)	両側柱付き (CWC)	合計	
調査部材数	(-)	(2)	2	(/	()	(11)	(2.17)	2	4	
	× 1+	× 1+	× 1+	× 1+	× 1+	× 1+	× 2+	$\times 6 =$	14	=A _{org}
損傷度0									0	= A ₀
損傷度I			2					2	13.3	= A ₁
損傷度Ⅱ									0	=A ₂
損傷度Ⅲ									0	= A ₃
損傷度Ⅳ									0	$=A_4$
損傷度V									0	$=A_5$
								ΣAj=	13.3	
耐震性能	₿残存率R=	95.00	上部構造	の耐震性	能残存率R	による被災	送度区分:	軽微		

表 7.4.4.11 被災度区分判定結果のまとめ

1	F	2	F	3	F	Pł	ΗF
長手	短手	長手	短手	長手	短手	長手	短手
方向	方向	方向	方向	方向	方向	方向	方向
大破	小破	中破	小破	中破	小破	軽微	軽微
(48.8)	(83.0)	(78.5)	(81.2)	(69.2)	(89.7)	(95.0)	(95.0)
大破	中破	中破	小破				
(56.2)	(78.1)	(79.9)	(80.3)				
	1 長手 方向 大破 (48.8) 大破 (56.2)	1F 長手 短手 方向 方向 大破 小破 (48.8) (83.0) 大破 中破 (56.2) (78.1)	1F 2 長手 短手 長手 方向 方向 方向 大破 小破 中破 (48.8) (83.0) (78.5) 大破 中破 中破 (56.2) (78.1) (79.9)	1F 2F 長手 短手 長手 短手 方向 方向 方向 方向 大破 小破 中破 小破 (48.8) (83.0) (78.5) (81.2) 大破 中破 中破 小破 (56.2) (78.1) (79.9) (80.3)	1F 2F 3 長手 短手 長手 短手 長手 方向 方向 方向 方向 方向 大破 小破 中破 小破 中破 (48.8) (83.0) (78.5) (81.2) (69.2) 大破 中破 中破 小破 (69.2) 大破 (78.1) (79.9) (80.3) (80.3)	1F 2F 3F 長手 短手 長手 短手 長手 短手 方向 方向 方向 方向 方向 方向 大破 小破 中破 小破 中破 小破 (48.8) (83.0) (78.5) (81.2) (69.2) (89.7) 大破 中破 中破 小破 (56.2) (78.1) (79.9) (80.3)	1F 2F 3F Pł 長手 短手 長手 短手 長手 短手 長手 方向 方向 方向 方向 方向 方向 方向 大破 小破 中破 小破 中破 小破 軽微 (48.8) (83.0) (78.5) (81.2) (69.2) (89.7) (95.0) 大破 中破 中破 小破 (56.2) (78.1) (79.9) (80.3)

※括弧の数字は、耐震性能残存率Rを示している。

表 7.4.4.12 梁支配型柱の比率

	1F		2	F	3F		PHF	
梁支配型の柱	8	7	8	5	5	1	0	0
それ以外の柱	17 18		26	23	24	20	0	2
梁支配型柱比率	32%	28%	24%	18%	17%	5%	0%	0%

3) 被害調査3回目,A班の結果

対象建築物の各階について,部材の損傷度を被災度区分判定[7.4·1]^{エラー! 参照元が見つかりません。}に従って判定 した。判定時の計算を表 7.4.4.13~表 7.4.4.15 に,判定結果の一覧を表 7.4.4.16 に示す。

図 7.4.4.6 1 階の損傷度(耐震補強無視)

図 7.4.4.7 2 階の損傷度(耐震補強無視)

図 7.4.4.8 3階の損傷度

表	7.4.4.13	被災度区分判定結果	(1F.	耐震補強無視)
_			• /	

<u>長手方向, 1F, 耐震補強無視</u>

	せん断	たん新 曲げせん新 曲げ								
	(S)	囲けせん断 (SM)	曲げ (M)	せん断 (SB)	曲げ (MB)	柱なし (W)	片側柱付き (CW)	両側柱付き (CWC)	合計	
調査部材数	4		12					6	22	
	× 1+	× 1+	× 1+	× 1+	× 1+	× 1+	× 2+	$\times 6 =$	52	=A _{org}
損傷度0									0.0	$=A_0$
損傷度I			2						1.9	= A ₁
損傷度Ⅱ	4		9					3	20.0	$=A_2$
損傷度Ⅲ			1					3	5.9	$=A_3$
損傷度Ⅳ									0.0	$=A_4$
損傷度V									0.0	$=A_5$
								ΣAj=	27.8	-

耐震性能残存率R= 53.37 上部構造の耐震性能残存率Rによる被災度区分:大破

		柱		梁支酉	记型柱	壁				
	せん断 (S)	曲げせん断 (SM)	曲げ (M)	せん断 (SB)	曲げ (MB)	柱なし (W)	片側柱付き (CW)	両側柱付き (CWC)	合計	
調査部材数	6		10				3	2	21	
	× 1+	× 1+	× 1+	× 1+	× 1+	× 1+	× 2+	$\times 6 =$	34	=A _c
損傷度0									0	$=A_0$
損傷度I	3		5						7.6	=A1
損傷度Ⅱ	3		5				3	1	12.75	=A2
損傷度Ⅲ								1	1.8	=A ₃
損傷度Ⅳ									0	$=A_4$
損傷度V									0	=A ₅
$\Sigma A_{j} = 22.15$;

表 7.4.4.14 被災度区分判定結果(2F, 耐震補強無視)

<u>長手方向, 2F, 耐震補強無視</u>

		柱		梁支霄	記型柱		壁			
	せん断 (S)	曲げせん断 (SM)	曲げ (M)	せん断 (SB)	曲げ (MB)	柱なし (W)	片側柱付き (CW)	両側柱付き (CWC)	合計	
調査部材数							4	3	7	
	× 1+	× 1+	× 1+	× 1+	× 1+	× 1+	× 2+	× 6=	26	=A _{org}
損傷度0									0.0	$=A_0$
損傷度I									0.0	$=\mathbf{A}_1$
損傷度Ⅱ							4	1	8.4	$=A_2$
損傷度Ⅲ								2	3.6	=A ₃
損傷度Ⅳ									0.0	$=A_4$
損傷度V									0.0	= A ₅
								ΣAj=	12.0	-
耐震性能残存率R= 46.15 上部構造の耐震性能残存率Rによる被災度区分: <u>大破</u>										

<u>短手方向,2F,耐震補強無視</u>

		柱		梁支霄	记型柱		壁]
	せん断 (S)	曲げせん断 (SM)	曲げ (M)	せん断 (SB)	曲げ (MB)	柱なし (W)	片側柱付き (CW)	両側柱付き (CWC)	合計	
調査部材数							3	6	9	
	× 1+	× 1+	× 1+	× 1+	× 1+	× 1+	× 2+	$\times 6 =$	42	=A _{org}
損傷度0									0	$=A_0$
損傷度I							1	3	19	=A ₁
損傷度Ⅱ							2	3	13.2	$=A_2$
損傷度Ⅲ									0	$=A_3$
損傷度Ⅳ									0	$=A_4$
損傷度Ⅴ									0	$=A_5$
$\underline{\Sigma A j} = 32.2$										
耐震性俞	ἑ残存率R=	76.67	上部構造	もの耐震性	能残存率R	による被災	《度区分:	中破		

表 7.4.4.15 被災度区分判定結果 (3F)

長手方向, 3F

		柱		梁支西	记型柱		壁			
	せん断 (S)	曲げせん断 (SM)	曲げ (M)	せん断 (SB)	曲げ (MB)	柱なし (W)	片側柱付き (CW)	両側柱付き (CWC)	合計	
調査部材数							5	3	8	
	× 1+	× 1+	× 1+	× 1+	× 1+	× 1+	× 2+	$\times 6 =$	28	=A _{org}
損傷度0									0.0	= A ₀
損傷度I							1		1.9	= A ₁
損傷度Ⅱ							4	2	12.0	$=A_2$
損傷度Ⅲ								1	1.8	$=A_3$
損傷度Ⅳ									0.0	$=A_4$
損傷度V									0.0	= A ₅
<u>ΣAj=</u> 15.7										
耐震性能残存率R= 56.07 上部構造の耐震性能残存率Rによる被災度区分: <u>大破</u>										

短手方向, 3F

		柱		梁支曹	记型柱		壁			
	せん断 (S)	曲げせん断 (SM)	曲げ (M)	せん断 (SB)	曲げ (MB)	柱なし (W)	片側柱付き (CW)	両側柱付き (CWC)	合計	
調査部材数							1	6	7	
	× 1+	× 1+	× 1+	× 1+	× 1+	× 1+	× 2+	$\times 6 =$	38	=A _{org}
損傷度0									0	= A ₀
損傷度I								2	11.4	= A ₁
損傷度Ⅱ							1	4	15.6	= A ₂
損傷度Ⅲ									0	= A ₃
損傷度Ⅳ									0	$=A_4$
損傷度Ⅴ									0	= A ₅
$\underline{\Sigma A j} = 27$										
耐震性能	₿残存率R=	71.05	上部構造	しの耐震性	能残存率R	による被災	《度区分:	中破		

	1F		2	F	31	
	長手	短手	長手	短手	長手	短手
	方向	方向	方向	方向	方向	方向
耐雲雄強毎祖	大破	中破	大破	中破	大破	中破
则辰而浊而沉	(53.4)	(65.1)	(46.2)	(76.7)	(56.1)	(71.1)

表 7.4.4.16 被災度区分判定結果のまとめ

(2) 基礎構造の被災度区分判定

本項では、7.4.2 項で示した、2016 年 8 月に地方自治体が実施した第 1 回目の調査と、2018 年 5 月 に実施した第 5 回目の調査において調査した基礎構造の被害をもとに被災度区分判定^[7.4-1]を実施した結 果を報告する。

1) 被害調査1回目の結果

被災度区分判定基準^[7.4·1]では,基礎構造の被害を推定するために基礎の傾斜と沈下量を用いた評価法 が示されている。7.4.2項(1)に示したように,第1回目の調査では建築物の最大相対沈下量は98mm, 桁行方向の最大傾斜角は南側面の X2-X3 間の 0.717% (=43mm/6000mm),張間方向の最大傾斜角は東側面 のY1-Y2間の 0.411% (=39mm/9500mm)であった。これらの傾斜角を基礎の傾斜と読み替えて,**表 7.4.4.17** で判定すると基礎構造の被災度は中破となった。

		0	基礎の沈 0	基礎の沈下量 (m) 0.1 0.3				
基	1/200	[無被害]	[小 破]	[中破] ★	*			
礎の	1/150	[小 破]	[中 破]	[中 破]	[大 破]			
倾	1/150	[中 破]	[中 破]	[大 破]	[大 破]			
斜	1//3	[大 破]	[大 破]	[大 破]	[大 破]			

表 7.4.4.17 杭基礎構造の被災度区分(文献[7.4-1]の表 I.2.2-1より)

※:適用外,杭基礎の掘出し調査などの詳細調査が必要

★:条件により, 掘出し調査などの詳細調査が必要

2) 被害調査5回目、マニュアル計測による判定

7.4.2項(2)で示したように、偏心によって被害を受けた基礎フーチングを除けば、基礎フーチング および基礎梁に大きな損傷は生じていなかった。また、杭頭部の被害は少ない場合もあるものの、ほと んどの杭が傾斜していることから、杭の中間部で何らかの被害が発生していることが推測できる。また、 基礎フーチングの相対沈下量の計測から、北方向に向かって大きく傾いていることがわかった。以上の 結果から、対象建築物の基礎構造は杭の被害(杭頭部または杭中間部)が原因で、北方向に向かって大 きく傾いたということが分かった。

現行の被災度区分判定基準^[7.4·1]では,杭基礎構造の被害を推定するために基礎の傾斜と沈下量を用いた評価法が示されている.基礎構造の最大相対沈下量は194mm(X1, Y4フーチング)となった。南北方向の最大傾斜角はX10通りのY2-Y3間の0.87%(=52mm/6000mm),東西方向の最大傾斜角はY3通りのX1-X2間の0.70%(=42mm/6000mm)であった。これらの結果より表 7.4.4.18を用いて判定すると,杭基礎構造の被災度は大破となった.

		0	基礎の沈 0	下量 (m) .1 0.	3
基	1/200	[無被害]	[小 破]	[中破] ★	*
礎の	1/150	[小 破]	[中 破]	[中 破]	[大 破]
傾	1/150	[中 破]	[中 破]	[大 破]	[大 破]
斜	1//3	[大 破]	[大 破]	[大 破]	[大 破]

表 7.4.4.18 杭基礎構造の被災度区分(文献[7.4-1]の表Ⅱ.2.2-1より)

※:適用外,杭基礎の掘出し調査などの詳細調査が必要

★:条件により, 掘出し調査などの詳細調査が必要

- (3) 被災度区分判定結果のまとめ
- 1) 上部構造の被災度区分判定について

本調査では、上部構造の被災度区分判定を3種類実施した。被災度区分判定の結果を表 7.4.4.19 に 示す。また、以下にそれぞれの調査の特徴を示す。

【被害調査2回目】

- 構造技術者2人で、短時間(2時間)の調査を実施した。この時、建物内に什器があり、天井や内装材、外装材も取付いている状態であった。地震の後に被災度区分判定を実施する場合は、この被害調査2回目と同様の条件下で実施することが多い。
- 短時間のために1階のみ被災度を判定している。同様に、時間の都合上被害の少ない部材は計測が 後回しになったため、結果として計測できていない部材がある。
- ▶ 天井があるため、梁の損傷は計測出来ていない。

【被害調查3回目 A班】

- 建築学科の学生3人で、長時間(2日間)の調査を実施した。この時、建物内に什器がなく、天井 や内装材、外装材が撤去されている状態であった。
- ▶ 調査者は建築構造に詳しい技術者ではないため、OHP シートを用いた損傷計測を実施した。建築構造に詳しくない調査者でも実施出来るように、部材の損傷計測はルールを決めて機械的に実施した。
- ▶ 一方で、計測に時間掛かっため、2階および3階は壁部材のみの計測を実施している。

【被害調查3回目 B班】

構造技術者2人で、長時間(2日間)の調査を実施した。この時、建物内に什器がなく、天井や内 装材、外装材が撤去されている状態であった。建築物の構造被害を計測するためには、理想的な環 境であった。

以上より、今回の調査では【被害調査3回目 B班】の結果が正しい被災度区分判定だと考え、【被害調査2回目】と【被害調査3回目 A班】について考察を実施する。

		1	F	2	F	3	F		
		長手	短手	長手	短手	長手	短手		
		方向	方向	方向	方向	方向	方向		
2回日	短時間(2時間)の調査	中破	中破						
김미미	内装・外装有り	(74.6)	(73.8)						
3回目	構造技術者ではない	大破	中破	大破	中破	大破	中破		
A班	学生が機械的に実施	(53.4)	(65.1)	(46.2)	(76.7)	(56.1)	(71.1)		
3回目	長時間(2日)の調査 構造技術者が実施	大破	小破	中破	小破	中破	小破		
D以工	内装・外装がない	(50.6)	(87.9)	(78.6)	(84.6)	(74. 2)	(87.4)		

表 7.4.4.19 被災度区分判定結果一覧

※括弧の数字は、耐震性能残存率Rを示している。

(a) 被害調査2回目の被災度区分判定結果について

被害調査2回目の被災度区分判定結果は、長手方向は中破となり、3回目B班の結果(大破)と比べて被災度が軽い。これは、被害調査2回目では長手方向の両側耐震壁の仕上げ材によって損傷が隠されてしまい、損傷度が0~Ⅲと判定したためである。それらの両側耐震壁は、3回目B班では損傷度ⅢまたはⅣの判定になった。

一方,被害調査2回目の短手方向の判定結果は中破であり,3回目B班の結果(小破)と比べて被災 度が重い。これは,被害調査2回目では時間の都合上,北側の被害の少ない部材は計測が後回しになっ たため,結果として計測できていない部材があったためである。

(b) 被害調査3回目A班の被災度区分判定結果について

被害調査3回目A班の被災度区分判定結果は,長手方向は大破となり,3回目B班の結果(大破)と 比べて同じ判定となった。また耐震性能残存率Rも同程度となった。

一方,被害調査3回目A班の短手方向の判定結果は中破であり,3回目B班の結果(小破)と比べて 被災度が重い。これは,被害調査2回目と同様に,北側の被害の少ない部材は計測できていない部材が あったためである。

2階3階の長手方向および短手方向は、3回目B班の結果と比べて被害調査3回目A班の結果は被災 度が1段階重くなった。これは、1回の短手方向と同様に、比較的被害の多い部材を計測する一方で被 害の少ない部材を計測しなかったためだと考えられる。

7-165

2) 基礎構造の被災度区分判定について

被害調査1回目は,建設時には水平であったと推測される建築物1階の外装材の目地の高さを計測することで,相対沈下量を計測している(図 7.4.4.9)。被害調査5回目は建物解体後に露出させた基礎フーチングの上天端の相対的な沈下量を計測している(図 7.4.4.10)。それぞれの調査における建物の全体的な傾斜の方向の傾向は一致した。

それぞれの相対沈下量を元に,最大沈下量と最大傾斜角を計算し被災度区分判定を実施した。その結 果,実際に基礎を掘り出して計測した調査のほうが,被災度が大きくなった。また,相対沈下量も98mm(X2, Y1)から194mm(X1, Y4 フーチング)と増加した。また,桁行方向の最大傾斜角は0.717%(Y1 通りの X2-X3 間)から0.70%(Y3 通りの X1-X2 間)とほとんど変化がなかったが,張間方向の最大傾斜角は0.411% (X10 通りの Y1-Y2 間)から0.87%(X10 通りの Y2-Y3 間)と増加した。これは,①外装材の目地の高さ

を計測する計測値は誤差があり沈下量を小さめに計測している,②基礎を掘り出して計測した調査にお いて最大値を計測した箇所を1回目で計測出来ていない,などの原因が考えられる。

図 7.4.4.10 建築物の相対沈下量(被害調査5回目)

7.4.5 地震後継続使用性に関するヒアリング結果

本建築物は、震災による建築物の構造被害および非構造部分や設備などの被害により、地震後に継続 使用することができず、建て替えが決定した例である^[7.4-6]。表 7.4.5.1 にヒアリングおよび資料[7.4-6] によって得られた本庁舎に関する情報を時系列に従って列挙する。

前震後は役場内で窓口業務は行っていないが、災害対応業務は実施されていた。しかし、本震直後は すみやかに庁舎内を立入禁止し、災害対策本部を別の施設に再設置した。その後、庁舎内の危険な範囲 (損壊したエレベータ棟、庇、渡り廊下)を撤去し、商用電源が確保できた約半月後に業務を復帰でき ている。また、9月末に杭基礎の調査結果と被災度区分判定結果によって構造躯体の被害が明らかとな っており、構造躯体の被害の把握には5ヶ月強の時間を要したことが分かる。以上のことから、上部構 造物の損傷程度が中破程度で抑えられたことが地震後当面の継続使用性を確保できた要因と考えられ る。一方で杭基礎が大破することで建築物の恒久復旧を困難としていると言える。

本建築物では、杭の被害によって上部構造の沈下や1%程度の傾斜が見られた。傾斜が1%程度とそ れほど大きくなかったため、地震後の建物の継続使用ができた。一方で現状の建築物の構造設計時にお いて、今回のような大地震後に、上部構造の傾斜1%程度までに抑えて設計を実施するのは難しいと考 えられる。このことを考慮すると、大地震後の継続使用性を確保するための構造設計では、杭の沈下や それに伴う上部構造の傾斜を許容するような設計をすることは難しく、それを防ぐような設計が必要で ある。

日付	出来事
	2016
	21時26分 前震発生 (震度7)
4月14日	庁舎が被災し停電したため,通電している近くの福祉センターに災害対策本部を設置した。 ただし、庁舎の南側駐車場にも現地対策本部、を設置した。
4月15日	庁舎が復電し、本部を庁舎に集約。庁舎内で災害対応業務を行っていたが、窓口業務は行っ
	01时23万 平長先生 (長度1) ・エレベータ挿 庇 渡り廊下の増壊
	・3階の電算室では機器のラックなど多数の什器が転倒や移動しており、サーバーが停止。
	・窓ガラスの落下
4日16日	・トイレの壁にひび割れ、タイルはく離。
4月 I0日	・ 哈座に非常用電源が確保されていたか、作動です、 座上のソーフーハイル日体は 無損傷に が るこれとの配領が 既須した可能性がたり 電気の供給ができなか。た
	か、そこからの記録が岡禄したり配任がめり、电気の医症がそさながらた。 ・絵排水管お上び絵水タンクの指復
	午後に、福祉ヤンターに災害対策本部を再設置した。前震後は本部を2カ所に分けていた
	が、本電後は被害が庁舎周辺だけでなく町内全域にわたっていたため、本部を福祉センター
	に一本化した。
	応急危険度判定実施,エレベータ棟、庇、渡り廊下の損壊により,「危険の判定」、エレ
	ベータ棟と庇の撤去が庁舎立入り可の条件とされた。
4月20日	庁舎のエレベータ棟と庇の撤去を開始し、4月末に完了。
	庁舎に復帰。この時点で復電済みだが、断水は継続し、仮設トイレを使用。災害対応のみの
5月2日	業務で庁舎を使用し、一般の来客は立入禁止。渡り廊下とエレベータの入り口には木板を打
	ち付けて閉鎖。
5月中旬	衛生設備と空調換気設備か復日。(時期的に空調かなくても業務の文庫はなかったとのこと)
6月6日	仮仮庁舎で業務開始
8月18日	杭基礎の調査
8月29日	加小アンフロこのととも家心によよりため, 3 階は防水
9日末	調本結果却生
11月	新庁全建設検討委員会の立ち上げ
12月20日	
10/100 H	1
5月	仮設庁舎に移転

表 7.4.5.1 時系列に沿った出来事一覧

参考文献

- [7.4-1] 日本建築防災協会:震災建築物の被災度区分判定基準および復旧技術指針, 2016.3
- [7.4-2] 護 雅史: 地震記録に基づく益城町役場の地盤-建物応答, 第 44 回地盤震動シンポジウム 2016 年 熊本地震で何か起きたか, pp.101-108, 2016
- [7.4-3] 丹 裕也, 護 雅史, 福和 伸夫: 2016 年熊本地震で被災した低層 RC 造杭基礎建物の非線形相互 作用解析-常時微動計測結果に基づく検討-, 日本建築学会大会学術講演梗概集(2017), pp.765-766, 2017
- [7.4-4] 小堀鐸二,南井良一郎,竹内吉弘,河野允宏:鉄骨構造物の振動実験,日本建築学会近畿支部研 究報告集, pp.69-72, 1966
- [7.4-5] 日本建築学会:入門・建物と地盤との動的相互作用, pp.340-342, 1996
- [7.4-6] 益城町復興計画, 益城町役場 HP (https://www.town.mashiki.lg.jp/), 2016.12 閲覧

7.5. 解析モデルを用いた被害分析

7.5.1 解析方法

(1)静的荷重增分解析

被害分析のための解析は,解析モデルを上部構造と下部杭基礎構造の分離モデルとする。上部構造については,建物の構造性能を把握し,被害要因を分析するために,杭基礎支点をピンとした耐震補強された現況建物モデル(M1),杭基礎支点バネを考慮した耐震補強された現況建物モデル(M2),杭基礎支点をピンとした耐震補強前の建物モデル(M3)を作成し,静的荷重増分解析を行う。 一貫計算ソフト BUS-6 (構造システム)によった増分解析モデルには渡り廊下も含んでいるが,渡り廊下のみ接合部の損傷等が目立ったことから,部材の詳細検討を別途行った。

(2) 応答解析

応答解析は、荷重増分解析より得られた各層の復元力特性と質量算定結果を用いて多質点振動モ デルを作成し、観測地震波(Kik-net 益城 KMMH16,宮園)と作成地震波(Kik-net 益城の基盤 波と庁舎表層地盤条件 GL1 と GL4 から作成)の入力により上部応答を推測する。なお、EW 地 震波を X 方向(桁行)に入力し、NS 地震波を Y 方向(梁間)に入力した。

応答解析には SNAP-LE Ver7(構造システム)を用いた。

(3) 杭基礎の解析

杭基礎の解析では、基礎梁から下の部分のみをモデル化した分離モデルを用いた静的荷重増分 解析により被害要因・被害過程の推定を行う.杭体は線材、杭頭接合部は回転ばね、地盤は水平 方向のみのばねとしてそれぞれ非線形を考慮する.解析モデルは、杭長や軸力などの条件に応じ たグルーピングを行った上で、すべての杭が剛な基礎梁で連結している.杭頭水平力および軸力 は上部構造の静的的増分解析により、地盤変位は地盤の応答解析により求めた値を用いる.

7.5.2 上部構造のモデル化と静的増分解析結果

(1)上部構造のモデル化

各部材断面等は,設計図書や耐震診断,改修計画報告書および現地被害調査の記載内容に基づき,剛床と杭位置を支点とした立体モデルとし,解析には一貫構造計算プログラム「BUS-6 Ver.1.0.9.2」を使用した。外力分布は Ai 分布に基づき,せん断破壊した部材耐力を保持したまま解析を行っている。ただし,層せん断力の集計ではせん断破壊した鉛直部材のせん断力を差し引き,層せん断力-層間変形角を算定している。積載荷重には,設計における地震用積載荷重を考慮し,主な床荷重を表7.5.2.1に示す。

室面	スラブ厚	仕上げ	積載(LL)
屋上	t=130 mm	2000	600
事務室	t=130 mm	1000	800
集会室	t=130 mm	1000	2100

表 7.5.2.1 荷重表

 (N/mm^2)

解析に使用した材料強度は、コンクリートが1階で21.4N/mm²,2階で19.5N/mm²,3階で19.9N/mm², 鉄筋は SD295 とし、耐震補強外側フレーム部分については、コンクリートが PCa 部で 50.0 N/mm², 場所打ち部で 24N/mm²,鉄筋は D16 以下を SD295, D19~25 を SD345, D29 以上を SD390 とした。 終局強度算定時の材料強度は基準強度の 1.1 倍とし、せん断終局強度を計算する際には割増はしない。

柱・梁は線材置換し、耐震壁はエレメント置換とし、剛域長さは部材のフェイス面から 0.25D 材端側 とした。なお、剛塑性ヒンジ位置は部材フェイス面とし剛域と区別した。柱の軸変形は地震時のみ考慮 し、そで壁、たれ壁、腰壁の剛性は、壁を含まない柱梁せいを一定として断面積を等価とする幅を設定 して評価した。各部材のせん断終局強度は荒川 mean 式を採用し、曲げ終局強度については中段筋を無 視した技術基準解説書^[7.5-1]に基づく終局曲げ強度式とした。梁部材のスラブの影響は、 RC 規準^[7.5-2]に 基づいた剛性評価とし、終局曲げ強度は片側 1m の有効幅内の鉄筋を考慮した。なお、補強部である PCa 外側フレームの PCaPC 梁の終局耐力は、改修計画報告書に記載された値を採用し表 7.5.2.2 に示す。

なお,1階鉄骨造部分については剛性・耐力は無視し荷重のみ考慮とし,建物北側桁行フレーム1階の腰壁部については耐震スリットを考慮した。

符号	B (mm)	D (mm)	PC 鋼材	dp	せん断スパン	曲げ	せん断	Qmu=2Mu/Ho
						終局耐力	終局耐力	Ho:内法スパン
				(mm)	比による	Mu	Qsu	Qmu (kN)
					割増係数 α	(kNm)	(kN)	
3PG1	350	1300	4c-7-12.7φ	652	1.00	2296	1073	900 (Ho=5.1m)
2PG1	350	1300	4c-7-12.7φ	654	1.25	2305	1269	904 (Ho=5.1m)

表 7.5.2.2 PCaPC 梁の終局耐力

上部構造の検討モデルは、建物の構造性能を把握し、被害要因を分析するために、補強された現況建物 で支点をピンとしたモデルと支点バネを考慮したモデル、耐震補強前の建物で支点をピンとしたモデル の3種類とした。

検討モデル

M1: 耐震補強された被災時の現況建物で, 杭基礎支点をピンとしたモデル

M2: 耐震補強された被災時の現況建物で、杭基礎支点に軸方向バネを考慮したモデル

M3:耐震補強前の建物で、杭基礎支点をピンとしたモデル

M2 モデルの支持点の軸バネは、杭断面積 A と杭長さ L および弾性係数 E から a・Ap・E/L とし、圧 縮時は弾性、引張時は浮き上がるモデルとしている。1 本あたりの杭軸方向バネ定数を表 7.5.2.3 に示 す。

表 7.5.2.3

(a) 既存部分の杭バネ定数

(PC 杭:杭径=400mm, Ap=126000mm², Fc=50N/mm², E=40 kN/mm²)

杭長 L(m)	а	杭バネ K _{VP} (kN/m)
26.0	1.63	$316 imes10^3$
28.0	1.70	$306 imes 10^3$
30.0	1.77	$297\! imes\!10^3$
32.0	1.84	$290\! imes\!10^3$

a=0.014(L/D)+0.72 とする。

(b) 耐震補強外側フレーム部の杭バネ定数

(エコパイル: 杭径=318.5mm, Ap=6800mm², E=210 kN/mm²)

a=0.010(L/D)+0.36 とする

杭長 L(m)	а	杭バネ K _{VP} (kN/m)
27.0	1.21	$64\! imes\!10^3$

検討モデル M1の入力架構モデル図を図7.5.2.1.a~7.5.2.4 に示す。

図 7.5.2.1.f 基礎伏図

図 7.5.2.2.c Y2 フレーム軸組図

図 7.5.2.3.k X10 フレーム軸組図

図 7.5.2.4 鳥瞰図

(2)静的增分解析結果

準備計算結果として, 表 7.5.2.4~表 7.5.2.5 に建物重量,表 7.5.2.6.a~7.5.2.8.b に剛性率・偏 心率,図 7.5.2.5~7.5.2.7 に重心・剛心図を示す。増分解析結果として,表 7.5.2.9.a~7.5.2.11.d に増分解析結果,図 7.5.2.8.a~b,図 7.5.2.10.a~b,図 7.5.2.12.a~b に荷重-変形関係(Q-δ曲 線)を,図 7.5.2.9.a~d,図 7.5.2.11.a~d,図 7.5.2.13.a~d に 2 階が 1/250 となる時点のヒンジ図 を示す。 なお,加力方向は桁行方向が西→東を正加力,東→西を負加力,張間方向が南→北を正加力, 北→南を負加力とした。

階	Wi	ΣWi	Ai
PH	1701.7 kN	1701.7 kN	—
3F	14237.6 kN	15939.3 kN	1.419
2F	15619.4 kN	$31558.6~\mathrm{kN}$	1.181
1F	18497.5 kN	50056.1 kN	1.000
基礎 *1	18986.4 kN	69042.6 kN	_

表 7.5.2.4 現況建物の建物重量等: M1, M2

※1: 基礎フーチングの重量(6251.1kN)を含まない値を示す。

表 7.5.2.5 耐震補強前の建物重量等:M3

階	Wi	ΣWi	Ai
PH	1701.7 kN	1701.7 kN	_
3F	14237.6 kN	15939.3 kN	1.403
2F	14819.9 kN	30759.2 kN	1.173
$1\mathrm{F}$	16972.9 kN	47732.1 kN	1.000
基礎 *2	16601.1 kN	64333.2 kN	

※2: 基礎フーチングの重量(5347.9kN)を含まない値を示す。

桁行方向(×方向): 正·負加力									
化比	層間変位	階高	層間変形角	剛性率	Ea				
百	d (cm)	h (cm)	h/d	\mathbf{Rs}	гs				
3F	0.1066	383.0	1/3594	1.006	1.000				
$2\mathrm{F}$	0.1183	381.5	1/3224	0.903	1.000				
1F	0.1289	502.5	1/3898	1.091	1.000				

表 7.5.2.6.a 剛性率(雑壁を含む)

張間方向(Y方向):正·負加力

REL	層間変位	階高	層間変形角	剛性率	Ea
百	d (cm)	h (cm)	h/d	\mathbf{Rs}	гѕ
3F	0.0573	383.0	1/6680	1.176	1.000
$2\mathrm{F}$	0.0705	381.5	1/5409	0.952	1.000
1F	0.1014	502.5	1/4957	0.872	1.000

表 7.5.2.6.b 偏心率(雑壁を含む)

桁行方向(X方向):正·負加力

REE	重心距離	剛心距離	偏心距離	弾力半径	偏心率	Fa
阳	gy (cm)	ly (cm)	ey (cm)	re (cm)	Re	ге
3F	1489.4	1508.3	18.9	2798.7	0.007	1.000
$2\mathrm{F}$	1470.2	1320.3	149.9	2679.1	0.056	1.000
1F	1480.5	1585.3	104.7	2602.4	0.040	1.000

張間方向(Y方向):正·負加力

REL	重心距離	剛心距離	偏心距離	弾力半径	偏心率	E.
旧	gy (cm)	ly (cm)	ey (cm)	re (cm)	Re	ге
3F	2593.8	2448.8	145.0	2056.0	0.071	1.000
$2\mathrm{F}$	2639.7	2307.9	331.8	2067.0	0.161	1.035
$1\mathrm{F}$	2694.6	2824.3	129.7	2308.0	0.056	1.000

図 7.5.2.5 重心 · 剛心図: M1

化比	層間変位	階高	層間変形角	剛性率	Fa			
階 d (cm)	d (cm)	h (cm)	h/d	\mathbf{Rs}	гs			
3F	0.1177	383.0	1/3253	1.062	1.000			
$2\mathrm{F}$	0.1330	381.5	1/2868	0.936	1.000			
1F	0.1636	502.5	1/3072	1.002	1.000			

表 7.5.2.7.a 剛性率(雑壁を含む)

張間方向(Y方向):正·負加力

REL	層間変位	階高	層間変形角	剛性率	Ea
陌	d (cm)	h (cm)	h/d	\mathbf{Rs}	гѕ
3F	0.0910	383.0	1/4211	1.163	1.000
$2\mathrm{F}$	0.1070	381.5	1/3566	0.985	1.000
$1\mathrm{F}$	0.1631	502.5	1/3081	0.851	1.000

表 7.5.2.7.b 偏心率(雑壁を含む)

桁行方向(X方向):正·負加力

REL	重心距離	剛心距離	偏心距離	弾力半径	偏心率	Fa
阳	gy (cm)	ly (cm)	ey (cm)	re (cm)	Re	ге
3F	1489.2	1512.8	23.6	2119.5	0.011	1.000
$2\mathrm{F}$	1470.3	1308.1	162.3	2222.9	0.073	1.000
$1\mathrm{F}$	1480.4	1467.9	12.5	2274.2	0.005	1.000

張間方向(Y方向):正·負加力

REL	重心距離	剛心距離	偏心距離	弾力半径	偏心率	Fe
四	gy (cm)	ly (cm)	ey (cm)	re (cm)	Re	ге
3F	2594.0	2314.3	279.7	1867.5	0.150	1.000
$2\mathrm{F}$	2639.7	2247.0	392.8	1990.0	0.197	1.158
$1\mathrm{F}$	2694.6	2605.5	89.1	2274.4	0.039	1.000

図 7.5.2.6 重心·剛心図:M2

桁行方向(×方向): 正·負加力									
化比	層間変位	階高	層間変形角	剛性率	Ea				
阳	d (cm)	h (cm)	h/d	\mathbf{Rs}	гs				
3F	0.1098	383.0	1/3489	1.130	1.000				
$2\mathrm{F}$	0.1385	381.5	1/2754	0.892	1.000				
1F	0.1665	502.5	1/3017	0.978	1.000				

表 7.5.2.8.a 剛性率(雑壁を含む)

張間方向(Y方向):正·負加力

REL	層間変位	階高	層間変形角	剛性率	Ea
旧	d (cm)	h (cm)	h/d	\mathbf{Rs}	гѕ
3F	0.0583	383.0	1/6572	1.231	1.000
$2\mathrm{F}$	0.0723	381.5	1/5277	0.989	1.000
1F	0.1207	502.5	1/4164	0.780	1.000

表 7.5.2.8.b 偏心率(雑壁を含む)

桁行方向(X方向):正·負加力

REL	重心距離	剛心距離	偏心距離	弹力半径	偏心率	Fo
旧	gy (cm)	ly (cm)	ey (cm)	re (cm)	Re	ге
3F	1269.5	1300.4	30.9	2816.8	0.011	1.000
$2\mathrm{F}$	1287.2	1325.1	37.9	2821.3	0.013	1.000
1F	1326.8	1518.6	191.8	2419.0	0.079	1.000

張間方向(Y方向):正·負加力

REL	重心距離	剛心距離	偏心距離	弹力半径	偏心率	Fe
19	gy (cm)	ly (cm)	ey (cm)	re (cm)	Re	ге
3F	2593.8	2391.8	202.0	2054.6	0.098	1.000
$2\mathrm{F}$	2630.8	2232.8	398.0	2036.7	0.195	1.151
1F	2678.3	2240.7	437.6	2057.9	0.213	1.209

図 7.5.2.7 重心·剛心図:M3

増分解析結果:M1モデル

・X 方向 3 階で Qu/Qun =1.16, 2 階で Qu/Qun =1.09, 1 階で Qu/Qun =1.09

Y 方向 3 階で Qu/Qun =1.16, 2 階で Qu/Qun =1.44, 1 階で Qu/Qun =1.44
 (Qu/Qun : 必要保有水平耐力に対する保有水平耐力の割合)

1764		必要保有	水平耐力	保有水平耐力	判定	亦形色	
归	Qud (kN)	Fes	\mathbf{Ds}	Qun (kN)	Qu (kN)	Qu/Qun	爱心西
3F	20357.7	1.000	0.50	10178.8	11842.0	1.16	1/300
$2\mathrm{F}$	33553.1	1.000	0.50	16776.5	18474.6	1.10	1/249
1F	45050.5	1.000	0.50	22525.3	24752.6	1.09	1/369

表 7.5.2.9.a X 方向 正加力時

表 7.5.2.9.b X 方向 負加力時

RHL		必要保有	水平耐力	保有水平耐力	判定	亦形名	
旧	Qud (kN)	Fes	Ds	Qun (kN)	Qu (kN)	Qu/Qun	<u> </u>
3F	20357.7	1.000	0.50	10178.8	11895.9	1.16	1/321
$2\mathrm{F}$	33553.1	1.000	0.50	16776.5	18425.7	1.09	1/250
1F	45050.5	1.000	0.50	22525.3	24667.7	1.09	1/341

表 7.5.2.9.c Y 方向 正加力時

REL		必要保有	水平耐力	保有水平耐力	判定	亦形名	
旧	Qud (kN)	Fes	Ds	Qun (kN)	Qu (kN)	Qu/Qun	<u> </u>
3F	20357.7	1.000	0.55	11196.7	13063.3	1.16	1/517
$2\mathrm{F}$	33553.1	1.000	0.50	16776.5	24274.5	1.44	1/252
1F	45050.5	1.000	0.50	22525.3	32624.7	1.44	1/250

表 7.5.2.9.d Y 方向 負加力時

REL		必要保有	水平耐力	保有水平耐力	判定	亦形名	
百	Qud (kN)	Fes	Ds	Qun (kN)	Qu (kN)	Qu/Qun	爱心西
3F	20357.7	1.000	0.55	11196.7	13969.3	1.24	1/490
$2\mathrm{F}$	33553.1	1.000	0.50	16776.5	24203.5	1.44	1/250
1F	45050.5	1.000	0.50	22525.3	32626.8	1.44	1/250

荷重-変形関係(Q-δ曲線)

図 7.5.2.8.a M1 モデル:X方向(正・負加力)

図 7.5.2.8.b M1 モデル: Y方向(正・負加力)

M1 モデルにおける最大層間変形角 1/250rad 時のヒンジ図を図 7.5.2.9.a~7.5.2.9.d に示す。 <凡例>

図 7.5.2.9.a Y0~Y2 フレーム ヒンジ図

図 7.5.2.9.b Y3~Y5 フレーム ヒンジ図

図 7.5.2.9.c X1~X6 フレーム ヒンジ図

図 7.5.2.9.d X7~X10 フレーム ヒンジ図

静的増分解析結果: M2 モデル

- ・X 方向 3 階で Qu/Qun =1.11, 2 階で Qu/Qun =1.04, 1 階で Qu/Qun =1.03
- Y 方向 3 階で Qu/Qun =0.96, 2 階で Qu/Qun =1.12, 1 階で Qu/Qun =1.16 (Qu/Qun : 必要保有水平耐力に対する保有水平耐力の割合)

REE		必要保有	水平耐力	保有水平耐力	判定	亦形名	
百八	Qud (kN)	Fes	\mathbf{Ds}	Qun (kN)	Qu (kN)	Qu/Qun	<u> </u>
3F	20357.7	1.000	0.50	10178.8	11319.3	1.11	1/309
$2\mathrm{F}$	33553.1	1.000	0.50	16776.5	17678.1	1.05	1/249
1F	45050.5	1.000	0.50	22525.3	23540.8	1.04	1/320

表 7.5.2.10.a X 方向 正加力時

表 7.5.2.10.b X 方向 負加力時

REL		必要保有	水平耐力	保有水平耐力	判定	亦形色	
白山	Qud (kN)	Fes	\mathbf{Ds}	Qun (kN)	Qu (kN)	Qu/Qun	<u> </u>
3F	20357.7	1.000	0.50	10178.8	11392.2	1.11	1/329
$2\mathrm{F}$	33553.1	1.000	0.50	16776.5	17528.1	1.04	1/249
1F	45050.5	1.000	0.50	22525.3	23396.5	1.03	1/306

表 7.5.2.10.c Y 方向 正加力時

階		必要保有	水平耐力	保有水平耐力	判定	亦形名	
	Qud (kN)	Fes	Ds	Qun (kN)	Qu (kN)	Qu/Qun	<u> </u>
3F	20357.7	1.000	0.55	11196.7	10764.5	0.96	1/359
$2\mathrm{F}$	33553.1	1.037	0.50	17390.7	19700.4	1.13	1/279
$1\mathrm{F}$	45050.5	1.000	0.50	22525.3	26275.6	1.16	1/250

表 7.5.2.10.d Y 方向 負加力時

REE		必要保有	水平耐力	保有水平耐力	判定	亦形名	
旧	Qud (kN)	Fes	Ds	Qun (kN)	Qu (kN)	Qu/Qun	<u> </u>
3F	20357.7	1.000	0.55	11196.7	11495.3	1.02	1/350
$2\mathrm{F}$	33553.1	1.037	0.50	17390.7	19573.3	1.12	1/278
1F	45050.5	1.000	0.50	22525.3	26193.2	1.16	1/250

図 7.5.2.10.a M2 モデル:X方向(正・負加力)

図 7.5.2.10.b M2 モデル: Y方向(正・負加力)

M2 モデルにおける最大層間変形角 1/250rad 時のヒンジ図を図 7.5.2.11. a~7.5.2.11. d に示す。 <凡例>

図 7.5.2.11.a Y0~Y2 フレーム ヒンジ図

図 7.5.2.11.b Y3~Y5 フレーム ヒンジ図

図 7.5.2.11.c X1~X6 フレーム ヒンジ図

図 7.5.2.11.d X7~X10 フレーム ヒンジ図

静的増分解析結果: M3 モデル

・X 方向 3 階で Qu/Qun =0.94, 2 階で Qu/Qun =0.93, 1 階で Qu/Qun =0.95

Y 方向 3 階で Qu/Qun =0.97, 2 階で Qu/Qun =1.12, 1 階で Qu/Qun =0.98
 (Qu/Qun:必要保有水平耐力に対する保有水平耐力の割合)

化比		必要保有	水平耐力	保有水平耐力	判定	亦形名	
四	Qud (kN)	Fes	\mathbf{Ds}	Qun (kN)	Qu (kN)	Qu/Qun	
3F	20121.4	1.000	0.50	10060.7	9542.7	0.94	1/412
$2\mathrm{F}$	32482.5	1.000	0.50	16241.2	15385.9	0.94	1/249
1F	42958.9	1.000	0.50	21479.5	20581.1	0.95	1/316

表 7.5.2.11.a X 方向 正加力時

表 7.5.2.11.b X 方向 負加力時

REL		必要保有	水平耐力	保有水平耐力	判定	亦形名	
旧	Qud (kN)	Fes	Ds	Qun (kN)	Qu (kN)	Qu/Qun	<u> </u>
3F	20121.4	1.000	0.50	10060.7	9471.2	0.94	1/451
$2\mathrm{F}$	32482.5	1.000	0.50	16241.2	15215.3	0.93	1/250
1F	42958.9	1.000	0.50	21479.5	20409.2	0.95	1/300

表 7.5.2.11.c Y 方向 正加力時

階	必要保有水平耐力				保有水平耐力	判定	亦形名	
	Qud (kN)	Fes	\mathbf{Ds}	Qun (kN)	Qu (kN)	Qu/Qun	<u> </u>	
3F	20121.4	1.000	0.55	11066.8	10870.2	0.98	1/647	
$2\mathrm{F}$	32482.5	1.054	0.50	17120.0	19290.5	1.12	1/344	
1F	42958.9	1.235	0.50	26527.5	26002.1	0.98	1/248	

表 7.5.2.11.d Y 方向 負加力時

階	必要保有水平耐力				保有水平耐力	判定	亦形名	
	Qud (kN)	Fes	Ds	Qun (kN)	Qu (kN)	Qu/Qun	<u> </u>	
3F	20121.4	1.000	0.55	11066.8	10789.0	0.97	1/632	
$2\mathrm{F}$	32482.5	1.054	0.50	17120.0	19306.0	1.12	1/340	
1F	42958.9	1.235	0.50	26527.5	26431.6	0.99	1/248	

図 7.5.2.12.a M3 モデル:X方向(正・負加力)

図 7.5.2.12.b M3 モデル: Y方向(正・負加力)

M3 モデルにおける最大層間変形角 1/250rad 時のヒンジ図を図 7.5.2.13.a~7.5.2.13.d に示す。 <凡例>

図 7.5.2.13.a Y1~Y2 フレーム ヒンジ図

図 7.5.2.13.b Y3~Y5 フレーム ヒンジ図

図 7.5.2.13.c X1~X6 フレーム ヒンジ図

図 7.5.2.13.d X7~X10 フレーム ヒンジ図

静的增分解析結果

1 階の建物重量(ΣWi)および解析結果を表 7.5.2.12 に示す。M3 は補強前のため建物重量が若干小 さい。桁行方向は 2 階の層間変形角が先行し,1 階のそれは 1/300~1/350 程度である。表中の保有水平 耐力(Qu)および 1 階層間変形角(R)については,最大耐力時点とした。図 7.5.2.14 には1 階層せん断力 - 層間変形角を 1/100 まで示した。

両方向ともに M1 モデルの保有水平耐力が最も高く補強効果を確認できる。また保有水平耐力以降の 挙動としては、X 方向では Y2、Y3 フレームの1 階壁のせん断破壊等で保有水平耐力以降の層せん断力 が低下する。なお、M1 モデルでは Y4 フレームの増し打ち壁のせん断破壊により大きく層せん断力が 低下し、また X10 フレームの増設 RC 壁のせん断破壊により、M3 モデルよりも層せん断力が低下する。 M2 モデルでは、連層壁を支持する支点の浮き上がりによって、特に Y 方向では変形性能が高い。また M1、M2 いずれのモデルでも Y 方向加力時に外付け補強フレームの短スパン梁にヒンジが生じており、 ひび割れ位置と整合する。上部構造の被害状況からは、壁等のせん断破壊が生じていないことから、仮 定した保有水平耐力までは達していないと考えられる。

モデル	建物重量	加力方向	桁行方向(X 方向)			張間方向(Y 方向)		
	ΣWi (kN)		Qu (kN)	R (rad)	C_B	Qu (kN)	R (rad)	C_B
M 1	50056.1	正加力	27014.8	1/313	0.540	29674.9	1/345	0.593
		負加力	26070.4	1/312	0.521	31090.5	1/316	0.621
M 2	50056.1	正加力	24404.5	1/300	0.488	26585.8	1/250	0.531
		負加力	24072.6	1/298	0.481	27203.3	1/250	0.543
M 3	47732.1	正加力	19295.7	1/354	0.404	25589.8	1/304	0.536
		負加力	18768.5	1/306	0.393	25556.4	1/290	0.535

表 7.5.2.12 保有水平耐力一覧

各加力方向は以下の通りとする。

[桁行方向 正加力:西→東,負加力:東→西] [張間方向 正加力:南→北,負加力:北→南]

7-210

(●----は2階が1/250に達したときの1階の値を示す。)

図 7.5.2.14 1 階層せん断力係数 CB-層間変形角 R グラフ

(3) 渡り廊下棟の検討結果

建物北側(Y4~Y5のX5a~X6間)に取り付く渡り廊下棟について,柱と梁の曲げ終局耐力を算出 し,柱梁耐力比より崩壊形を確認する。崩壊メカニズムは節点振分け法による1/2分割を基本とし,梁の 曲げ終局強度には引張側のみスラブ筋を考慮する。柱の曲げ終局強度算定時の軸力は,長期,短期,終 局時(層間変形角1/250),梁降伏時を想定し,それぞれについて曲げ終局耐力を算定する。

1) 検討部材

階高は1階が4.80m,2階が3.80m,X方向のスパンは2.175m,Y方向のスパンは7.40mとする。図7.5.2.15a~bに方向別の検討架構を示す。

図 7.5.2.15.a X方向検討位置図

図 7.5.2.15.b Y方向検討位置図

2) 部材リスト

柱は1,2階共に C6 でX方向の梁は G7,Y方向の梁は G19 である。図 7.5.2.16.a に柱リスト,図 7.5.2.16.b に梁リストを示す。

図 7.5.2.16.a 柱リスト

図 7.5.2.16.b 梁リスト

3)終局曲げモーメントの算定

コンクリートの圧縮強度を Fc21 N/ mm²,鉄筋を SD30(σ y =295N/mm²),梁は引張側でスラブ筋 を考慮した終局曲げモーメントを算定する。

各部材の鉄筋断面は以下の通りである。

- 柱: C6主筋3-D25(at=3×507=1521 mm²)梁: 3G7主筋3-D22(at=3×387=1161 mm²)2G7主筋4-D22(at=4×387=1548 mm²)3G19主筋4-D25(at=4×507=2028 mm²)
 - 2G19 主筋 5-D25(at=5×507=2535 mm²)

スラブ:t=130 配筋(短辺上端=D10,13@200,短辺下端=D10@200,長辺上下端=D10@200) X方向検討用:短辺上端=D10,13@200 より at'=(71+127)/2×5 =495mm²/m Y方向検討用:長辺上端=D10@200 より at'= 71×5 =355mm²/m

梁の有効幅内のスラブ筋

X 方向検討用

梁の有効幅を直交スパンの半分(Lo=(7400-500)/2=3450mm)とすると,有効スラブ筋は at=495×3.4=1683mm²となる。

Y 方向検討用

梁の有効幅を直交スパンの半分(Lo=(2175-500)/2=837mm)とすると,有効スラブ筋は at=355×0.8=284mm²となる。 終局曲げモーメントを下式により算定する。

- ・梁上端: Mu=0.9・(Σat・σy)・d (有効幅内のスラブ筋を考慮する)
- ・梁下端:Mu=0.9・at・σ y・d
- ・柱断面: Mu=0.8・at・σ y・D+0.5・N・D {1-N/(b・D・Fc)} Mu=0.8・at・σ y・D+0.4・N・D (0>N の場合)
- ・梁の曲げ終局強度

X 方向

- 3G7 BMu(L)'=0.9×1161×295×1.1×(600-60)×10⁻⁶=183.1 kNm
 BMu(R)'=0.9×(1161+1683)×295×1.1×(600-60)×10⁻⁶=448.5 kNm
 BQmu=(183.1+448.5)/(2.175-0.5)=377.1 kN
 BMu(L)=183.1+377.1×0.25=277.4 kNm
 BMu(R)=448.5+377.1×0.25=542.8 kNm
- 2G7 BMu(L)'=0.9×1548×295×1.1×(600-60)×10⁻⁶=244.1 kNm BMu(R)'=0.9×(1548+1683)×295×1.1×(600-60)×10⁻⁶=509.6 kNm BQmu=(244.1+509.6)/(2.175-0.5)=450.0 kN BMu(L)=244.1+450.0×0.25=356.6 kNm BMu(R)=507.7+450.0×0.25=622.0 kNm

Y 方向

- 3G19 BMu(L)'=0.9×2028×295×1.1×(650-60)×10⁻⁶=349.4 kNm BMu(R)'=0.9×(2028+284)×295×1.1×(650-60)×10⁻⁶=398.4 kNm BQmu=(183.1+448.5)/(7.40-0.575)=109.6 kN BMu(L)=349.4+109.6×0.325=385.1 kNm BMu(R)=398.4+109.6×0.25=425.8 kNm
- 2G19 BMu(L)'=0.9×2535×295×1.1×(650-60)×10⁻⁶=436.8 kNm BMu(R)'=0.9×(2535+284)×295×1.1×(650-60)×10⁻⁶=485.7 kNm BQmu=(436.8+485.7)/(7.40-0.575)=135.2 kN BMu(L)=436.8+135.2×0.325=480.7 kNm BMu(R)=485.7+135.2×0.25=519.5 kNm

・柱の曲げ終局強度

2F柱:柱軸力 NL=72.0 kN の場合

CMu (2F)'=0.8×1521×295×1.1×500+0.5·72100×500 {1-72000/(500×500×21)} =197.4+17.8=215.2 kNm CQmu=2×215.2/(3.80-0.60)=134.5 kN

CMu(2F)=215.2+134.5×0.30=255.6 kNm

1F柱: 柱軸力 NL=164.5 kN の場合

CMu (1F)'=0.8×1521×295×1.1×500+0.5·164800×500 {1-164500/(500×500×21)}

=197.4+39.8=237.2 kNm

CQmu=2×237.2/(4.80-0.60)=113.0 kN

CMu(1F)=237.3+113.0×0.30=271.1 kNm
4) 崩壊形の確認(節点振り分け)

X方向の部材耐力図を図7.5.2.17に、柱梁耐力比一覧を表7.5.2.13に示す。

X 方向

()内は $\Sigma cMu / \Sigma_BMu$ の値を示す。

RF : Σ BMu=542.8 kNm > Σ cMu=255.6 kNm (0.47)

 $2F: \Sigma BMu=622.0 \text{ kNm} > \Sigma cMu=255.6+271.1=526.7 \text{ kNm} (0.85)$

図 7.5.2.17 部材耐力図

表 7. 5. 2. 13	柱梁耐力比一覧
---------------	---------

754	スラブ筋 条件		直交ス	梁の有効幅 パンの半分。	内のスラブ筋 tt=1683mm ² と	を こした場合	梁の有効幅内のスラブ筋を 1m分 at=495mm ² とした場合				
陷	** - 々			Ν	вМи	cMu	ΣcMu	Ν	вМи	cMu	ΣcMu
	軸刀条	:14	$\overline{\ }$	(kN)	(kNm)	(kNm)	$\Sigma_{\rm B}Mu$	(kN)	(kNm)	(kNm)	$\Sigma_{\rm B}Mu$
	長期	NL		72.0		255.6	0.47	72.0		255.6	0.78
	短期	Ns	\rightarrow	99.8		263.5	0.49	99.8		263.5	0.80
3F		Ns	\leftarrow	44.2		247.5	0.46	44.2		247.5	0.76
	終局1	N м1	\rightarrow	178.2	542.8	285.5	0.53	178.2	327.5	285.5	0.87
		Nм1	\leftarrow	-30.0		227.3	0.42	-30.0		227.3	0.69
	終局2	N _{M2}	\rightarrow	449.1		356.4	0.66	337.2		328.1	1.00
		N _{M2}	\leftarrow	-305.1		162.0	0.30	-193.2		188.6	0.58
	長期	NL		164.5		526.7	0.85	164.5		526.7	1.29
	短期	Ns	\rightarrow	239.1		554.4	0.89	239.1		554.4	1.36
		Ns	\leftarrow	89.9		498.4	0.80	89.9		498.4	1.23
2F	終局1	N _{M1}	\rightarrow	434.5	622.0	624.9	1.00	434.5	406.7	624.9	1.54
		Nм1	\leftarrow	-115.1		426.6	0.69	-115.1		426.6	1.05
	終局2	N _{M2}	\rightarrow	991.5		811.8	1.31	767.8		741.0	1.82
		N _{M2}	←	-662.5		236.2	0.38	-438.8		313.9	0.77

終局1:層間変形角=1/250の時

終局2:梁降伏時

Y方向の部材耐力図を図7.5.2.18に、柱梁耐力比一覧を表7.5.2.14に示す。

Y 方向

()内は Σ cMu/ Σ BMu の値を示す。

RF : Σ BMu=425.8 kNm $> \Sigma$ cMu=259.4 kNm (0.61)

 $2F: \Sigma BMu=519.5 \text{ kNm} > \Sigma cMu=259.4+274.8=534.2 \text{ kNm} (1.03)$

X6通

図 7.5.2.18 部材耐力図

7Hz		スラブ 、 ^{条作}	筋 ‡	梁の有効幅内のスラブ筋を 直交スパンの半分 at=284mm ² とした場合						
峈	<u> 北</u> 上 夕			Ν	вМи	cMu	ΣcMu			
	軸刀余	14-	\searrow	(kN)	(kNm)	(kNm)	$\Sigma_{\rm B}Mu$			
	長期	NL		72.0		259.4	0.61			
	短期	Ns	\rightarrow	112.7		271.2	0.64			
		Ns	\leftarrow	31.3		247.3	0.58			
3F	終局1	N _{M1}	\rightarrow	198.2	425.8	295.4	0.69			
		N _{M1}	\leftarrow	-87.2		216.6	0.51			
	終局2	N _{M2}	\rightarrow	181.6		290.7	0.68			
		N _{M2}	\leftarrow	-37.6		228.9	0.54			
	長期	NL		164.5		534.2	1.03			
	短期	Ns	\rightarrow	260.0		571.4	1.10			
		Ns	\leftarrow	69.0		495.6	0.95			
2F	終局1	N _{M1}	\rightarrow	508.6	519.5	657.0	1.26			
		N _{M1}	\leftarrow	-195.2		400.1	0.77			
	終局2	N _{M2}	\rightarrow	409.2		628.6	1.21			
		N _{M2}	~	-80.2		439.0	0.84			

表 7.5.2.14 柱梁耐力比一覧

終局1:層間変形角=1/250の時 終局2:梁降伏時

5) 考察

以上より,X方向の2階については有効スラブ筋を1.0m分とした場合に,概ね柱耐力が梁耐力を 上回る結果となったが,いずれにしても柱梁耐力比が小さいため,検討架構部では柱または接合部が 梁よりも先行して降伏するものと考えられる。

(4) 渡り廊下棟の基礎梁によるねじり検討

Y4通りの基礎梁は、X6通り渡り廊下基礎梁が偏心して取りついていることと、ねじれ破壊してい ることが基礎掘削によって確認された(写真 7.4.2.9)。そこで、建物北側(Y4~Y5のX5a~X6間)に 同じ梁が取り付く渡り廊下棟の基礎梁の曲げ降伏時において,Y4通りの基礎梁がねじられる場合の強度 について検討した。その結果、ねじり耐力が低く、本体建物が沈下して、渡り廊下棟との間に強制鉛直 変位が生じた場合に、Y4通り基礎梁がねじれ破壊する可能性があることを確認した。実際の被害状況と 整合した結果となった。

1) 検討部材

図7.5.2.19に検討位置図を、図7.5.2-50に梁リストを示す。

図 7.5.2.19 検討位置図

図 7.5.2.20 梁リスト

2)終局曲げモーメントの算定

FG1 (渡り廊下棟の基礎梁)

・材料強度

	יער:	<u> ወይት</u>		Fc=	21	N/mm ²	
	滦	主筋:		σy=	295	N/mm ²	SD30
		ST:		σwy=	295	N/mm ²	SD30
・梁冑	ர்ம்						
	b×D=	400	×	1100		dt= 70	d= 1030
主筋	- 404 - 200	1段	5-	D	25	(at1=2535m	nm²)
		2段					
	下端	1段	5-	D	25	(at1=2535n	1m²)
		2段					
		ST:	2-	D	13	@250	(aw=254mm ²)

・曲げ終局強度

 $Mu_{(1)} = 0.9 \times at1 \times \sigma y \times d$ = 0.9 \times 2535 \times 295 \times 1030 \times 10^{-6}

= 693.2 kNm

3) ねじりモーメントの算定

ねじりモーメントを受ける大梁の断面算定

最小あばら筋比 (0.2%)を有する大梁がねじりとせん断同時に受けるときに, (1)式より検討する。 なお, (1)式を満足できない場合は, (4)~(6)式より補強筋量を検討する。

$$\begin{array}{rcr} (TTo)^2 + (Q(Qo)^2 \leq 1 \\ \cdots (1) \\ \mbox{CL} To = b_r^{2,1} D_r^*(1.15) \cdot fs3 , Qo = b\cdot j \cdot a \cdot fs \\ \mbox{els} \\ \mbox{els} \\ \mbox{Cl} X = b_r^{2,1} D_r^*(1.15) \cdot fs3 , Qo = b\cdot j \cdot a \cdot fs \\ \mbox{els} \\ \$$

7.5.3 入力地震動の分析

(1) 観測地震記録

地震応答解析に用いる入力地震動の元となる地震観測記録は、以下の2観測点の記録がある。

• KiK-net^[7.5-3], KMMH16 観測点記録

• 益城町役場地震計記録

本検討では,KMMH16 観測点の地中(GL-252m)観測記録を,1次元成層地盤モデルに対する E+F 入力として用い,地表面応答を計算する。このとき,① 地盤の最大変位分布を基礎ぐいの解析モデルに 対する地盤変位の入力とし,また② 地表面の加速度応答を上部構造の動的解析モデルに対する入力地 震動とする。

(2) KMMH16 地中記録立ち上げのための地盤モデル

地盤モデルの地層構成は新井・柏^[7.5-4]による益城町役場周辺の調査結果を元に,図7.3.1.3 に示した 既存ボーリング (No.1・No.4) を参照して,最表層地盤の層厚のみを変更する (表7.5.3.1)。表7.5.3.1 において, 土質は既存ボーリングの結果による。

東側の地盤モデルと西側の地盤モデルは、それぞれ別個の1次元成層地盤モデルとして作成し、それぞ れ別個に地震応答計算を実施する。

바르파티	層厚	(m)	[_ 所	せん断波速度	質量密度
地層畓丂	東側(No.1)	西側 (No.4)	工貨	(m/s)	(t/m ³)
1	22	17	粘性土	150	1.8
2	10	10	粘性土	350	1.8
3	13	13	粘性土	440	1.8
4	28	28	粘性土	760	1.8
5	32	32	粘性土	820	1.8
6	154	154	粘性土	1,150	1.8

表 7.5.3.1 地盤モデルの地層構成

地盤の非線形特性は骨格曲線に修正 R-O モデル,履歴則に Masing (メーシング)則を用いる。修正 R-O モデルのパラメータは,安田・山口^[7.5-5]より,粘性土の標準的な値を用いる。

(3) 地盤の地震応答解析手法

地盤の地震応答解析には、Newmark(ニューマーク)の β 法による逐次積分法を用いる。 β は 1/4 と する。減衰は Rayleigh(レーリー)減衰を用い、剛性比例係数・質量比例係数とも 0.01 とする。

(4) 地盤の地震応答解析結果

(1)~(3)で述べた方法により計算した地表面の加速度応答を、益城町役場の観測波形と比較して、図 7.5.3.1,7.5.3.2に示す。なお、観測波を記録した加速度計が設置された位置に最も近いボーリングNo.1 を用いた解析波を用いて比較した。これらの図より、計算結果と観測された最大加速度値は概ね対応し ている。特に、KiK-net 地中記録に対する増幅率は良い対応を示す(図7.5.3.3)。

図 7.5.3.2 本震の地表面加速度波形

図 7.5.3.3 本震における KiK-net 地中観測点に対する地表面の応答

以上解析により得られた自由地盤の応答波を,上部構造の動的解析(7.5.5)において,模擬波として 用いる。解析における模擬波名称と,ボーリング No.,前震か本震か等の波の条件との対応は以下の通 りである。

地盤の地震応答解析にお	ける波の条件		描 ^按 述友 步
位置(ボーリング No.)	振動方向	前震 / 本震	[快 挺 波石
No.1	NC	前震(4/14)	GL1B14NS
	IND .	本震(4/16)	GL1B16NS
		前震(4/14)	GL1B14EW
	E W	本震(4/16)	GL1B16EW
	NC	前震(4/14)	GL4B14NS
No.4	NO	本震(4/16)	GL4B16NS
IN0.4		前震(4/14)	GL4B14EW
	E W	本震(4/16)	GL4B16EW

表 7.5.3.1 地盤の地震応答解析における波の条件と上部構造の動的解析に用いる模擬波名称の対応

7.5.4 基礎構造物のモデル化および地盤モデル

(1) 解析方法

基礎構造の被害要因の検討は,基礎梁から下の部分のみをモデル化した分離モデルを用いた静的荷重 増分解析により行う。図7.5.4.1にモデル化の概要を示すが,杭は線材,杭頭接合部は回転ばね,地盤 は水平方向のみのばねとして,それぞれ非線形を考慮する。また,解析は建物全体でモデル化するが, 杭長や軸力などの条件に応じたグルーピングを行う。

図 7.5.4.1 解析モデル

上部構造の慣性力(杭頭水平力)および軸力は,7.5.2の上部構造の解析方法のうち杭ばねを考慮したモデルでの解析結果のうち杭基礎支点に軸方向バネを考慮したモデル(M2)の保有耐力時の基礎部の水平力および支点反力の計算結果(表7.5.2.12)に,この時の C_Bを用いて求めた基礎部分の水平力(k=C_B/2)を加えて求める。また,前震のシミュレーション解析では慣性力(水平力)をこの値の70%とした。

表 7.5.4.1 に杭頭水平力Qおよび杭1本あたりの負担水平力を示す。「補強杭」は耐震改修時に増設した杭を示すが、負担率は全体の約 3%である。

なお,軸力については上部構造の保有耐力時の解析値を丸めてグルーピングした上で杭頭接合部およ び杭体の M-θ, M-φ関係を評価するが,荷重増分解析では考慮しない。

	- · · · ·		
	一次設計相当	保有耐力時(E-W方向)	保有耐力時(N-S方向)
杭頭水平力 (kN)	10,731	28,038	31,294
PC杭1本あたり (kN)	58.8	153.6	60.6
補強杭1本あたり (kN)	23.2	171.4	67.7

表7.5.4.1 解析に用いる杭頭水平力

地盤変形は7.5.3 で示す時刻歴地震応答解析により本震・前震それぞれ方向別に得られた地盤変位分 布を,杭先端からの相対変位で与える。ここで,図7.5.4.2 に示すように,西側の杭については No.4 の 調査結果を用いた地盤変形,東側の杭については No.1 の結果を用いる。杭頭レベルは設計図書に基づ いて GL-1.7m とした。

図 7.5.4.2 地盤変形分布

(2) 杭および杭頭接合部のモデル化

耐震補強のための設計図書では杭は PC 杭(Fc50kN/m²)または PHC(AC)杭 (Fc80 または 85N/mm²)となっており,調査においても杭種を特定できなかった。そこで,建設年代と建設場所を考慮して PC 杭 A 種を基本ケースとした。

杭体の *M-ø*関係は断面分割法により,後述のように設定した軸力ごとに求めたひび割れモーメント *M_c*,降伏曲げモーメント *M_y*(式 7.5.4.1),終局曲げモーメント *M_u*を折れ点とするトリリニアモデルと した。なお,解析では *M_u*に達した後もその値を保持(計算上は 1/1000 勾配で増加)するとした。増設 杭(鋼管杭)は全塑性モーメントを折れ点とするバイリニアモデルとする。

杭頭接合部は解体時の観察では埋め込みが少なく、かつ杭頭接合筋も見られなかったことから、杭 体頭部とパイルキャップ底面で接しているとして、下式のように端部が浮き上がるモーメント *M*,を上 限(軸力0の場合はピン接合)とするバイリニアモデルとした。初期剛性 *K*₀(式 7.5.4.2)は弾性体に 円筒形が接する場合の回転剛性とした。

$$M_{y} = \frac{N}{A_{p}} Z_{p}$$

$$K_{0} = \frac{\pi G(r_{1}^{3} - r_{2}^{3})}{2(1 - \nu)} = \frac{\pi E(B_{1}^{2} - B_{2}^{2})}{32(1 - \nu^{2})}$$
(式 7.5.4.2)

また,基礎の被害状況調査時の観察(写真 7.4.2.36)では,杭頭のパイルキャップへの埋め込みが ほとんどないと思われる X2-X4 通りの杭(調査 No.⁽¹⁾)に対して,PC 鋼材の全周破断が見られた X1-Y3 通りの杭(調査 No.⁽⁹⁾)では相当長が埋込まれていた。そこで,後者のような杭では杭体の終局曲 げモーメント以上まで回転剛性を保持できる(杭頭接合部 $M_{y} \ge$ 杭体 M_{u})と考えたケースも実施した。

上部構造の保有耐力時の支点反力から,杭の地震時負担軸力を載荷方向ごとに「大:1000kN」「中: 500kN」「小:0kN」にグルーピングした結果を図7.5.4.2 (EW 方向),図7.5.4.3 (NS 方向)に示す。

このうち今回の解析では N→S 載荷および E→W 載荷について行うこととし,表 7.5.4.2 のように杭 長および地盤条件ごとの軸力グループに分けてモデル化した。

図 7.5.4.4 に、軸力グループごとに計算した杭体および杭頭接合部の非線形性(M-φ, M-θ関係) を、図 7.5.4.5 に M-N インタラクションを示す。軸力 0 の場合はピン接合とした。

	X1	X2	X3	X4	X5	X5a	X6	X7	X8	X9	X10	X11
Y5						0	636				181	203
						984	0				181	203
Y4	33	0	933	471	470		601	446	572	138	588	311
	498	887	0	476	525		443	464	339	593	0	311
Y3	0	290	497	0	913		829	543	338	441	594	286
	918	424	299	788	61		185	390	599	313	188	286
Y2	493	175	540	0	1027		428	434	117	1021	550	173
	493	668	492	828	0		403	389	905	0	206	173
Y1		0	403	398	534		524	476	570	488	928	
		1009	484	594	409		524	536	447	419	0	
Y0			4	102	179		178	136	405	437		-
			418	392	138		176	176	95	0		

保有耐力時の支点反力 上段: W→E 載荷,下段: E→W 載荷

					500	500				500	500
0	0	1000	500	500		500	500	500	500	500	500
0	500	500	0	1000		500	500	500	500	500	500
500	500	500	0	1000		500	500	500	1000	500	500
	0	500	500	500		500	500	500	500	1000	
-		100	100	100		100	100	400	400		

グルーピング用軸力:W→E 載荷

					500	500				500	500
500	1000	0	500	500		500	500	500	500	0	500
1000	500	500	1000	0		500	500	500	500	500	500
500	500	500	1000	0		500	500	500	0	500	500
	1000	500	500	500		500	500	500	500	0	
-		400	400	100		100	100	100	100		

グルーピング用軸力:E→W 載荷

図 7.5.4.2 地震時軸力のグルーピング(EW 方向載荷)

	X1	X2	X3	X4	X5	X5a	X6	X7	X8	X9	X10	X11
Y5						738	600				181	203
						352	340				181	203
Y4	979	1067	457	703	765		598	602	878	1119	775	311
	0	0	81	292	272		466	312	121	0	0	311
Y3	0	817	988	729	458		339	358	350	1	338	286
	95	0	0	0	396		731	671	243	741	211	286
Y2	493	0	0	0	395		529	437	0	516	781	173
	493	1202	1105	618	360		325	400	817	349	0	173
Y1		0	0	250	460		396	430	624	34	0	
		1224	984	646	640		527	500	437	866	1219	
Y0			0	0	0		0	0	0	326		
			415	392	418		429	428	406	437		

保有耐力時の支点反力 上段:S→N 載荷,下段:N→S 載荷

					500	500				500	500
1000	1000	500	500	500		500	500	500	1000	500	500
0	1000	1000	500	500		500	500	500	0	500	500
500	0	0	0	500		500	500	500	500	1000	500
-	0	0	500	500		500	500	500	0	0	
		0	0	0		0	0	0	400		

グルーピング用軸力:S→N 載荷,

					500	500				500	500
0	0	0	500	500		500	500	500	0	0	500
0	0	0	0	500		500	500	500	500	500	500
500	1000	1000	500	500		500	500	500	500	0	500
	1000	1000	500	500		500	500	500	1000	1000	
_		400	400	400		400	400	400	400		

グルーピング用軸力:N→S 載荷

図 7.5.4.3 地震時軸力のグルーピング (NS 方向)

表 7.5.4.2 解析用の杭グループ

E→W 載荷

	W10	W5	W0	Cw10	Cw5	Cw0	Ce5	E5	E0	A4	A1
杭長(m)		26			28		30	3	2	(2	8)
軸力(kN)	1000	500	0	1000	500	0	500	500	0	400	100
地盤変位			N	o.4				No.1		No.4	No.1
地盤ばね			N	o.4				No.1		No.4	No.1
本数	12	35	5	12	16	10	51	26	10	6	8
群杭効果	前方	後方	後方	後方	後方	後方	後方	後方	後方	前方	後方
N→S 載荷											
	W10	W5	W0	Cw5	Cw0	Ce5	E10	E5	E0	A4	A4
杭長(m)		26		2	.8	30		32		(2	8)
軸力(kN)	1000	500	0	500	0	500	1000	500	0	400	400

軸力(kN)	1000	500	0	500	0	500	1000	500	0	400	400
地盤変位			No.4				No	b .1		No.4	No1
地盤ばね			No.4				No.1				No.1
本数	31	1	20	32	6	51	7	18	11	7	7
群杭効果*	前方	後方	後方	後方	後方	後方	前方	後方	後方	前方	前方

図 7.5.4.4 杭体の M-φ関係および杭頭接合部の M-θ関係

図 7.5.4.5 杭体および杭頭接合部の M-N インタラクション

また, せん断変形やせん断剛性は考慮していないが, 解析結果の評価においてせん断耐力計算値との比較を行う。既製コンクリート杭のせん断耐力に関しては以下のような提案があり, **表 7.5.4.3**に示すように最新の知見である *Q*₁ と *Q*2 は差が少なく, 解析結果では *Q*2 の値(*M*/*Qd*=3)と比較する。

①日本建築学会「鉄筋コンクリート基礎構造部材の耐震設計指針(案)(2017)」[7.5-8]

$$Q_{1} = \alpha \eta \frac{2tI}{S_{0}} \frac{1}{2} \sqrt{\left(\sigma_{g} + 2\sigma_{d}\right)^{2} - \sigma_{g}^{2}}$$

$$\alpha = \frac{4}{1 + M/Qd} \quad 1 \le \alpha \le 2, \qquad \eta = \frac{1800}{d + 1600} \quad \eta \ge 0.75$$

$$\sigma_{d} :$$

$$gu \oplus \pi^{2} \oplus \frac{1}{2} \oplus \frac{1}{2$$

②岸田慎司他「大口径 PHC 杭のせん断終局強度の計算方法に関する研究」[7.5-9]

$$Q_2 = bj(\frac{0.115k_uk_p(\sigma_B + 17.7)}{M/_{Od} + 0.115} + 0.657p_w\sigma_y + 0.102(\sigma_e + \sigma_0))$$
(7.5.4.4)

表 7.5.4.3 せん断耐力の計算結果(M/Qd=3)

N	=0	N=50	00kN	N=1000kN		
Q_1	Q_2	Q_1	Q_2	Q_1	Q_2	
112.0	111.6	163.3	162.6	202.0	213.6	

(3) 地盤のモデル化

地盤ばねは間瀬・中井^[7.5-6]の提案(式 7.5.4.5)に基づいて非線形性を考慮したモデル化を行う。

$$\frac{P(R)}{y(R)} = \frac{K_0}{1 + \frac{K_0}{P_y R} \frac{(1 - R_e)}{u} \frac{2}{\pi} ln \left\{ \sec\left(\frac{\langle R - R_e \rangle}{1 - R_e} \frac{\pi}{2}\right) \right\}}$$

ここで、 K_0 : Francis の式により求めた初期剛性
 P_y : 塑性地盤反力係数 ((4)~

R :正規降伏比= $P(R)/P_y$

 $\langle R \rangle$: $R \ge 0$ のとき R, R < 0 のとき 0

Re : 弾性限の *R* 値(ここでは 0)

u :極限地盤反力に近づく度合いを表す定数

地盤定数は表 7.5.4.4 に示すように東側は No.1 の調査結果を,西側は No.4 の結果を用いて設定する。群杭効果については,「建築基礎構造設計指針 (2001)」に示された載荷試験や解析に基づく評価式を用いて,載荷方向の前面に相当する杭を前方杭,その他を後方杭とした。群杭係数を表 7.5.4.5 に示すが実際の配置や同一フーチングに多数本打設されていることを厳密には考慮していない。

解析では図7.5.4.6に示すように、計算から求められる荷重-変位関係に内接する多折れ線モデルを用いる。地盤ばねはWinkler ばねとして杭径の0.5~1.0倍のピッチで杭に取り付ける。さらに、中野・宮本らの検討^[7.5-7]にならって、杭頭部の地盤の剥離(突出)を考慮して表層3mの地盤ばね値を1/100としたケースも実施する。

No.1(東側)

No	下端深度	上街	N店	Vs		γ	¢	с	
INO.	(GL-m)	上貝	111但	(m/s)	v	(kN/m^3)	(°)	(kN/m^2)	u
1	3	粘性土	2	70	0.4	16	0	30	20
2	5	粘性土	7	70	0.4	16	0	44	20
3	7	粘性土	2	70	0.4	16	0	30	20
4	9	砂質土	15	70	0.33	18	36	94	50
5	11	粘性土	2	70	0.4	16	0	30	50
6	13	粘性土	2	70	0.4	16	0	30	50
7	17	粘性土	2	70	0.4	16	0	30	75
8	19	粘性土	1	70	0.4	16	0	30	75
9	22	粘性土	1	70	0.4	16	0	30	75
10	25	砂質土	18	200	0.33	18	33	113	100
11	29	砂質土	23	200	0.33	18	35	144	100
12	35	砂質土	35	200	0.33	18	37	219	100
No.4	(西側)								
No	下端深度	十西	N店	Vs		γ	φ	с	.,,
INO.	(GL-m)	上貝	111但	(m/s)	v	(kN/m^3)	(°)	(kN/m^2)	u
1	3	粘性土	4	70	0.4	16	0	30	20
2	5	粘性土	3	70	0.4	16	0	30	20
3	7	砂質土	8	70	0.4	16	33	50	50
4	9	粘性土	2	70	0.33	18	0	30	50
5	11	粘性土	2	70	0.4	16	0	30	50
6	13	粘性土	2	70	0.4	16	0	30	50
7	17	粘性土	6	70	0.4	16	0	38	75
8	19	砂質土	18	200	0.33	18	34	113	100
9	22	砂質土	24	200	0.33	18	36	150	100
10	25	砂質土	28	200	0.33	18	37	175	100
11	29	砂質土	34	200	0.33	18	38	213	100
12	35	砂質土	38	200	0.33	18	38	238	100

表 7.5.4.4 地盤のモデル化

表 7.5.4.5 群杭係数

		FI DOD			
	ڋ	κ	μ	λ	
前方杭	1.0	3	1.4	9	
後方杭	1	0.86	1.1	7.5	

7 - 233

7.5.5 上部構造の動的解析結果と被害分析

(1) はじめに

上部構造の地震時応答値について、被害程度から推測される最大応答層間変形角(1/200~1/120)を 検討するために、荷重増分解析結果より各階の復元力特性を設定し、多質点振動モデルへの地震波の入 力により時刻歴応答解析 (Newmark β 法 0.25 による) を行った。

動的解析による検討の目的は、上部構造と杭の被害状況、本建物1FL における観測記録を合理的に説 明することである。

図 7.5.5.1 に解析モデルを,図 7.5.5.2 には被害調査等による応答解析の目標クライテリアを示す。

建物モデル

図 7.5.5.2 被害調査等による応答解析の目標クライテリア

(2) 解析モデルの設定

- ・地上部の解析モデルについては,基礎(1FL)からペントハウス屋上(PHR)までに質量を集中させた5 質点等価せん断型モデルとした。ここで,全体曲げの影響は殆どないと考え,等価せん断型とした。
- ・基礎部の解析モデルについては、基礎固定とした解析モデル(以下,FXモデルと呼ぶ)と、スウェ イーロッキングバネを設けた解析モデル(以下,SRモデルと呼ぶ)の2種類とした。ここで、建物 の形状と杭配置よりロッキングばねの剛性が十分高く(1310×10⁶kN-m/rad.)、基礎ロッキングによ る上部構造への影響は小さいと考えられるため、上部構造は等価せん断型モデルとし、SRモデルの 応答結果にはスウェイばねの影響のみが考慮される。
- ・解析モデルの諸元を表7.5.5.1に示す。
- ・既存架構の復元力特性は,静的弾塑性荷重増分解析に基づいて評価したトリリニア型とし,履歴特 性は武田モデル(y=0.4, ξ=0.7)とした。
- ・さらに,既存架構の復元力特性について,外力分布の影響や建物の強度評価の影響による耐力上昇 等を考慮するために,剛性K0および耐力Q1,Q2を2倍としたモデル(FX20およびSR20モデル) についても検討した。
- ・FX10 および SR10 モデルの復元力特性を表7.5.5.2~表7.5.5.3 に示す。
- ・上部構造の荷重増分解析の結果とトリリニアモデルを図7.5.5.3~図7.5.5.4 に示す。

階	階高(mm)	高さ (mm)	質量 (ton)
PHR	4200	17120	174
RFL	3830	12920	1452
3FL	3815	9090	1593
2FL	5275	5275	1886
1FL	-	0	2574

表 7.5.5.1 解析モデルの諸元

表 7.5.5.2 桁行 X 方向 SR10V05 モデルの復元力特性

Х	弾性	第一	第二	第二	第三	第一	第二	第二	第三
	剛性	折点	折点	勾配	勾配	折点	折点	勾配	勾配
	KO (kN/mm)	Q1 (kN)	Q2	$\alpha 1$	$\alpha 2$	Q1 (kN)	Q2 (kN)	$\alpha 1$	$\alpha 2$
RF	2168	-	_	_	-	_	_	-	-
3F	4122	6363	15554	0.108	0.002	6736	15373	0.103	0.002
2F	5965	11011	25598	0.093	0.002	11361	25259	0.085	0.002
1F	7213	14080	34334	0.123	0.004	14561	33826	0.107	0.004
SR	2860	_	_	_	_	_	_	_	_
岡川	999999	-	37647	-	0	-	37647	-	0

Y	弾性	第一	第二	第二	第三	第一	第二	第二	第三
	剛性	折点	折点	勾配	勾配	折点	折点	勾配	勾配
	KO(kN/mm)	Q1 (kN)	Q2	$\alpha 1$	$\alpha 2$	Q1 (kN)	Q2 (kN)	$\alpha 1$	$\alpha 2$
RF	-	-	-	-	-	-	-	-	-
3F	6338	7393	17589	0.184	0.0095	7627	17595	0.171	0.0140
2F	8182	15455	29710	0.072	0.0004	14671	29812	0.079	0.0005
1F	8262	19953	39885	0.068	0.00003	18493	39972	0.077	0.0004
SR	2860	-	-	-	-	-	-	-	_
岡山	9999999	_	37647	_	0	_	37647	_	0

表 7.5.5.3 張間 Y 方向 SR10V05 の復元力特性

図 7.5.5.3 X 方向(桁行)正加力の荷重-変位関係

図 7.5.5.4 Y方向(張間)正加力の層せん断カー層間変位関係

- ・RC 造架構の内部粘性系の減衰を仮定し、1 階床位置固定時の弾性1 次固有振動に対してX・Y 方向 とも 3%の減衰定数を与え、瞬間剛性比例型とした。
- ・表 7.4.1.9 より,スウェイばねは弾性(2860kN/mm)とし,スウェイばねと並列に線形弾性型のダ ッシュポット 97.7kN/(mm/s)を配置した。
- ・杭頭の弾塑性挙動や底面摩擦を考慮するために、スウェイを考慮した Voigt モデルと直列に、全建 物重量(基礎重量を含む)の 50%で滑らせるための剛塑性ばねを配置した V05 モデル、および杭の 終局曲げ強度を考慮し全建物重量(基礎重量を含む)の 40%で降伏させるための剛塑性ばねを配置 した V04 モデルを検討した。この剛塑性ばねの履歴特性は、武田モデル(γ=0.4、ξ=0.7)とした。
- ・解析モデル一覧を表7.5.5.4 に示す。

モデル名称	基礎ばね+すべりモデル	上部構造荷重増分モデル
FX10	固定FX	トリリニア1.0倍
FX20	固定FX	トリリニア2.0倍
SR10	スウェイばねSR	トリリニア1.0倍
SR20	スウェイばねSR	トリリニア2.0倍
SR10V05	スウェイばねSR+滑り0.5ΣW	トリリニア1.0倍
SR20V05	スウェイばねSR+滑り0.5ΣW	トリリニア2.0倍
SR10V04	スウェイばねSR+滑り0.4ΣW	トリリニア1.0倍
SR20V04	スウェイばねSR+滑り0.4ΣW	トリリニア2.0倍

表 7.5.5.4 解析モデル一覧

- ・各モデルの固有周期を表7.5.5.5に示す。
- ・地震波の入力位置は,FX モデルでは基礎(1FL)レベルの固定端とし,SR モデルではスウェイーロッキングバネの固定端とする。

固有周期	X_FX10	X_FX20	X_SR10	X_SR20
	(sec)	(sec)	(sec)	(sec)
1次モード	0.229	0.162	0.377	0.351
2 次モード	0.094	0.066	0.137	0.103
3次モード	0.062	0.044	0.081	0.058

表 7.5.5.5 各モデルの固有周期(X=EW=桁行方向, Y=NS=張間方向)

固有周期	Y_FX10	Y_FX20	Y_SR10	Y_SR20
	(sec)	(sec)	(sec)	(sec)
1 次モード	0.203	0.143	0.366	0.345
2 次モード	0.079	0.056	0.120	0.089
3 次モード	0.052	0.037	0.070	0.050

(3)入力地震動

入力地震動は,熊本地震(2016年4月14日前震,16日本震)において観測されたKik-net 益城(KMMH16) と宮園の観測波を用いるとともに,Kik-net 益城の地中(基盤)観測波を庁舎地盤ボーリングデータ(2 地点ボーリングNo1,No4)より非線形特性を考慮して作成した表層波(GL1b,GL4b)とした。

解析モデルへの入力には,建物方位 EW が桁行方向とほぼ一致しているため,桁行方向(X 方向)に EW 波を,張間方向(Y 方向)に NS 波を入力した。

これらの入力地震動の諸元を表 7.5.5.6~表 7.5.5.7 に示す。また図 7.5.5.5a~d には入力地震動の 加速度時刻歴を,図 7.5.5.6~7.5.5.9 には Sa-Sd 曲線を示す。ここで,GL1b と GL4b の加速度波形に は、宮園観測波を重ねて示している。

入力	入力地震動		最大 加速度 (cm/sec ²)	解析時間 (sec)	備考			
V~`N	地震波名称							
熊本 地震 2016	観測波	KMMH16ew0414	694.8	60	Kik-net(4/14 表層観測 EW)			
		KMMH16ew0416	1156.7	60	Kik-net(4/16 表層観測 EW)			
		Miya0414EW	731.8	60	自治体(4/14 観測 EW)			
		Miya0416EW	825.4	60	自治体(4/16 観測 EW)			
	模擬波	GL1b14EW	640.1	60	No1 ボーリングデータと KiK-net			
					(4/14 基盤観測 EW) より作成			
		GL1b16EW	876.8	60	No1 ボーリングデータと KiK-net			
					(4/16 基盤観測 EW) より作成			
		GL4b14EW	825.2	60	No4 ボーリングデータと KiK-net			
					(4/14 基盤観測 EW) より作成			
		GL4b16EW	1182.0	60	No4 ボーリングデータと KiK-net			
					(4/16 基盤観測 EW) より作成			

表 7.5.5.6 入力地震動(桁行 X 方向=EW 方向)

表 7.5.5.7 入力地震動 (張間 Y 方向=NS 方向)

スカ	入力地震動		最大	最大 加速度 (cm/sec ²) 解析時間 (sec)	備考
V^*N	地震波・名称		加速度 (cm/sec ²)		
熊本 地震 2016	観測波	KMMH16ns0414	570.0	60	Kik-net(4/14 表層観測 NS)
		KMMH16ns0416	651.8	60	Kik-net(4/16 表層観測 NS)
		miya0414NS	631.5	60	自治体宮園 1F(4/14 観測 NS)
		miya0416NS	775.5	60	自治体宮園 1F(4/16 観測 NS)
	模擬波	GL1b14NS	509.1	60	No1 ボーリングデータと KiK-net
					(4/14 基盤観測 NS) より作成
		GL1b16NS	619.7	60	No1 ボーリングデータと KiK-net
					(4/16 基盤観測 NS) より作成
		GL4b14NS	626.8	60	No4 ボーリングデータと KiK-net
					(4/14 基盤観測 NS) より作成
		GL4b16NS	780.8	60	No4 ボーリングデータと KiK-net
					(4/16 基盤観測 NS) より作成

図 7.5.5.5c 入力地震動の加速度時刻歴

図 7.5.5.5d 入力地震動の加速度時刻歴

図 7.5.5.6 入力地震動 (NS・4/14) の Sa-Sd スペクトル

図 7.5.5.7 入力地震動(EW・4/14)の Sa-Sd スペクトル

図 7.5.5.8 入力地震動 (NS・4/16) の Sa-Sd スペクトル

図 7.5.5.9 入力地震動(EW・4/16)の Sa-Sd スペクトル

(4) 応答結果

各解析モデル(基礎固定 FX10, FX20 モデル・基礎スウェイ SR10V05, SR10V04, SR20V05, SR20V04 モデル)のX方向(EW)およびY方向(NS)について,最大応答相対変位,最大相対速度,最大絶対 加速度,最大層間変形,最大層せん断力,最大層せん断力係数,最大転倒モーメント,最大層間変形 角を図7.5.5.10~7.5.5.11に示す。また,各階の最大応答を図7.5.5.12~図7.5.5.13に示す。

FX モデルの 1F 応答と入力波および SR モデルの 1F 応答と応答波を図 7.5.5.14~7.5.5.15 に,スウ ェイばねの変位-応力関係とダッシュポットの速度-応力関係,および剛塑性ばねの変位-応力関係 とダッシュポットの速度・変位応答の時刻歴を図 7.5.5.16~7.5.5.17 に示す。なお,1F 応答波には, 宮園観測記録を併せて示した。

図7.5.5.10.aに示す通り,基礎固定モデルFX10では,Miya入力地震動による応答値が1/20程度となり,被害状況による目標クライテリア1/200~1/120と一致しない結果となった。

図 7.5.5.10.a X 方向(EW)_FX10 モデルの最大応答

図7.5.5.10.bに示す通り,基礎固定モデルFX20では,Miya入力地震動による応答値が1/400程度となり,被害状況から推定した目標クライテリア1/200~1/120よりもやや小さな応答となった。

これらの結果より、建物の実際の復元力特性は、FX10とFX20の中間に存在すると考えられる。

図 7.5.5.10.b X 方向(EW)_FX20. モデルの最大応答

図7.5.5.10.cに示す通り、スウェイモデルSR10では、GL4b16EW入力地震動による応答値が1/10を超 え、被害状況による目標クライテリア1/200~1/120とは一致しない。また、スウェイバネの滑り変形 は小さく、地盤の応答解析による杭と地盤の相対変位200mm~300mmと一致しない結果となった。

図 7.5.5.10.c X 方向(EW)_SR10 モデルの最大応答

図7.5.5.10.dに示す通り、スウェイモデルSR10+滑り0.5ΣW(SR10V05)では、いずれの入力地震動 に対しても1F応答値が1/200程度、2F応答値が1/100程度となり、1階の実被害が2階よりも大きい事実 とは一致しなかったが、被害状況から推定した目標クライテリア1/200~1/120とはほぼ一致した。た だし、スウェイバネの滑り変形が最大700mm程度と過大となり、地盤の応答解析による杭と地盤の相対 変位200mm~300mmよりも大きな値となった。また、基礎固定モデルFX10の応答層間変形角1/20程度に 比べて小さくなっており、1階床応答が宮園観測波と整合していないことが推測される。

図 7.5.5.10.d X 方向(EW)_SR10_V05 モデルの最大応答

図7.5.5.10.eに示す通り、スウェイモデルSR10+滑り0.4ΣW(SR10V04)では、いずれの入力地震動 に対しても1F応答層間変形角が1/300程度、2F応答値が1/200程度となり、1階の実被害が大きいことと は一致せず、また被害状況から推定した目標クライテリア1/200~1/120よりも小さい応答となった。 また、スウェイバネの滑り変形は最大600mm程度と過大となり、地盤の応答解析による杭と地盤の相対 変位200mm~300mmより大きな値となった。さらに、基礎固定モデルFX10の最大層間変形角1/20程度の 応答結果に比べて小さくなっており、1階床応答が宮園観測波と整合していないことが推測される。

図 7.5.5.10.e X 方向(EW)_SR10_V04 モデルの最大応答

図7.5.5.10.fに示す通り、スウェイモデルSR20では、1F応答値が1/250程度、2F応答値が1/150程度 となり、被害状況から推定した目標クライテリア1/200~1/120と概ね一致した。ただし、スウェイバ ネの滑り変形は30mm程度であり、地盤の応答解析による杭と地盤の相対変位200mm~300mmより小さな 値となった。ここで、FX20と概ね同等の応答となったため、1階の床応答加速度は、Miya(宮園観測記 録)と近似していることが推測される。

図 7.5.5.10.f X 方向(EW)_SR20 モデルの最大応答

図7.5.5.10.gに示す通り、スウェイモデルSR20+滑り0.5ΣW(SR20V05)では、1F応答値が1/2500程 度、2F応答値が1/2000程度となり、被害状況から推定した目標クライテリア1/200~1/120と一致しな い。また、スウェイバネの滑り変形は750mm程度であり、地盤の応答解析による杭と地盤の相対変位 200mm~300mmより大きい値となった。

図7.5.5.10.hに示す通り、スウェイモデルSR20+滑り0.4ΣW(SR20V04)では、1F応答値が1/2500程 度、2F応答値が1/2000程度となり、被害状況から推定した目標クライテリア1/200~1/120と一致しな い。また、スウェイバネの滑り変形は550mm程度であり、地盤の応答解析による杭と地盤の相対変位 200mm~300mmより大きい値となった。

図 7.5.5.10.h X 方向(EW)_SR20_V04 モデルの最大応答

図7.5.5.11.aに示す通り、Y方向(NS方向)の基礎固定モデルFX10では、宮園応答値が1/100程度となり、被害状況による目標クライテリア1/400とは一致しない結果となった。

図 7.5.5.11.a Y方向(NS)のFX10モデルの最大応答

図7.5.5.11.bに示す通り,基礎固定モデルFX20では,宮園応答値が1/2000程度となり,被害状況から推定した目標クライテリア1/400よりもやや小さな応答となった。

図 7.5.5.11.b Y方向(NS)のFX20モデルの最大応答

図7.5.5.11.cに示す通り、スウェイモデルSR10では、GL4b16EW応答値が1/15程度となり、被害状況 による目標クライテリア1/400とは一致しない。また、スウェイバネの滑り変形も小さく、地盤の応答 解析による杭と地盤の相対変位100mmと一致しない結果となった。

図 7.5.5.11.c Y 方向(NS)_SR10 モデルの最大応答

図7.5.5.11.dに示す通り、スウェイモデルSR10+滑り0.5ΣW(SR10V05)では、1F応答値が1/200程 度となり、被害状況から推定した応答値1/400とは一致しない。ただし、スウェイバネの滑り変形が 300mm程度となり、地盤の応答解析による杭と地盤の相対変位100mmより大きな値となった。

図 7.5.5.11.d Y方向(NS)_SR10_V05 モデルの最大応答

図7.5.5.11.eに示す通り、スウェイモデルSR10+滑り0.4ΣW(SR10V04)では、1F応答値が1/500程 度となり、被害状況から推定した目標クライテリア1/400と同等の応答となった。ただし、スウェイバ ネの滑り変形は400mm程度となり、地盤の応答解析による杭と地盤の相対変位100mmより大きな値とな った。

図 7.5.5.11.e Y方向(NS)_SR10_V04 モデルの最大応答

図7.5.5.11.fに示す通り、スウェイモデルSR20では、1F応答値が1/600程度となり、被害状況から推定した目標クライテリア1/400と概ね一致した。ただし、スウェイバネの滑り変形は20mm程度であり、地盤の応答解析による杭と地盤の相対変位100mmより小さな値となった。

図 7.5.5.11.f Y方向(NS)_SR20 モデルの最大応答

図7.5.5.11.gに示す通り、スウェイモデルSR20+滑り0.5ΣW(SR20V05)では、1F応答値が1/2500程 度となり、被害状況から推定した目標クライテリア1/400と一致しない。また、スウェイバネの滑り変 形は300mm程度であり、地盤の応答解析による地盤と基礎の相対変位100mmより大きい値となった。

図 7.5.5.11.g Y方向(NS)_SR20_V05 モデルの最大応答

図7.5.5.11.hに示す通り、スウェイモデルSR20+滑り0.4ΣW(SR20V04)では、1F応答値が1/2500程 度となり、被害状況から推定した目標クライテリア1/400と一致しない。また、スウェイバネの滑り変 形は400mm程度であり、地盤の応答解析による杭と地盤の相対変位100mmより大きい値となった。

図 7.5.5.11.h Y方向(NS)_SR20_V04 モデルの最大応答

図 7.5.5.12a より,基礎固定モデル FX10 の耐力を2倍した FX20 モデルでは,ほぼ弾性範囲に収まっている。地震被害(推定最大応答1/200~1/120)に対して,宮園観測波による応答値(FX10ではMIYA14EW, MIYA16EW ともに1/20程度,FX20ではMIYA14EW, MIYA16EW ともに1/400程度)であり,この中間くらいが実際の建物の復元力特性であると考えられる。

図 7.5.5.12.a X 方向(EW)_FX10 モデルと_FX20 モデルの各階復元力特性と最大応答値

図 7.5.5.12b より, スウェイモデル SR10 と SR20 では, FX10 と FX20 のそれぞれと同様の応答を示した。またいずれのモデルもスウェイばねの変形は 30mm 程度と小さく, 杭と地盤の相対変形(200mm~ 300mm) と一致しない。

図 7.5.5.12.b X 方向(EW)__SR10 モデルと_SR20 モデルの各階復元力特性と最大応答値

図7.5.5.12cより,スウェイモデルに滑りを考慮することで,上部への入力が小さくなりSR10V05の結果と被害からの推定(1/200~1/120)がほぼ一致した。ただし,FX10の応答値とは大きく異なることから,1階床応答と宮園観測波は一致していないと考えられる。

図 7.5.5.12.c X 方向(EW)_SR10V05 モデルと_SR10V04 モデルの各階復元力特性と最大応答値

図7.5.5.12dより、スウェイモデルに滑りを考慮し耐力を2倍すると、上部構造の応答変位は更に小 さくなり被害からの推定(1/200~1/120)よりもかなり小さい応答値となる。また、FX20の応答値とも 大きく異なることから、1階床応答と宮園観測波は一致しないと考えられる。

図 7.5.5.12.d X 方向(EW)_SR20V05 モデルと_SR20V04 モデルの各階復元力特性と最大応答値

図7.5.5.13.aに示す通り,基礎固定モデルFY10では,宮園応答値が1/100程度となり,被害状況による応答値1/400とは一致しない。またFY20では,1/2000程度となり,過小に評価した。実際の応答値はこれらの中間であり,Y方向についてもFY10とFY20の中間の復元力特性と考えられる。

図 7.5.5.13.a Y方向(NS)_FX10 モデルと_FX20 モデルの各階復元力特性と最大応答値

図7.5.5.13.bに示す通り、スウェイモデルでは基礎固定モデルと同様の結果となり、またいずれも スウェイばねの変形は20mm程度と小さく、杭と地盤の相対変形(100mm)と一致しない。

図 7.5.5.13.b Y方向(NS)_SR10 モデルと_SR20 モデルの各階復元力特性と最大応答値

図7.5.5.13cより,スウェイモデルに滑りを考慮することで,上部への入力が小さくなりSR10V05の結果と被害からの推定(1/400)が一致する。ただし,FY10の応答値とは大きく異なることから,1階床応答と宮園観測波は一致しないと考えられる。

図 7.5.5.13.c Y方向(NS)_SR10V05 モデルと_SR10V04 モデルの各階復元力特性と最大応答値

図 7.5.5.13d より,スウェイモデルに滑りを考慮し耐力を2倍すると,上部構造の応答変位は更に小 さくなり被害からの推定(1/400)よりもかなり小さい応答値となる。また,FY20の応答値とも大きく 異なることから,1階床応答と宮園観測波は一致しないと考えられる。

図 7.5.5.13.d Y方向(NS)_SR20V05 モデルと_SR20V04 モデルの各階復元力特性と最大応答値

図 7.5.5.14.a X 方向(EW)__FX10 モデルの1 階応力-変形関係と入力波(No4b16EW)と観測波 miya

図 7.5.5.14.b X 方向(EW) __FX20 モデルの1 階応力-変形関係と入力波(No4b16EW)と観測波 miya

図 7.5.5.14.c X 方向(EW) __SR10 モデルの 1 階応力-変形関係と 1F 応答波(No4b16EW)と観測波 miya

図 7.5.5.14.d X 方向 (EW) __SR10V05 モデルの1 階応力-変形関係と1F 応答波 (No4b16EW) と観測波 miya

図 7.5.5.14.e X 方向(EW) __SR10V04 モデルの1 階応力-変形関係と1F 応答波(No4b16EW)と観測波

miya

7-265

図 7.5.5.14.f X 方向(EW)__SR20 モデルの1 階応力-変形関係と1F 応答波(No4b16EW)と観測波

図 7.5.5.14.g X 方向(EW) __SR20V05 モデルの1 階応力-変形関係と1F 応答波(No4b16EW)と観測波

miya

図 7.5.5.14.h X 方向(EW) __SR20V04 モデルの1 階応力-変形関係と1F 応答波(No4b16EW)と観測波

miya

図 7.5.5.15.a Y方向(NS)_FX10 モデルの1 階応力-変形関係と入力波(No4b16NS)と観測波 miya

図 7.5.5.15.b Y 方向(NS)_FX20 モデルの1 階応力-変形関係と入力波(No4b16NS)と観測波 miya

図 7.5.5.15.c Y方向(NS)_SR10 モデルの1 階応力-変形関係と入力波(No4b16NS)と観測波 miya

図 7.5.5.15.d Y 方向(NS)_SR10V05 モデルの1 階応力-変形関係と1F 応答波(No4b16NS)と観測波

図 7.5.5.15.e Y方向(NS)_SR10V04 モデルの1 階応力-変形関係と1F 応答波(No4b16NS)と観測波

miya

図 7.5.5.15.f Y 方向(NS)_SR20 モデルの1 階応力-変形関係と1F 応答波(No4b16NS)と観測波

miya

図 7.5.5.15.g Y 方向 (NS) __SR20V05 モデルの1 階応力-変形関係と1F 応答波 (No4b16NS) と観測波 miya

図 7.5.5.15.h Y方向(NS)_SR20V04 モデルの1階応力-変形関係と1F応答波(No4b16NS)と観測波

miya

図 7.5.5.16.a X 方向(EW)__SR10 モデルのスウェイバネ変形-応力とダッシュポット速度-応力関係 (No4b_EW_4/16)

図 7.5.5.16.b X 方向(EW)__SR10V05 モデルのスウェイバネ変形-応力とダッシュポット速度-応力関係 (GL4b_16EW)

図 7.5.5.16.c X 方向(EW)_SR10V04 モデルのスウェイバネ変形-応力とダッシュポット速度-応力関係

 $(No4b_16EW)$

図 7.5.5.16.d X 方向(EW)__SR20 モデルのスウェイバネ変形-応力とダッシュポット速度-応力関係 (No4b_16EW)

図 7.5.5.16.e X 方向(EW)__SR20V05 モデルのスウェイバネ変形-応力とダッシュポット速度-応力関係(No4b_16EW)

図 7.5.5.16.f X 方向(EW)__SR20V04 モデルのスウェイハ ネ変形-応力と ダッシュホット速度-応力関係 (No4b_16EW)

図 7.5.5.16.g X 方向__SR10V05 モデルの剛塑性バネ変形-応力とダッシュポット速度-変位応答(No4b_16EW)

図 7.5.5.16.h X 方向__SR10V04 モデルの剛塑性バネ変形-応力とダッシュポット速度-変位応答(No4b_16EW)

図 7.5.5.16.i X 方向__SR20V05 モデルの剛塑性バネ変形-応力とダッシュポット速度-変位応答(No4b_16EW)

図 7.5.5.17.a Y 方向(NS)__SR10 モデルのスウェイバネ変形-応力とダッシュポット速度-応力関係(No4b_16NS)

図 7.5.5.17.b Y 方向 (NS) __SR10V05 モデルのスウェイバネ変形-応力とダッシュポット速度-応力関係 (No4b_16NS)

図 7.5.5.17.c Y 方向(NS)__SR10V04 モデルのスウェイバネ変形-応力とダッシュポット速度-応力関係(No4b_16NS)

図 7.5.5.17.d Y 方向(NS)__SR20 モデルのスウェイバネ変形-応力とダッシュポット速度-応力関係(No4b_16NS)

図 7.5.5.17.e Y 方向(NS)__SR20V05 モデルのスウェイバネ変形-応力とダッシュポット速度-応力関係(No4b_16NS)

図 7.5.5.17.f Y 方向(NS)__SR20V04 モデルのスウェイバネ変形-応力とダッシュポット速度-応力関係(No4b_16NS)

図 7.5.5.17.h Y 方向__SR10V04 モデルの剛塑性バネ変形-応力とダッシュポット速度-変位応答(No4b_16NS)

図 7.5.5.17.i Y 方向__SR20V05 モデルの剛塑性バネ変形-応力とダッシュポット速度-変位応答(No4b_16NS)

図 7.5.5.17. j Y 方向__SR20V04 モデルの剛塑性バネ変形-応力とダッシュポット速度-変位応答(No4b_16NS)

図 7.5.5.18 に宮園観測波(miya) とスウェイを考慮した SR10 モデル解析結果から得られた1 階床応 答波(res)の応答スペクトルを比較して示す。ここで示す応答波のスペクトル(例えば x_sr10_GL1b14res) を得るための入力地震動は、ボーリング No1 と KiK-net 基盤波 4/14EW(GL1b14) より作成した。各入力 地震動名称は表 7.5.5.6 ~ 7.5.5.7 による。

右上図 (SR10) と右下図 (SR10V05) の比較より,スウェイモデル (SR10) に比べて滑りを考慮したモ デル (SR10V05) では,ボーリング No4 と基盤波 4/16EW より作成した入力地震動に対する応答波のスペ クトル (x_sr10_GL4b16res) が短周期以外の周期帯において,3000cm/s²以上の加速度応答が 2000cm/s² 程度まで低減された。

図 7.5.5.18 1 階床の応答スペクトル(宮園観測波との比較)

代表的な結果として,4/14 に観測された宮園観測波(MIYA0414)を入力した際の建物の最大応答層間 変形角を表7.5.5.8 に示す。

表 7.5.5.8より,SR10_V05 が実際の被害からの推測した応答解析の目標クライテリア(X 方向:最大応答層間変形角 1/200~1/120,地盤応答変位 200mm~300mm,Y 方向:最大応答層間変形角 1/400,地盤応答変位 100mm)に最も近い結果となった。

階 FX20 FX10 SR10 SR10 SR10 SR20 SR20 SR20 V05 _V04 _V05 _V04 3階 1/201/1211/6681/1461/2061/3321/26551/33022 階 1/211/3461/221/1081/1711/2651/21491/26371階 1/201/4141/911/1671/2801/4141/21271/30891 階床変位 _ _ 19 mm462mm 506mm 25 mm430mm 507mm

表 7.5.5.8 X 方向(桁行 EW)最大応答層間変形角(入力:miya0414EW 観測波)

Y方向(張間NS)最大応答層間変形角(入力:miya0414NS 観測波)

階	FX10	FX20	SR10	SR10	SR10	SR20	SR20	Y_SR20
				_V05	_V04		_V05	_V04
3 階	1/381	1/3835	1/51	1/837	1/1912	1/1974	1/4956	1/5623
2 階	1/147	1/2671	1/133	1/270	1/1631	1/2466	1/3362	1/3946
1階	1/116	1/2478	1/395	1/217	1/478	1/3775	1/3144	1/3791
1 階床変位	-	-	19mm	153mm	217mm	20mm	137mm	211mm

(5)考察

基礎固定モデル FX では、上部構造の荷重増分解析結果より得られた復元力特性を用いたモデル FX10 において、XY 両方向ともに被害程度よりも大きな最大応答層間変形角が生じる結果となった。

これに対して建物の復元力特性の剛性と耐力を2倍とした FX20 モデルでは, XY 両方向ともに被害程 度よりも小さな最大応答層間変形角が生じる結果となった。

これらの結果から、建物の復元力特性は、FX10とFX20の中間程度であると考えられる。

復元力特性が FX10 よりも強度や剛性が高くなることについては,静的荷重増分解析時に想定した Ai 分布に基づく外力分布が実際には等分布に近かった可能性や,等価せん断モデルの崩壊形の影響,梁に 対するスラブの協力幅や考慮するスラブ筋の影響,鉄筋の降伏点を規格降伏点の 1.1 倍としたことの影響,せん断強度式と実強度のばらつき等が考えられる。

スウェイを考慮した SR10 モデルでは,基礎固定モデル FX10 とさほど変わらない応答結果となり,1F 床の最大応答変位は 20mm 程度であった。

そこで、基礎部は建物全重量の 50%のせん断力で滑るか、あるいは建物全重量の 40%のせん断力で 杭が降伏すると仮定した SR10_V05 モデルや SR10_V04 モデルでは、滑り変形により地盤と杭の相対変位 や杭頭部の被害状況を説明できる可能性を示した。

(6) 今後の課題

- ・建物の被害を質点系モデルにより精度よく予測するためには、復元力特性を作成する際の外力分布や、 スラブ効果、鉄筋強度、せん断耐力等の評価が重要であり、一般的に設計で用いられている評価方法 では、かなり過小評価する可能性があることが分かった。このため、被害予測に活用できる強度や剛 性の評価手法を確立する必要がある。
- ・微動観測結果から定めた地盤スウェイバネとダッシュポットは、大地震時に対して過大な評価となる 可能性があることが分かった。このことから、上部構造への入力を適切に評価するためには、杭頭部 の塑性変形や地盤との滑り、地盤の塑性変形等を考慮できる杭地盤モデルの構築が必要である。

7.5.6 基礎構造解析結果と被害分析

(1) パラメータスタディ

シミュレーションに先立って、パラメータを設定するための解析を実施した。解析ケースおよびそれ ぞれのケースの目的を表 7.5.6.1 に示す。

No.	解析目的	地震動	参照ボーリング	杭頭接合部
P1	基本ケース	4/16 本震 EW	西 No. 4/東 No. 1	回転
P2	載荷方向ごとの結果の違いの確認	4/16 本震 NS	西 No. 4/東 No. 1	回転
P3	東西の地盤変形が異なることの影響の確認	4/16 本震 EW	No.1	回転
P4	杭頭接合部の固定条件の影響の確認	4/16 本震 EW	西 No. 4/東 No. 1	ピン
P5	文献 ^[7.5-7] に示された杭側面地盤の剥離の影	4/16 本震 EW	西 No. 4/東 No. 1	固定
	響の確認			

表 7.5.6.1 解析ケース

解析結果を図7.5.6.1~7.6.5.5に示す。以下にこれらの解析から得られた結果を示す。

- ・4/16 本震の入力の方向については, EW 方向でやや西側の杭の発生応力が大きくなるが,大きな差は なく,いずれも東側で終局耐力に達する結果となった。負担軸力による大きな差はなかった。実際の 被害は,建物全体で生じており,いずれの方向にしても本震のみの載荷では被害状況と対応しない。
- ・地盤変位が東西で同じとした場合は、本震に対して補強部以外の建物下の杭は、降伏曲げモーメント を超えた杭は一部あったが、終局耐力に達しなかった。つまり、上記の終局耐力に達するような応力 の発生は、東西の地盤変形の違いの影響が大きいと推定される。
- ・杭頭接合部をピン接合とした場合は、回転剛性を評価したケースと大きな差はなかったが、西側のす べての杭の地中部 7m 付近で降伏曲げモーメントを超えた。これは IT 試験では確認できておらず、実際には軸力に応じた固定度を有していると考えられる。
- ・杭周辺地盤の剥離を考慮した場合(かつ杭頭固定条件)は、杭の応力に関して文献^[7,5-7]とほぼ対応す る結果が得られた。ただし、保有耐力時の 70%程度(解析ではこれ以上は載荷不能)の入力ですべて の杭で杭頭が終局曲げモーメントに達し、多くの杭の地中部 5m 付近で終局曲げモーメントまたは降 伏曲げモーメントに達しており、実際の破壊状況とは必ずしも一致していない。
- ・増設杭は,杭頭固定とすればいずれのケースでも杭頭で終局曲げモーメントに達した。実際の被害 状況から固定に近い状態であったと推定される。

これらの結果から、被害シミュレーションは以下の方針で行うこととした

- a) 4/14 前震の解析を行ってその影響を考慮してモデル化を見直した上で, 4/16 本震のシミュレーションを行う。
- b) 地盤変形は, 西側は No.4 ボーリング, 東側は No.1 ボーリングのデータに基づく地盤変形を与える。
- c) 杭頭接合部の回転剛性を考慮した解析を行う
- d) 地盤の剥離は考慮しない。

建築物Eに関する調査分析

第7章

(2) シミュレーション

シミュレーションでは,解析ケースは(1)で示したように本震だけでは杭の破壊状況を説明できないため,方向別に,最初に前震の解析を行い,次に前震の結果を考慮したモデルの再設定を行った上で本震を与えた場合の解析を行った。表 7.6.5.2 にこれらの解析条件を示す。

本震の慣性力は保有水平耐力時の基礎反力から求めた杭頭水平力とし、前震は本震の70%とした。 地盤変位は時刻歴応答解析によりに得られた最大値分布を用いた。なお、前震 NS では杭が終局応力に 達しなかったため、結果的に本震のケースはいずれも前震 EW 方向載荷での杭の破壊を受けたケース とした。表中の「杭頭」の「回転 1」は 7.5.4 に示した浮き上がり時モーメントを上限とする回転ばね としたケース、「回転 2」は 7.4.2 に示す被害調査において杭頭の埋込み長さが相当量あると見られた西 側端部の軸力 0 以外の杭について、*M-0*関係の上限値を杭体の終局曲げモーメント以上、としたケース である。

Case No.	地震動	地盤変形	慣性力	杭頭	杭本数	備考
1-EW	4/14前震EW	前震EW	保有耐力時×0.7	回転1	177+14	
1-NS	4/14前震NS	前震NS	保有耐力時×0.7	回転1	177+14	
1-F-EW	4/14前震EW	前震EW	保有耐力時×0.7	回転2	177+14	西端杭頭固定度高
1-F-NS	4/14前震NS	前震NS	保有耐力時×0.7	回転2	177+14	西端杭頭固定度高
2-EW	4/16本震EW	本震EW	保有耐力時	回転1	155+14	前震による杭破壊考慮
2-NS	4/16本震NS	本震NS	保有耐力時	回転1	155+14	前震による杭破壊考慮

表7.6.5.2 シミュレーションの解析ケース

前震時のシミュレーションとして,図7.5.6.6,7にCase1-EW,1-NSの杭位置と負担軸力ごとにグル ーピングした各杭の最終ステップでの曲げモーメント分布,およびせん断力分布を示す。また,図 7.5.6.8~10にCase1-F-EW,1-F-NSの杭頭が終局曲げモーメントに達したステップ(EW方向)および 最終ステップの結果を示す。図中には,前項で示した各杭の降伏曲げモーメント*M_y*,終局曲げモーメ ント*M_u*および以下の式により求めたせん断耐力*Q_u*,およびインティグリティ(IT)試験による地中の損 傷が推定される深さを示した。

ここで、図 7.5.6.6 に示す Case1-EW の結果では、4/14 前震により西側の杭は地中部で降伏曲げモー メントを超え、せん断耐力も 90%以上の値となっている(図中「終局耐力にほぼ達した」と表現)。ま た、図 7.5.6.8、9 に示す Case1-F-EW の結果では、杭頭の埋め込みを考慮した西側の杭の杭頭で終局曲 げモーメントに達したが、その他の杭は最終ステップまで終局耐力には達しなかった。また、NS 方向 はすべての杭で耐力に達していない。

いずれの結果も前震において西側の杭が損傷した可能性が高いと判断されるが、杭頭接合条件は仮 定に基づく設定であることや耐力式ばらつきを考慮して、本震時のシミュレーションにおいては、西 側の杭のうち 25%が水平力を負担できない破壊状態と達したと想定して実施することとした。そこ で、西側の杭のうち計 22 本の杭を取り除いて Case2-EW, 2-NS の解析を実施した。ただし、残った杭 はすべて杭頭の埋め込みがない(固定度が低い)とした。また、水平力を負担できない杭も軸力は保 持できるものとして軸力の再配分は行わなかった。

図 7.5.6.11, 12 に Case2-EW, 2-NS の結果を示す。また、図 7.5.6.13 にそれぞれのケースの基礎全体

第7章 建築物 E に関する調査分析

の荷重(水平力)-水平変位関係を示す。

ここで、図 7.6.6.12 に示す Case2-EW の結果では、地中部(杭頭から 2~3m 付近)の曲げ破壊と杭頭のせん断耐力にほぼ同時に達している。これらの結果は、杭頭部の観察結果や IT 試験結果において地中部での損傷が見られることと整合した傾向を示すものと考えられる。杭頭部の破壊状況が混在するのは、本解析では大きくグルーピングした変動軸力や杭頭接合条件の杭ごとの違いが、被害状況の差となったことが考えられる。また、前震での曲げ破壊の影響もあり、X1-Y3 通りの杭(調査 No.⑨)やX2-Y2 通りの杭(調査 No.⑦)で杭頭部の全周破断やそれに伴う大きな変位が見られるのは、前震で終局曲げモーメントに達していた状態から本震が加わったためと考えられる。

一方で,図7.6.6.1 (CaseP1) に示す初期状態から本震が加わったケースでは,東側の杭頭がせん断破 壊し,西側は杭頭から7~8m で降伏曲げモーメントに達した。この結果は被害状況とは違いがあり, 前震による被害が本震時の挙動に影響を与えたと考えることが妥当と思われる。

(3) 被害状況との比較と被害過程の推定

以上の解析から、本建物の杭の被害過程は以下のように推定される

- ① 4/14 前震においては、主に EW 方向の振動の影響により、杭頭がパイルキャップに埋め込まれて固定度が高まった杭に負担が集中し、杭頭部の曲げ破壊、あるいはそれに加えその他の杭が杭頭せん断破壊と地中部の曲げ破壊のいずれかまたは両方に達して、杭は水平力を負担できない状態となった。 ただし、軸力は再配分され(もしくは地盤で負担され)使用性に影響する沈下傾斜は生じなかった。
- ② 4/16本震では、4/14前震で破壊した杭*に続き、建物全体で地中部(杭頭から 2~3m 付近)の曲げ 破壊あるいは杭頭のせん断破壊断破壊とのいずれかまたは両方に達した。そのために、杭は支持性能 を完全に失い沈下、傾斜が生じた。(*本解析では前震で破壊した杭は西側の杭の 25%程度(22 本)と想 定している。)

本建物で特徴的な杭基礎の被害が生じた要因としては,一部の杭頭接合部の固定度の高い杭に負担 が集中して前震でも曲げ破壊に達した可能性があることに加え,東西の地盤条件(地盤変形)の違い に起因する応力状態の違いにより,段階的に被害が進展したことが考えられる。

本敷地は、全体は傾斜地で南側が低くなっているが、地震後の測量では南北方向の地盤変位はほと んど生じおらず、地震動(断層)の影響による東西方向の地盤変形のみが残留している。このことか ら、本建物の杭の被害の要因となっている地盤変形は震動によるもので、特に東西での地盤変形分布 の違いの影響があると考えられる。

なお,建物の傾斜方向については,地番変形の違いや変動軸力に応じた杭頭固定度の違いにより西 側あるいは北側で前震による破壊が先行したために,その方向に変形が進んだためと考えられる。た だし,北側に傾斜した理由は,南側の補強杭が軸力を負担できていた可能性もあるが,南側の地盤デ ータが得られていないこともあり,明確にはできなかった。

讏 建築物Eに関する調査分析

讏 建築物Eに関する調査分析

101

表 7.6.5.3 に中野・宮本らの解析[7.5-7]との比較を示す。

		· · · · · · · · · · · ·
	本解析	中野・宮本らの研究
解析方法	静的增分解析	動的解析
	基礎梁から下のみの分離モデル	杭-上部構造一体モデル
	杭長は26,28,30,32mの4 種類	杭長は 26m で統一
検討ケース	4/16本震のみ,および4/14前震で杭の破壊後	4/14前震, 4/16本震をそれぞれ入力したケ
	に4/16本震を加えたケース	ース,連続して入力したケース
荷重・外力	慣性力は基礎固定モデルによる荷重増分解析	KiK-net 記録(GL-252m)を入力
	の保有水平耐力時の値を用いる	
	地盤変位は地盤の応答解析結果の最大応答値	
	(Bor.No.1,4 それぞれ)	
地盤	ボーリングデータNo.1(東側), No.4(西	地盤は1種類, ボーリングデータ, 微動観
	側)それぞれをモデル化している. VsはPS検層	測結果からVs値を設定している
	結果を参考に設定。	*表層および-25m以深に差がある
地盤ばね	間瀬-中井モデル(双曲線モデルに塑性化の	骨格 : H-D モデル
	割合を調整するための係数を考慮)を多折れ	履歴は Masing則(Non-slip)および剥離をス
	線でモデル化	リップ型で考慮した
杭体	PC 杭 A 種(Fc=50N/m ²)	ファイバーモデルにより、長期軸力時のM-o関
	断面分割法により、保有水平耐力時の軸力を	係を求め4折れ線にモデル化
	仮定し M-ø関係を求め 3 折れ線にモデル化	PHC 杭 A 種(Fc85N/m ² , 配筋はほぼ同じ)
杭頭接合部	杭頭部の回転を考慮。端部浮上り時を上限と	記述なし(固定条件と推定される)
	するバイリニアモデル	
杭の応力解	本震のみでは東側、前震のみでは西側の被害	前震、本震、前震-本震連続、いずれも杭
析結果	が卓越する。前震により西側の杭が被害を受	頭およびGL-5m (杭頭-2.5~3m 付近)で終局
	けた状態から本震を受けることで、建物ほぼ	曲率を上回る
	全体で杭頭から2~3m付近の地中部で曲げ耐	
	力に達し、杭頭がせん断耐力に近づく。	

表 7.6.5.3 中野, 宮本らの解析^[7.5-7]との比較

(4) 継続使用性に影響する被害を防止可能な杭基礎の検討

本建物において杭基礎に継続使用性に影響する被害が生じることがないような杭の仕様についての 検討を行った。検討手法は上記の方法と同じであり、継続使用性の確保の条件として 4/14 前震および 4/16 本震に対して終局耐力以内となるような杭種について検討した。

杭径の決定にあたっては、鉛直支持力に関しては認定工法(拡大根固め工法等)の使用は考えず支 持力度は同じとし、柱ごとに原設計の杭断面積(外径による断面積)以上の断面積を確保することと した。(外径 400mm×4本であれば外径 800m×1本以上)この設定に基づき、柱下1本または2本に なるよう、杭径 800mmの同一径の既製コンクリート杭を図 7.5.6.14 のように配置した。

ここから上記 7.5.4 に示した方法と同様に保有耐力時の負担軸力から,表 7.5.6.4 のようにグループピングした。

表 7.6.5.4 軸力による杭のグルーピング

杭長(m)		26			28		3	0	32	(2	8)
軸力(kN)	3000	1500	0	3000	1500	0	1500	0	0	400	100
本数	4	10	2	5	3	4	10	5	15	6	8
群杭効果	前方	後方	後方	後方	後方	後方	後方	後方	後方	前方	後方

以上の杭について、荷重・外力、地盤ばね、杭体の非線形性の評価等のモデル化の方針は7.5.4 と同 じ方法を用いて解析を実施した。ただし、杭頭接合部は特殊なデバイスの使用は考えず現在の一般的 な方法によるものとして固定条件とした。 杭種を SC 杭 800mm, 鋼管厚 14mm としたときの杭の仕様の比較を表 7.6.5.5 に, 杭の M-N インタラ クションの比較を図 7.5.6.15 に示す。

	杭種	杭径 (mm)	F_c (N/mm ²)	杭本数
原設計	PC杭A種	400	50	177本(柱下1~6本)
継続使用性考慮	SC 杭/鋼管厚 14mm	800	105	58本(柱下1,2本)

表 7.6.5.5 杭仕様の比較

図 7.6.5.15 杭の M-N インタラクション

この杭の仕様に対して、本震(EW 方向)を加えた場合の解析結果を図7.5.6.16に示す。ここで、 この杭の仕様により降伏曲げモーメントは超えるもののすべての杭が終局曲げモーメント以下となる ことが確認され、補強杭も終局耐力以下となった。また、せん断耐力は十分な安全余裕が確保されて いる。

忄 建築物Eに関する調査分析

参考文献

- [7.5-1] 国土技術政策総合研究所,建築研究所監修: 2015 年版建築物の構造関係技術解説書, 2015
- [7.5-2] 日本建築学会:鉄筋コンクリート構造計算規準・同解説, 2010
- [7.5-3] 防災科学技術研究所: KiK-net (https://www.kyoshin.bosai.go.jp/kyoshin/) (2018年1月20日参照)
- [7.5-4] 新井 洋,柏 尚稔: 2016 年熊本地震による益城町中心部の被害調査と微動観測,第52回地盤 工学研究発表会梗概集,pp. 176301764,2017.7
- [7.5-5] 安田 進, 山口 勇: 種々の不攪乱土における動的変形特性, 第 20 回土質工学研究発表会梗概 集, pp. 539-542, 1985.6
- [7.5-6] 間瀬辰也,中井正一,単杭の杭周地盤ばねの評価法に関する検討,日本建築学会構造系論文集, 第 680 号,1527-1535,2012.10
- [7.5-7] 中野尊治, 宮本裕司, 川辺秀憲, 2016 年熊本地震で連続した大振幅地震動が入力した益城町庁 舎の非線形相互作用, 日本建築学会構造系論文集, 第 748 号, 781-791, 2018.6
- [7.5-8] 日本建築学会,鉄筋コンクリート基礎構造部材の耐震設計指針(案), p. 204, 2017
- [7.5-9] 岸田慎司,堀井昌博,桑原文夫,林静雄:大口径 PHC 杭のせん断終局強度の計算方法に関する研究,日本建築学会構造系論文集,第 532 号,103-110,2000.6

7.6. 結論

7.6.1 まとめ

2016年に発生した熊本地震によって被災した庁舎を対象に,建築物が地震によって受けた被害の調査を行った。また,受けた被害についての被害分析を行った。以下に得られた知見を示す。

(1) 建築物が受けた被害調査結果について

建築物の上部構造について仕上げ材や天井が除去された状態で、従来の被災度区分判定の手法 を用いた被害調査を行った結果、桁行方向中構面の両側柱付き耐震壁の損傷が大きく、損傷度Ⅲ またはⅣの損傷であった。被災度は1Fの長手方向の判定によって大破となった。一方、仕上げ材 や天井が除去される前の判定では、長手方向の両側耐震壁の損傷が仕上げ材によって隠されてし まい、損傷度が小さくなり、結果として被災度が中破と判定されることもわかった。

また上部構造の被害調査は従来の被災度区分判定の手法以外の方法を用いて被害の調査を行っ た。一つ目は、コンクリート構造部材の詳細な目視調査を実施し、それらの計測結果と従来の計 測結果の違いについて示した。二つ目は、高解像度カメラで撮影された情報を用いて、コンクリ ート構造部材の損傷を目視調査と比較したところ、コンクリートの浮きについては目視で調査し た結果より的確な調査ができる可能性があることを示し、かつ浮きや剥落は3次元情報として分析 できることを示した。三つ目は、3次元レーザースキャナーを用いて計測した結果、建物全体の傾 斜や床面の沈下性状並びに柱部材の傾斜・沈下性状を示した。

建築物の基礎構造の被害調査を行った結果,北側構面杭の杭頭部の被害は少ないが,南側構面杭 の杭頭部の被害が大きくなっていることがわかった。また,杭は全て傾斜しており,特に東西方 向にはほとんど西側方向に傾いていた。杭の傾斜角が大きいことから杭中間部で何らかの被害が 発生していることが推測できる。また,基礎フーチングの相対沈下量の計測から,北方向に向か って大きく傾いていることがわかった。以上より,対象建築物の基礎構造は杭の被害(杭頭部ま たは杭中間部)が原因で,北方向に向かって大きく傾いたということが分かった。

(2) 建築物が受けた被害の被害分析の結果について

微動調査での建物の固有周波数は4Hz前後であり、一貫計算プログラムによる弾性時の固有周期 と概ね整合した値となった。また、建物屋上 / 地盤のスペクトル比のピークは、建物屋上 / 建 物1Fのスペクトル比のピークよりも顕著に低周波数側に移行しており、このことから地盤と建物 1Fが別々の動きをしていることが分かる。

Ai分布を仮定した静的荷重増分解析より得られた復元力特性を用いた上部構造モデルと、その 耐力および剛性を2倍とした上部構造モデルへの1F床観測波の入力による応答結果と被害状況の比 較から、建物の耐力や剛性は、静的荷重増分解析結果より得られるものよりも高い可能性を示唆 した。この要因としては、杭頭の破損や軟弱地盤により外力分布がAi分布よりも等分布に近かっ た可能性や、梁に寄与するスラブの剛性や耐力が大きいこと、鉄筋の降伏点が規格値の1.1倍より も高いこと、せん断耐力式の精度等が考えられる。

また微動観測から推定したスウェイバネを考慮した応答結果では、弾性のスウェイバネとダッ シュポットを用いたことから、地盤の応答変位が小さく、杭頭破損や表層軟弱地盤による建物と 杭・地盤との大きな相対変形は再現できなかった。そこで、建物と杭・地盤との間に杭頭破損や 表層地盤変形を考慮できる剛塑性バネを直列配置した結果,杭頭部の大変形を予測できる可能性 を示すことができた。また,この時の剛塑性バネの終局強度は,建物重量の半分以上の強度であ ることが推測された。

杭基礎の被害分析のため、杭頭の埋込み長さを考慮した杭頭固定度や建物東西の地盤条件の違いを考慮した地盤変形を与えて非線形静的増分解析を実施した。4/14前震時の慣性力を上部構造の保有水平耐力の70%、4/16本震は保有水平耐力相当と設定して段階的に解析し、4/14前震により 西側の杭頭固定度の高い杭の杭頭部の曲げ破壊が先行し、引き続いて4/16本震により建物全体で 杭中間部の曲げ破壊または杭頭のせん断破壊に至るという結果が得られ、本震後の被害傾向を概 ね説明できた。ただし、慣性力の評価や前震後の杭の状況については、応答解析結果との対応と 併せ課題が残されている。なお、地震後の建物の傾斜は既存建物下の既製コンクリート杭と補強 部の鋼管杭の破壊後の軸力保持能力の違いに起因すると思われる。

7.6.2 今後の課題

本章の解析から得られた今後の課題と杭の設計のあり方を以下に示す。

(1)大地震時の構造性能評価・構造設計

既往の中小地震に対する許容応力度設計では、これまでは建物全体としての崩壊や転倒の防止はで きていたと考えられるが、機能維持、継続使用性の確保および上部構造の設計との整合性を考慮すれ ば、大地震に対する設計(2次設計)がすべての建物で実施されるべきである。ただし、小規模な建 物や傾斜・沈下が許容でき崩壊や転倒の防止のみが要求されていた建物では、大地震に対する設計を 行ったとしても経済性を確保でき、かつ設計手法も取り扱いやすいものとすべきである。上部構造と のバランスや修復性を考慮しつつ、部分的に杭の損傷が許容される、あるいは杭頭部周辺の地盤の支 持力に期待する考え方も可能であろう。

併せて,基礎構造の耐震設計の義務化以前の杭基礎の補強技術および補強に対する耐震性評価手法 の確立,普及が望まれる。

(2) 基礎に加わる荷重,外力

杭基礎に加わる地盤変形および杭頭水平力・変動軸力を,地盤および上部構造の振動特性を適切に 考慮して算出した静的荷重で評価することはほぼ妥当と考えられる。精度向上のためには実現象と合 わせて水平力と軸力および地盤変形を逐次相関させたファイバーモデルの使用などが考えられるが, 基礎構造の設計手法としては煩雑であり,より実用的かつ精度確保が可能な手法の構築が望ましい。

また,地震動の継続時間が長く,杭基礎を損傷させるような大きさの入力が複数回繰り返されるような大地震に対しては,一部の杭の破壊に伴い負担荷重(水平力・軸力)が再配分されたり群杭効果が変わり,破壊が広がる過程を段階的に考慮して設計することが考えられる。同様に,顕在化していないものの過去の地震において一部の杭が損傷した可能性のある建物では,損傷を受ける以前とは軸力や地盤反力が異なる条件となっている可能性にも留意する必要がある。

(3) 応力解析モデル

基礎ばりから下の杭および地盤からなる分離モデルを用いて,いわゆる応答変位法あるいは荷重分 布法により応力解析を行うことはほぼ妥当と考えられる。ただし,地下部分の根入れ効果(入力損失 あるいは土圧外力,それらを合わせた地下震度の評価)などについては知見が少なく,被害のなかっ た建物を含む被害シミュレーション等によりさらなるバージョンアップが望まれる。

(4) 杭および杭頭接合部のモデル化

断面解析に基づく手法により計算した軸力に依存した杭体の荷重-変位関係は,部材の実験結果と 概ね整合するとともに,本章の解析で示したように,実際の被害と概ね対応する結果が得ることがで きており,評価方法として有用である。

ただし、変形性能の評価、特に最大耐力以降の性能(残存軸力保持性能)、や大口径杭や中空形状の影響については、実験データが少なく、今後のデータ蓄積による精度向上が必要である。

杭頭接合部に関しては,許容応力度設計では,特別なデバイスを使わない限り固定条件としている が,被害状況を評価するためには杭頭固定度(回転剛性)を考慮した解析が必要と考えられる。杭頭 接合方法は材料強度の違いや形状が多様であることなど,上部構造の接合方法とは異なる面が多い が、実験による構造性能の検討は少ない。今後のデータ蓄積が望まれる。

この時,設計上の取り扱いを考えれば,材端剛塑性ばねモデルなど上部構造の延長上のモデル化が 検討されることが望ましい。

(5) 地盤の評価

過去の被害事例からは、局所的な地盤の不均質性や群杭効果が被害発生の要因の一つとなっている ことが示唆される。ただし、同一建物で地盤条件が異なることの影響や群杭効果は実際の設計では考 慮されることはほとんどなく、実験データや観測データも少ない。パラメータスタディや実際の被害 事例との比較など、地盤工学の原理に沿った統一的な考え方に基づく検証が必要である。

謝辞

本研究は(国研)建築研究所指定課題「既存建築物の地震後継続使用のための耐震性評価技術の 開発」により実施しました。本調査の実施にあたっては、熊本県益城町役場総務課管財係および 復旧事業課建築係の関係者のみなさま並びに解体工事業者のみなさまに多くのご協力を頂きまし た。ここに、関係各位に謝意を表します。