第3章

あと施工アンカーを端部定着に用いたスラブ試験体の

構造性能評価

3.1 実験の趣旨・概要

本実験は、2.2 で示した「床スラブの新設」のうち、既存壁式 RC 造壁式構造の耐 力壁を接合先とした床スラブ新設や1階木造床スラブを RC 造床スラブに付け替える ために基礎梁を接合先とした場合の接合筋にあと施工アンカーを用いることを想定 しており、あと施工アンカーを用いた構造部材の長期性能を確認する一例として、 主筋の定着に接着系あと施工アンカーを用いた両端固定一方向スラブについて、あ と施工アンカーを用いない通常の先付け工法の定着方法によるスラブとの比較によ り長期たわみ量、鉄筋ひずみ、ひび割れ性状、振動数について検証することを目的 とする. なお、定着部の破壊性状および接合部分の強度については、一般的なスラ ブの設計では用いない短期荷重や終局状態を想定した荷重の載荷を行っても接着系 あと施工アンカーを用いたスラブが先付け工法の鉄筋と同様の性能(スラブが落ち ない)であるかに着目して実験を行っている.

なお、本スラブ実験で想定しているスラブにおけるあと施工アンカーの使用方法 としては、平成 22 年度に行われた建築基準整備促進事業「あと施工アンカーの長期 許容応力度に関する検討調査」の最終成果報告書 7-2 節「長期応力に対する設計方針 とその留意点」で述べられている以下の内容をその前提条件として考えている.

- 引張クリープ実験結果より、あと施工アンカーの付着機構は、先付けコンクリートのそれと同じであることが予想される.従って構造部材の主筋に適用する場合には、通常の鉄筋と同様の定着が必要である.また鉄筋コンクリート造のスラブや小梁へ適用する場合においては、適用範囲を限定することで現行基準よりも短い定着長とすることができるものと考えられる.
- 2. 引張クリープ実験結果より、変位量が収束しなかった事例があるため、引張応力 を負担する箇所に現時点で本式を利用する際においては、引張応力をあと施工ア ンカーが負担できなくなった状態を想定して、あと施工アンカーを適用した部材 の設計を実施し、当該部材が脱落することがないことを確認する必要がある.
- 3. 今回の各国基準の文献調査より、各国ではひび割れに対して強度の低減を行っているが、実施した試験体はひび割れのないコンクリートへ適用されていることから、ひび割れの影響がない箇所への適用が原則である.ただし、ひび割れ防止に有効な方策が確認されている場合はその限りではない.
- 4. 今回の実験においては、有機系接着剤を用いたカプセル型のあと施工アンカーが 用いられた.実際の部材への適用に際しては、使用するあと施工アンカーがこれ と同等の性能を有することを確認する必要がある.
- 5. へりあき寸法は,FEM 解析結果より,埋め込み深さによって付着応力度分布が変化することが確認されている.従って,埋め込み深さが7da以上確保されている場合においては,へりあきの最小値は10da以上確保されていることを基本とする.
- 火災による影響のある部位に適用する場合においては、当該熱応力によって適用 した部材が脱落しないことを確認する必要がある。

上記 2.および 6.で記載されているような,引張応力をあと施工アンカーが負担で きなくなった状態を想定した場合や熱応力によっても部材が脱落しないことの確認 は、本スラブ実験では、その目的があと施工アンカーを使用した部材の長期性状の 把握にあるため省略している.しかし、実際の使用方法としては、上記要件を満た すようなあと施工アンカーの代わりに応力を負担できる受梁など何らかの脱落防止 措置を施すことを想定している.また、片持ちスラブ試験体でも長期載荷実験を行 うが、これは将来的に長期載荷後の破壊性状を確認するための加力実験を行いやす くすると言う観点で製作した試験体であり、試験方法の都合上行うもので、片持ち スラブにおけるあと施工アンカーの使用を目指しているものではない.

平成28年2月26日に試験体の載荷を開始し、一部を除き令和4年9月29日までの各種観察・測定結果をもとにまとめられている.

3.2 実大 RC 造試験体における長期荷重が作用した増設スラブの実験

3.2.1 実験計画

本実験では、壁式鉄筋コンクリート造の共同住宅に鉄筋コンクリート造の床スラ ブを増設することを想定して、両端固定一方向スラブならびに片持ちスラブについ て、主筋の定着に接着系あと施工アンカーを用いた試験体ならびに通常の先付け定 着筋工法の定着の試験体を製作し、長期性能の確認を行うために長期荷重を載荷し、 約6年の実験結果を用いて先付け定着筋に対してあと施工アンカーの使用による差が ないかをについて検証することを目的とする.

また,長期荷重を載荷したあと施工アンカーを用いた試験体のうち1体について, 一般的なスラブの設計では用いない短期荷重や終局状態を想定した荷重の載荷を行い,接着系あと施工アンカーを用いたスラブへの影響の有無についての確認を行う.

3.2.2 計画方針

試験体は、国立研究開発法人 建築研究所の実大構造物実験棟内に、スパン 5,760 mm,幅1,000 mm,厚さ 200 mmの両端固定一方向スラブならびに、スパン 2350 mm,幅 1,000 mm,厚さ 200 mmの片持ちスラブの接着系あと施工アンカー定着によるスラブおよび標準定着によるスラブを製作し、居室相当の載荷荷重(2.5 kN/m²)を床スラブ上面に載荷用の鉄筋束を木片を介して等分布荷重積載相当になるように配して、長期たわみ性状を把握することとした.実験方法の概要を図 3.2.2-1、3.2.2-2 に示す.

平成28年2月16日に床スラブ部分の型枠脱型および床スラブ上面への長期荷重と しての鉄筋載荷を開始し,試験体のひび割れの観察およびデータロガーからの測定 データの回収等を表3.2.2-1 に示す日に実施した.なお,床スラブ上面に鉄筋載荷を 行った後は,ひび割れの観察は床スラブ下面およびスタブ部分を中心に行い,床ス ラブ上面は振動実験などの実施により載荷用鉄筋を移動させた時など,限られた機 会にのみ行った.

図 3.2.2-1 実験方法の概要(両端固定スラブ)

図 3.2.2-2 実験方法の概要(片持ちスラブ)

No.	年月日	計測項目	No.	年月日	計測項目
1	H28.2.16	振動測定(鉄筋載荷前·後)	16	H29.2.16	ひび割れ観察
2	H28.3. 1	ひび割れ観察,振動測定	17	H29.4.20	ひび割れ観察
3	H28.3.15	ひび割れ観察、振動測定	18	H29.5.11	ひび割れ観察
4	H28.4.18	ひび割れ観察	19	H29.6.15	ひび割れ観察
5	H28.4.26	ひび割れ観察	20	H29.7.20	ひび割れ観察
6	H28.5.21	ひび割れ観察、振動測定	21	H29.8.9	ひび割れ観察,振動測定
7	H28.6. 2	ひび割れ観測	22	H29.8.24	ひび割れ観察
8	H28.6.28	ひび割れ観察	23	H29.10.26	ひび割れ観察
9	H28.7.14	ひび割れ観察	24	H29.12.21	ひび割れ観察
10	H28.8. 1	ひび割れ観察	25	H30.2. 9	ひび割れ観察,振動測定
11	H28.8.16	ひび割れ観察、振動測定	26	H30.8.10	ひび割れ観察
12	H28.9. 1	ひび割れ観察	27	H31.2.15	ひび割れ観察,振動測定
13	H28.11.2	ひび割れ観察	28	R2. 2.14	ひび割れ観察,振動測定
14	H28.12.7	ひび割れ観察	29	R3. 2.13	ひび割れ観察, 振動測定
15	H29.2.7	ひび割れ観察、振動測定	30	R4. 2.15	ひび割れ観察,振動測定

表 3.2.2-1 実験スケジュール

※:試験体製作「基礎梁」部分コンクリート打設:平成27年12月11日
 「スタブ」部分コンクリート打設:平成27年12月19日
 「床スラブ」部分コンクリート打設:平成28年1月18日

3.2.3 設計方針·計算例

(1) 設計方針

通常定着方法(先付け定着方法)のスラブ上端筋の定着は、許容付着応力度による所 要定着長さ「鉄筋コンクリート構造計算規準・同解説(1991)(29)式」による.

接着系あと施工アンカーを用いたスラブ上端筋のアンカー筋の定着は、アンカー 筋に生じる長期許容引張力に対して長期許容付着力および長期許容コーン状破壊耐 力を満たす有効埋込み長さを確保する.

(2) 計算例

計算例は、実際の建築物を想定してスラブの断面算定およびたわみ・ひび割れに 対するチェックを行っている。なお、想定しているスラブは「3.3 実建築物における 実験結果」の図 3.3.2-1 実験スラブ配置図に示す北側居室のスラブについて算定する.

1)基本事項

 $\delta_e = \frac{1}{32} \cdot \frac{\lambda^4}{1+\lambda^4} \cdot \frac{w \cdot \ell_x^4}{F \cdot T^4} = 1.368 \text{ mm}$ 変形増大率 κ=16 長期たわみ δ_L=16×δ_e=21.89 mm たわみ率 $\delta_L/\ell_x = 1/263 \leq 1/250$ OK

5)ひび割れに対する検討 端部上端 $\sigma_t = {}_t M_{max} / Z = 10,090,000 / 6\,666\,667$ = 1.51 N/mm² $\leq 0.38\sqrt{Fc} = 1.74$ N/mm² OK 中央部下端 $\sigma_t = {}_c M_{max} / Z = 6,730,000 / 6,666,667 = 1.01$ N/mm² $\leq 0.38\sqrt{Fc}$ = 1.74 N/mm² OK

6)試験体スラブの設計

(i)両端固定一方向の応力 $w=7.3 \text{ kN/m}^2 \quad \ell_x=5760 \text{ mm}$ $M_{xl}=1/12 \times w \times \ell_x^2=20.18 \text{ kN.m}$, $M_{x2}=1/18 \times w \times \ell_x^2=13.46 \text{ kN.m}$ $Q_{xl}=1/2 \times w \times \ell_x=21.0 \text{ kN}$ 短辺方向上端筋 $a_t=M_{xl}/f_t \cdot j=705.3 \text{ mm}^2 \rightarrow \text{D13}@150(846.7)$ OK 短辺方向下端筋 $a_t=M_{x2}/f_t \cdot j=466.1 \text{ mm}^2 \rightarrow \text{D10}@150(473.3)$ OK (ii)たわみに対する検討

単純支持一方向たわみ $\delta_e = \frac{15}{384} \cdot \frac{W \cdot \ell_x^4}{E \cdot T^3/12} = 7.29 \text{ mm}$

両端固定一方向たわみ $\delta_e = \frac{1}{384} \cdot \frac{w \cdot \ell_x^4}{E \cdot T^3/12} = 1.46 \text{ mm}$

変形増大率 κ =16 長期たわみ δ_L =16× δ_e =23.3 mm たわみ率 δ_L / ℓ_x =1/247

(3) 通常定着方法(先付け定着方法)のスラブ上端筋の定着検討

1)許容付着応力度による所要定着長さ「鉄筋コンクリート構造計算規準・同解説 (1991)(29)式」

- (i)計算条件
 - ・使用するコンクリートの設計基準強度:F_c=21 N/mm²
 - ・スラブ上端筋:D13 SD295A
 - ・スラブ上端筋のコンクリートに対する許容付着応力度:

 $_{Lf_a} = _{\min}(21/15, 0.9 + 2 \times 21/75) = _{\min}(1.40, 1.46) = 1.40 \text{ N/mm}^{2 * 1}$

[注]*1:鉄筋コンクリート構造計算規準・同解説(1991)によれば、圧縮力を受ける場合および、付着破壊のおそれのない領域へ定着する場合は、1.5倍の数値としてよいとあるが、本資料では適用していない.また、平12建告第1450号に規定の長期許容付着応力度は、はりの上端筋以外は「その他の鉄筋」の数値を用いることができるが、ここでは適用していない.

(ii)定着長さの検討

(a)直線定着の場合

$$\ell \ge \frac{_{Lf_{t}} \cdot d_{b}}{_{4 \times _{L} f_{a}}} = 195 \times d_{b} / (4 \times 1.40) = 34.8 \times d_{b} = 34.8 \times 13 = 452.7 \text{ mm}$$

(b)標準フック付き折曲げ定着の場合

$$\ell \ge \frac{2}{3} \times \frac{Lf_t \cdot d_b}{4 \times Lf_a} = \frac{2}{3} \times \frac{195 \times d_b}{4 \times Lf_a} = \frac{2}{3} \times \frac{195 \times d_b}{4 \times Lf_a} = \frac{2}{3} \times \frac{100}{3} \times \frac{10$$

2)RC 規準(2010)17 条「定着」による所要定着長さ (i)計算条件

- ・使用するコンクリートの設計基準強度:F_c=21 N/mm²
- ・スラブ上端筋:D13 SD295A
- ・付着割裂の基準となる強度: fb=0.9+21/40=1.425 N/mm²
- ・必要定着長さ算定式: $\ell_{ab} = \alpha \cdot \frac{S \cdot \sigma_t \cdot d_b}{10 f_b}$

「鉄筋コンクリート構造計算規準・同解説(2010)(17.2)式」

- ・スラブ端筋定着部の拘束の有無:スラブ上端筋を、当該スラブを支持する梁の上端筋の下に定着するディテールとすることで、拘束領域への定着とする(α=1.0).
- (ii)定着長さの検討

(a)直線定着の場合

$$\ell_{ab} = \alpha \cdot \frac{s \cdot \sigma_t \cdot d_b}{10f_b} = 1.0 \times 1.0 \times 295 \times d_b / (10 \times 1.425) = 20.7 \times d_b = 20.7 \times 13 = 269.1 \text{ mm}$$

(b)標準フック付き折曲げ定着の場合

$$\ell_{ab} = \alpha \cdot \frac{s \cdot \sigma_t \cdot d_b}{10f_b} = 1.0 \times 0.5 \times 295 \times d_b / (10 \times 1.425) = 10.4 \times d_b = 20.7 \times 13 = 135.2 \text{ mm}$$

(4) 接着系あと施工アンカーを用いたスラブ上端筋のアンカー筋の定着検討

1)アンカー筋の所要有効埋込み長さの検討

- (i)計算条件
 - ・使用するコンクリートの設計基準強度:F_c=21 N/mm²
 - ・スラブ上端筋:D13 SD295A
 - ・接着系あと施工アンカーの付着強度: τ_{fu}=15 N/mm²

$$(=15\times\sqrt{\frac{\sigma_B}{21}}=15\times\sqrt{\frac{21}{21}})$$

アンカー筋に生じる長期許容引張力に対して(3.2.3-1)式および(3.2.3-2)式
 を満たす有効埋込み長さを確保する.

$_DT_{L1} \leq T_{AL2}$ ·		(3.2.3-1)式
$_DT_{L1} \leq T_{AL3}$.		(3.2.3-2)式
記号 DTL1	:アンカー筋に生じる長期荷重時引張力(N)で,	次式によ
	3.	
	$_{D}T_{L1} = _{l}f_{t} \cdot a_{t} = 195 \times 127 = 24765 \text{ N} = 24.8 \text{ kN}$	

第3章 あと施工アンカーを端部定着に用いたスラブ試験体の構造性能評価

T_{AL2}:アンカー筋の長期許容付着力(N)で、次式による.アンカー筋のかぶり厚さが 1.5da以上確保されていることから、付着強度の低減を行わない.

 $T_{AL2} = (\tau_{fu} / F) \cdot \pi \cdot d_a \cdot \ell_e \quad \dots \quad (2.1.2.3) \ddagger$

T_{AL3}:アンカー筋の長期許容コーン状破壊耐力(N)で,次式による.

 $T_{u3} = 0.23 \sqrt{\sigma_B} / F \cdot A_c$ (2.1.2.4)式

- τ_{fu}:接着系あと施工アンカーの付着強度(N/mm²)で、15.0
 N/mm²とする.
- F : 安全係数で、3(CASE1)および4.5(CASE2)とする.
- *ℓ*_e : アンカー筋有効埋込み長さ(mm)
- σ_B : アンカー筋定着部のコンクリートの圧縮強度(N/mm²)
 で,設計基準強度とする.
- Ac : コーン状破壊面の有効水平投影面積(mm²).本来であ れば、アンカー筋のピッチ、はしあき、へりあきによ るコーン状破壊面の重なり等を考慮した有効投影面積 を算定する必要があるが、本資料においては考慮して いない.
- (ii)(3.2.3-1)式を満たすのに必要な有効埋込み長さの検討

(a)CASE1(F=3.0)の場合

 $_{D}T_{fL}=_{D}\sigma_{tL}\cdot\pi\cdot d_{a}^{2}/4 \leq T_{AL2}=5.0\times\pi\cdot d_{a}\cdot\ell_{e}\downarrow$ ϑ ,

$$\ell_e \geq_D \sigma_{tL} \cdot d_a / (4 \times 5) = 9.75 \times d_a (= 127 \text{ mm})$$

(b)CASE2(F=4.5)の場合

 $_{D}T_{fL}=_{D}\sigma_{tL}\cdot\pi\cdot d_{a}^{2}/4 \leq T_{AL2}=3.3\times\pi\cdot d_{a}\cdot\ell_{e}\downarrow\emptyset$,

 $\ell_e \ge D\sigma_{tL} \cdot d_a / (4 \times 3.3) = 14.7 \times d_a (= 191 \text{ mm})$

図 3.2.3-1 スラブ上端筋に使用するアンカー筋とスラブ支持梁の断面・配筋 (iii)(3.1.3-2)式を満たすに必要な有効埋込み長さの検討

(a)CASE1(F=3.0)の場合

 $_{D}T_{fL} = _{D}\sigma_{tL} \cdot \pi \cdot d_{a}^{2}/4 \leq T_{AL2} = 0.23\sqrt{\sigma_{B}}/3.0 \cdot A_{c}$

有効埋込み長さを 130 mm 以上とし、コーン状破壊面の有効水平投影面積 *A*cが次式で算定されるとする.

$$Ac = \pi \cdot \ell_e \cdot (\ell_e + d_a)$$

$${}_{D\sigma_{tL}} \cdot \pi \cdot d_a^2 / 4 \leq 0.23 \sqrt{\sigma_B} / 3.0 \cdot \pi \cdot \ell_e \cdot (\ell_e + d_a) \downarrow \%,$$

$$\ell_e \geq \frac{d_a}{2} \cdot \{-1 + \sqrt{D\sigma_{tL} \times 3/(0.23 \sqrt{\sigma_B})}\} = \frac{d_a}{2} \times (-1 + 23.56)$$

$$= 11.3 \times d_a (= 146 \text{ mm})$$

(b)CASE2(F=4.5)の場合

$$\ell_e \ge \frac{d_a}{2} \cdot \{-1 + \sqrt{D\sigma_{tL} \times 4.5/(0.23\sqrt{\sigma_B})}\} = \frac{d_a}{2} \times (-1 + 28.86)$$
$$= 14.0 \times d_a (= 182 \text{ mm})$$

(5) 検討結果:表 3.2.3-1 を参照のこと.

表 3.2.3-1 増設スラブ上端筋の支持梁への定着長さおよびアンカー筋有効埋込み長さ

	· 通常定	看方法	接着糸あと施工アンカー筋					
	RC 規準 RC 規準 (1991) (2010)		』T _{L1} ≦T _{AL} 有効埋i	2となる 入み長さ	_D T _{DI} ≦T _{AL3} となる 有効埋込み長さ			
	による場合	による場合	F=3.0	F=4.5	F=3.0	F=4.5		
直線定着の場合	$34.8 d_b$ (453 mm)	20.7 d_b (270 mm)	0.75.1		11 0 1	14.0.1		
標準フック付き 折曲げ定着の場 合	$\begin{array}{cccc} 23.2 & d_b \ (302 & { m mm}) \end{array}$	10.4 d _b (135 mm)	9.75 d _a (127 mm)	14. <i>i</i> d _a (191 mm)	(146 mm)	(182 mm)		
備考	 上端筋は, による定着 ることから, 下端筋は10 以上とする. 	RC 規準(1991) 長さを確保す 35da とする. d _b かつ150 mm	 ・実験端と12 ・上さ第2 ・下は第4(9) ・実験端に13 ・実行4a(9) ・実行4a(9)<td>っることから してのアン $d_a(156 mm)してのアンしてのアンしてのアンしてのアンましてのアンなりによっい$</td><td>▶ F=3.0 と ×カー筋の ×カー筋の ネ → カー筋の な → 一 が の 和 、 か し 、 か ー 筋の 和 、 、 か ー 筋の 和 、 、 、 か ー 筋の れ 、 、 、 、 、 、 、 、 、 、 、 、 、</td><td>する. す効埋込み す効埋込長 支壊耐力 減を考慮し</td>	っることから してのアン $d_a(156 mm)してのアンしてのアンしてのアンしてのアンましてのアンなりによっい$	▶ F=3.0 と ×カー筋の ×カー筋の ネ → カー筋の な → 一 が の 和 、 か し 、 か ー 筋の 和 、 、 か ー 筋の 和 、 、 、 か ー 筋の れ 、 、 、 、 、 、 、 、 、 、 、 、 、	する. す効埋込み す効埋込長 支壊耐力 減を考慮し		

3.2.4 試験体計画·製作概要

(1) 試験体

両端固定一方向スラブの試験体数は2体とし、スラブの定着に接着系あと施工アン カーを用いたもの、および通常定着方法(先付け定着方法)を用いたもの各1体である.

試験体のスパンは、既存建築物における実大実験を参考に 5,760 mm の内法とする. 試験体幅は、既往の長期たわみ実験を参考に単位幅(1,000 mm)の一方向スラブとする. スラブ厚さは 3.2.3 項の計算結果から既存建築物のスラブを一方向スラブとして弾性 たわみで 1 mm 以上となる厚さとして 200 mm とした.

片持ちスラブの試験体数は2体とし,試験体中央にスタブを設け,スタブの両側に 片持ちスラブを取り付け,主筋の定着に接着系あと施工アンカーを用いた片持ちス ラブ試験体を梁の左側に,主筋の定着に通常定着方法(先付け定着方法)を用いた片持 ちスラブ試験体を右側に設置した.

試験体のスパンは、両端固定とした試験体(内法スパン:5,760 mm)の固定端曲げモ ーメントと同値となる 2,350 mm とし、試験体幅は単位幅(1,000 mm)とする. スラブ 厚さは両端固定とした試験体と同一の 200 mm とした.

試験体コンクリートの目標圧縮強度として,基礎梁は乾燥収縮ひずみを出来る限り 小さくすべく 36 N/mm²(呼び強度)とし,スタブおよびスラブは 18 N/mm²(呼び強度) とした.

試験体一覧を表 3.2.4-1, スラブの配筋リストを表 3.2.4-2 に示す.

試験体の基本形状を図 3.2.4-1,図 3.2.4-2 に、スラブ端部のスタブとの接合部を図 3.2.4-3、図 3.2.4-4 に、スラブの配筋図を図 3.2.4-5、図 3.2.4-6 に、基礎梁およびスタ ブの配筋図を図 3.2.4-7、図 3.2.4-8 に示す.

試験体名	スラブ形状	施工方法
AH	両端固定(単位幅一方向)	接着系あと施工アンカー
BA	両端固定(単位幅一方向)	標準定着
AC	両端固定(単位幅一方向)	接着系あと施工アンカー (静充填型)
СА	片持ち	接着系あと施工アンカー
СВ	片持ち	標準定着

表 3.2.4-1 試験体一覧

表 3.2.4-2 スラブ配筋リスト

スラ ブ厚		両端	固定スラブ	片持ちスラブ(CA, CB)				
	位置	主筋	方向	配力角	穷方向	十次十百	配力筋方向	
		端部	中央	端部	中央	土肋刀问		
200	上 D13@150		D13@300	D10@300	D10@300	D13@150	D10@300	
200 -	下	D10@300	D10@150	D10@300	D10@300	D10@300	D10@300	

図 3.2.4-1 両端固定スラブ試験体(AH, BA 試験体)の基本形状

図 3.2.4-2 片持ちスラブ試験体(CA, CB 試験体)の基本形状

図 3.2.4-3 両端固定スラブ端部のスタブとの接合部(AH, BA, AC 試験体)

図 3.2.4-4 片持ちスラブと梁との接合部(CA, CB 試験体)

図 3.2.4-5 スラブ配筋図(AH, BA, AC 試験体)

図 3.2.4-6 スラブ配筋図(CA, CB 試験体)

図 3.2.4-7 基礎梁・スタブ配筋図(AH, BA, AC 試験体)

図 3.2.4-8 基礎梁および梁の配筋図(CA, CB 試験体)

(2) 使用材料

試験体に使用したコンクリートの材料試験結果を表 3.2.4-3,鉄筋の材料試験結果 を表 3.2.4-4 に示す.また,接着系あと施工アンカー施工時の施工位置図を図 3.2.4-9 に,穿孔穴径,深さ,アンカー筋長さ,埋込み長さ,勾配等の施工時の記録を表 3.2.4-5~表 3.2.4-6 に示す.

表 3.2.4-3 コンクリー	- ト材料試験結果
-----------------	-----------

床スラブ

材齢	番号 (Na)	直径 (mm)	整形後高さ	高さ/ 声汉	質量 (m)	かさ比重 (g (am ³)	最大荷重	圧縮強さ	ヤング係数 (×10 ⁴ N/mm ²)
(旭)	(NO.)	100.2	100.2	旦任	2407	(g/ CIII)	(KIV) 166	21.1	(~ 10 N/ IIII)
4 调		100.2	199.0	1.00	3470	2.25	171	21.1	
4 <u>10</u>		100.1	199.2	1.00	3500	2.21	175	21.0	
	1	100.4	200 40	2 00	3505	2.22	208	22.1	2 02
12 调	1	100.20	200.40	2.00	2500	2.22	106	20.4	0.90 0.60
15 迥	2	100.20	201.20	2.01	2520	2.22	201	24.9	2.00
	1	100.10	100.20	1.09	3020	2.22	201	25.0	5. 52
26 调	1	100.30	200 10	2 00	2400	2.21	223	20.0	2 14
20 <u>M</u>	2	100.20	100.60	1 00	2475	2.21	221	20.0	0.14
		100.40	200.68	2.00	3473 2465	2.20	229	29.0	2.10
102 週	1	100.17	109 09	2.00	2400	2.19	200	32.0	2.00
105 旭	2	100.04	190.90	1.90	2460	2.19	200	20.0	2.91
	3	100.22	199.77	1.99	3460	2.20	271	34.4	2.84
*	平成 28 4	年1月18日	日打設:"	- "は不清	則定ある	いは測定不	、能ヤング传	系数は 1/3 割	線剛性値
スタ	ブ								
材齢	番号	直径	整形後高さ	高さ/	質量	かさ比重	最大荷重	圧縮強さ	ヤング係数
(週)	(No.)	(mm)	(mm)	直径	(g)	(g/cm^3)	(kN)	(N/mm^2)	$(\times 10^4 \mathrm{N/mm^2})$
	1	99.9	197.8	1.98	3560	2.30	190	24.3	
4週	2	100.0	198.2	1.98	3609	2.32	195	24.8	
	3	99.7	197.7	1.98	3596	2.33	178	22.8	
	1	100.20	198.00	1.98	3505	2.29	216	27.5	2.40
13 週	2	99.80	198.30	1.99	3522	2.28	223	28.5	2.33
	3	100.20	198.90	1.99	3520	2.30	214	27.1	2.19
	1	100.01	199.58	2.00	3528	2.25	238	30.3	2.48
26 週	2	100.03	199.33	1.99	3533	2.26	258	32.8	2.30
	3	100.15	200.13	2.00	3533	2.24	256	32.5	2.31
	1	100.27	198.59	1.98	3535	2.26	303	38.3	2.81
108 週	2	100.16	197.79	1.97	3520	2.26	309	39.3	2.93
	3	100.21	199.06	1.99	3535	2.25	302	38.3	2.79
	1	100.25	197.45	1.97	3495	2.24		34.3	2.82
166 週	2	100.30	197.10	1.97	3493	2.24		35.2	3.00
	3	100.30	197.80	1.97	3492	2.24		37.1	2.95
	※平成	え27年12月	19日打設:"	"は7	「測定ある	るいは測定不	能 ヤング係	数は1/3 割線	剛性値
其 磷	涩								
お齢	· 木 悉巳	直径	敷形総直さ	直さ/	啠昰	かさ比重	最 大荷重	圧縮強さ	ヤンガ係数
()周)	(No)	(mm)	(mm)	直径	頁里 (g)	(q/cm^3)	取八雨重 (kN)	(N/mm ²)	$(\times 10^{4} \text{N/mm}^2)$
	1	100.4	201 3	<u></u> 2 01	3645	2 29	372	47 0	(/(1010/100/
4 调		100.1	201.0	2.01	3633	2.29	356	45 1	
1 22	3	100.2	200.1	1 99	3639	2.20	372	47 0	
	1	100.05	201.98	2 02	3678	2.32	379	48.2	2 90
13 调		100.05	201.00	2.02	3652	2.02	385	10.2	2.00
10 14	2 3	100.05	201.11	2.01	3631	2.31	380	49.0	2.07
	1	100.03	200.00	2.01	3613	2.30	358	45.5	2.91
96 调		100.07	201. 45	2.01	3588	2.20	423	53 7	3 01
20 J <u>H</u>	2	100.17	200.25	2.00	2600	2.21	423	53.9	1 60
	ე 1	100.07	201.42	2.01	3605	2.20	420	60.7	2 91
100 週	1 0	100.00	201.41	2.01	2610	2.20		EQ 1	0. 41 2. 57
105 迥	ے۔۔۔۔ م	100.17	200.92	2.01	3690	2.20		50.1 50.9	0.01 9.50
	3 1	100.10	201.19	2.01	3020	2.20		09.0 60 0	0.00 2.20
167 词	1 0	100.30	202.00	2.01	2501	2.20		62 E	3. 29 2. 11
101 迥	2	100.25	200.25	2.00	3081	2.21		02.5 EQ E	J. 41
	3	100.20	198.45	1.98	3992	2.21		əð. 5	3.01
$\times_{\overline{2}}$	平成 27 년	₣12月11	日打設:"	- "は不	測定ある	るいは測定す	下能 ヤン:	グ係数は1/3	3 割線剛性値

3-19

表 3.2.4-4 鉄筋材料試験結果

D10 異	形鉄筋(SD29	95A)				
番号	公称断面積	上降伏点応力度	下降伏点応力度	引張強さ	破断伸び	ヤング係数
(No.)	(mm^2)	(N/mm^2)	(N/mm^2)	(N/mm^2)	(%)	$(\times 10^{5} \mathrm{N/mm^{2}})$
1	71.33	368.1	346.8	491	20	1.74
2	71.33	366.6	355.8	469	14	1.50
3	71.33	371.9	350.3	493	18	1.79
D13 異	形鉄筋(SD29	95A)				
番号	公称断面積	上降伏点応力度	下降伏点応力度	引張強さ	破断伸び	ヤング係数
(No.)	(mm^2)	(N/mm^2)	(N/mm^2)	(N/mm^2)	(%)	$(\times 10^{5} \mathrm{N/mm^{2}})$
1	126.7	362.3	344.1	491	22	1.79
2	126.7	359.9	344.9	489	23	1.78
3	126.7	359.1	344.1	488	22	1.79

表 3.2.4-5 接着系あと施工アンカー施工時の記録(AH 試験体)

										単位:m	ım
AH:南側	上端筋							下端筋			
番号は、手前(東)から	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	S11
内径奥(平行)	16.2	16.2	16.1	16.2	16.3	16.4	16.2	16.1	16.1	16.0	16.4
内径奥(直角)	16.5	16.5	16.3	16.5	16.1	16.4	16.4	16.4	16.1	16.1	16.4
内径手前(平行)	16.3	16.3	16.9	16.3	16.3	16.3	16.3	16.4	16.5	16.7	16.5
内径手前(直角)	16.5	16.3	16.8	16.4	16.1	16.2	16.4	16.5	16.3	16.5	16.3
										<u>単位:m</u>	m
深さ	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	S11
	162.3	162.3	162.3	162.7	162.2	161.0	162.7	98.0	97.8	97.7	96.5
										単位:°	
勾配	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	S11
スラブ面に平行方向	88.3	89.7	90.9	91.0	91.3	91.2	91.7	90.8	89.2	89.8	90.9
スラブ面に直角方向	91.2	92.5	91.9	90.7	90.5	90.2	90.9	88.7	90.9	92.4	89.5
										単位:m	ım
	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	S11
アンカー筋の全長	770	772	772	770	770	771	768	709	708	708	708
アンカー筋の出長さ	610	610	613	618	611	615	609	612	613	614	613
埋め込み長さ	160	162	159	152	159	156	159	97	95	94	95
										単位:	
アンカー筋勾配	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	S11
スラブ面に平行方向	91.4	91.2	92.3	92	92.6	92	92.3				
スラブ面に直角方向											
	測定不可	ग									

										<u>単位:m</u>	nm
AH:北側	上端筋							下端筋			
番号は、手前(東)から	N1	N2	N3	N4	N5	N6	N7	N8	N9	N10	N11
内径奥(平行)	16.4	16.1	16.2	16.3	16.0	16.0	16.0	16.1	16.2	16.2	16.3
内径奥(直角)	16.1	16.2	16.2	15.9	16.3	16.2	16.1	16.1	16.2	16.3	16.4
内径手前(平行)	16.7	16.3	16.4	16.5	16.7	16.5	16.2	16.3	16.6	16.2	16.0
内径手前(直角)	16.3	16.3	16.5	16.4	16.9	16.4	16.7	16.5	16.8	16.7	16.6
										<u>単位:m</u>	m
深さ	N1	N2	N3	N4	N5	N6	N7	N8	N9	N10	N11
	160.5	161.4	161.2	162.1	162.0	162.3	159.3	96.7	96.6	97.1	96.4
										単位:°	
勾配	N1	N2	N3	N4	N5	N6	N7	N8	N9	N10	N11
スラブ面に平行方向	90.9	91.1	89.5	90.6	90.5	92.1	88.3	91.2	91.2	90.7	89.9
スラブ面に直角方向	91.1	89.2	90.4	92.2	90.9	93.0	90.9	92.1	89.1	89.1	89.6
										単位:m	m
	N1	N2	N3	N4	N5	N6	N7	N8	N9	N10	N11
アンカー筋の全長	772	774	771	774	771	771	774	710	710	708	709
アンカー筋の出長さ	612	613	617	624	612	608	609	610	610	608	610
埋め込み長さ	160	161	154	150	159	163	165	100	100	100	99
		ゲージ								単位:°	
アンカー筋勾配	N1	N2	N3	N4	N5	N6	N7	N8	N9	N10	N11
スラブ面に平行方向	90,1		91.4		90.1	91,6	91.1				
スラブ面に直角方向											
	測定不可	ग									

										単位:m	nm
CA	上端筋							下端筋			
番号は手前(東)から	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	S11
内径奥(平行)	15.7	16.2	16.5	16.1	16.0	16.5	15.8	16.3	16.1	16.3	16.4
内径奥(直角)	16.1	15.9	16.5	16.1	15.9	16.3	16.1	16.1	16.5	16.3	16.4
内径手前(平行)	16.0	16.4	16.3	16.6	16.7	15.9	16.4	16.5	16.0	16.5	15.9
内径手前(直角)	16.2	16.1	16.3	16.3	16.7	16.1	16.2	16.5	16.0	16.5	16.0
										単位:m	nm
深さ	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	S11
	160.5	161.7	161.4	161.6	162.2	161.2	160.5	97.1	97.2	96.7	97.6
										単位:°	
勾配	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	S11
スラブ面に平行方向	91.3	90.0	89.0	89.0	89.6	89.5	89.4	91.7	91.9	88.4	89.3
スラブ面に直角方向	91.2	91.3	90.0	91.0	93.3	89.9	90.3	93.1	90.2	90.9	87.7
										単位:m	nm
	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	S11
アンカー筋の全長	773	771	772	772	772	773	773	710	710	710	710
アンカー筋の出長さ	611	612	610	612	609	613	610	617	613	615	611
埋め込み長さ	162	159	162	160	163	160	163	93	97	95	99
		ゲージ								単位:°	
アンカー筋勾配	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	S11
スラブ面に平行方向	89.8		91.9		91	90.7	91				
スラブ面に直角方向											
	测空不远	ज									

表 3.2.4-6 接着系あと施工アンカー施工時の記録(CA 試験体)

				南	側スタ	ブ			
西		S7	S6	S5	S4	S3	S2	S1	東
		0	0	0	0	0	0	0	
		S11		S10		S9		S8	
		0		0		0		0	
				北	側スタ	ブ			
西		N7	N6	N5	N4	N3	N2	N1	東
		0	0	0	0	0	0	0	
		N11		N10		N9		N8	
		0		0		0		0	

図 3.2.4-9 あと施工アンカー施工位置

(3) 乾燥収縮による基本物性の把握

コンクリートの乾燥収縮などの物性を確認するため、以下に示す基本試験体およ び供試体によりコンクリートの乾燥収縮ひずみを測定する.

1)基本試験体

図 3.2.4-10 に基本試験体形状を示す. 基本試験体は, 1,000×1,000 mm, スラブ厚 を 200 mm の形状とし, スラブ端部の配筋による試験体とする. また, 基礎梁の乾 燥収縮の状態を確認するために, 幅×長さを 1,000×1,000 mm, 厚さを 500 mm とし た試験体も作成する.

スラブ上面に 950 mm を基準長さとした石英棒を用いた測定用器具に変位計を取付けて水平変位を測定する.

コンクリートのひずみは、埋込み型ひずみ計を、スラブ主筋方向と直交方向に 各1ヶ所設置して測定する.

2)JIS 規格供試体

供試体は、JIS A 1129 規格に準拠して 100×100×400 mm とし、試験体と同様に保

管した供試体2体とする.

供試体は,脱型後からは1時間毎とし,支保工撤去直前からは,試験体と同様の 測定頻度にて水平変位の測定を行う.

図 3.2.4-10 スラブおよび基礎梁基本試験体形状・断面

3.2.5 加力·測定方法

3.2.5-1 長期載荷実験における加力・測定方法

(1) 載荷計画

荷重は,積載荷重1.8 kN/m²,仕上げ荷重0.7 kN/m²の合計2.5 kN/m²とする. 載荷方法は,鉄筋束を等分布荷重としてスラブ上面に均等に配置する.載荷は,支 保工撤去後にスラブ自重(27.6kN/m²)のみによる変動を測定後,その直後から載荷を 開始する.

(2) 水平変位·鉛直変位測定

試験体の水平変位・鉛直変位における測定位置図を図 3.2.5-1, 図 3.2.5-2 に示す. 各試験体のスラブの鉛直変位および,スタブの回転を確認するため,基礎梁に固定 した固定治具に変位計を取り付け,基礎梁からの相対変位として,それぞれの鉛直 変位および水平変位を測定する.

同様にスラブとスタブとの回転を測定するため、スタブから張り出した固定治具 に変位計を取り付け、スタブからの相対変位として、スタブから 50 mm 離れた位置 のスラブの鉛直変位を測定する(図 3.2.5-3, 図 3.2.5-4 参照).

測定は, 歪ゲージ式変位計にて測定する.

図 3.2.5-1 水平・鉛直変位測定位置図(AH, BA, AC 試験体)

図 3.2.5-2 水平·鉛直変位測定位置図(CA, CB 試験体)

(3) スラブ水平変位測定

スラブに発生するひび割れ(発生時期,ひび割れ幅,間隔),コンクリートの乾燥収 縮,ひび割れによる鉄筋の抜出し,クリープなど,スラブの長期たわみの時間的変 化を詳細に捉えるため,スラブ上面に 950 mm を基準長さとした石英棒を用いた測定 用器具に変位計を取付けて水平変位を測定する.

図 3.2.5-3 水平変位測定位置図

(4) スラブとスタブの打継ぎ部の水平変位測定

スラブとスタブの打ち継ぎ部の水平方向の変位測定を行い,打継ぎ部の目開き量 を測る(図 3.2.5-4 参照).

測定位置は、図 3.2.5-3の「測定番号: 19, 20」に示す位置である.

図 3.2.5-4 打ち継ぎ部の水平変位測定

(5) 鉄筋ひずみ測定

試験体のスラブ上端筋,下端筋,アンカー筋およびスラブ上端定着筋のひずみを 測定する.鉄筋のひずみ測定位置を図 3.2.5-5~図 3.2.5-8 に示す.なお,ひずみゲー ジは鉄筋の上下に貼り付けている.

図 3.2.5-6 鉄筋(あと施工アンカー筋,定着筋)ひずみ測定位置(AH, BA, AC 試験体)

図 3.2.5-7 鉄筋(スラブ筋)ひずみ測定位置(CA, CB 試験体)

図 3.2.5-8 鉄筋(あと施工アンカー筋,定着筋)ひずみ測定位置(CA, CB 試験体)

(6) 測定間隔

各試験体の測定は、支保工撤去直前から実施する.測定間隔を表 3.2.5-1 に示す.

経過時間	測定間隔
支保工撤去から積載終了まで	随時
初期値測定後から1週間まで	1時間
1週間後から測定終了まで	6時間

表 3.2.5-1 測定間隔

(7) ひび割れの観測

スラブ,スタブに生じたひび割れの観測を行い,図面に記録する.

観測頻度は、支保工撤去前(乾燥収縮)、支保工撤去後(自重)、鉄筋載荷直後、載荷後2週、4週、およびその後は1か月に一度の頻度を目標に鉄筋載荷後2年まで行い、 その後は1年ごとに観測を行った.なお、ひび割れ幅も、主なひび割れについて測 定する.測定方法は、クラックスケールを用いる.

(8) コンクリート強度の測定

コンクリート強度の測定は、圧縮強度をコンクリート打設後、1 週、4 週(載荷)、 13 週、半年、2年の時点で行い、ヤング係数は、4 週(載荷)、半年、2年の時点で行っ た. なお、終局載荷実験を行った際に別途コンクリート強度とヤング係数の測定を 行った. (9) スラブ振動測定

スラブ載荷前および載荷後の経過に合わせて振動実験を行い,振幅値,周波数な らびに,減衰定数の変化から剛性の変化等を確認する.

加振は、インパクトボールを高さ1mで落下し、試験体を振動させ、加速度応答の 測定を行う. 打撃位置はピックアップの位置から約150mmの位置とする. 測定頻度 は、支保工撤去後、鉄筋載荷直後、載荷後2週、4週、13週、半年、1年、1.5年、2 年まで行い、その後は1年ごとに観測を行った.

3.2.5-2 短期荷重による曲げ実験における加力・測定方法

(1) 加力方法

短期荷重による曲げ実験の加力は、試験体の中央に油圧ジャッキ(容量:100kN) を用いて集中荷重を加える方法とした.

長期たわみ実験では積載荷重として、1800(スラブ用)+700(仕上げ用)の合計 2500N/m²を載荷しているので、油圧ジャッキによる荷重は、積載荷重によるスラブ 固定端部曲げモーメントに等しくなるような加力方法とし、加力に用いた加力ビー ム及び加力プレート、ピンの重量を考慮した.なお、積載荷重用の鉄筋束は、加力に 際して支障となるので撤去した.

加カサイクルは,積載荷重,積載荷重による変形の2倍,4倍,8倍,短期荷重 (固定端部上端筋曲げ降伏時)までの片振りとする.

振動測定時の加振は、スラブにゴムボール(JISA1418-2:2000の衝撃力特性(2) に規定されている)を落下させた.ボール落下位置は加力用の鉄骨梁がある時にはス ラブ端部から 1200mm の位置(鉄骨梁の端部),鉄骨梁を取り除いた場合には、加力 フレームを避けた位置(中心から 600mm)に落下させた.

加力装置を図 3.2.5-9 に示す.

(2) 測定方法

荷重はロードセル(容量:100kN),変位は長期たわみ測定時に行っている変位計 (容量:50,25,10mm)を使用した.

長期たわみ実験で用いている積載荷重用の鉄筋束を撤去したときの中央たわみは 13.5 mmであったので、本曲げ実験の開始時の変形は、この変形量とした.

アンカー筋の降伏ひずみは、材料試験より 344(下降伏点応力) /1.79×10⁵ (ヤン グ係数)N/mm²=1922μであるので、曲げ実験では 1900μを上限とした.

ひび割れは、各サイクルの最大荷重時に観測した.

ひび割れ幅は, 亀裂変位計(容量:5mm)および積載荷重時及び短期荷重時にマ イクロスコープで測定した.

固有振動数は、油圧ジャッキによる加力開始前(加力ビーム及び加力プレート、ピンは積載)と各サイクルの除荷時に振動計(リオン製:VM-83)で測定した.測定用 ピップアップは、スラブの中央に設置した.

(3) 短期荷重の計算値

スラブ固定端部および中央の曲げ降伏荷重を算定する. 算定するための力学モデ ルを図 3.2.5-10 に示す。

アンカー筋のあるスラブ固定端部が中央より先に曲げ降伏荷重に達するように, 加力位置を試験体スパンの 1/4 とした.

図 3.2.5-10 力学モデル図

中央配筋:at 7-D10 スラブ厚さ:t 200mm 鉄筋強度:σy 369 N/mm2 (材料試験結果) 中央曲げ降伏モーメント:My My=at*σy*j= 27279709 N/mm2 スパンLの1/4点に加力Pをしたときの中央曲げモーメント:Mc Mc=a²2/L*P My=Mc. L=5760 a= 1440 としてPを算定 P=My*L/a²2= 75.77697 kN 加力用ジャッキ荷重は、2Pとなるので 151.6 kN

長期たわみ実験の積載荷重は、1,800(スラブ用)+700(仕上げ用)の合計 2,500N/m²を 載荷しているので、積載荷重によるスラブ固定端部曲げモーメントに等しくなるよ うな油圧ジャッキの荷重を算定する.この時加力に使用している加力ビーム、加力プ レート、ピンの重量を考慮した.

積載荷重∶w=	2500 N/m2			
スパン	5.76 m			
等分布端部曲げモーメン	∠ト∶Me			
wMe=1/12*w*L**2=	6912 Nm			
スパンLの1/4点に加力Pをしたときの端部固定端曲げモーメント:Me				
Me=a*(L-a)/L*P				
wMe=Me. L=	5.76 a=	1.44 としてPを算定		
P=My*L/(a*(L-a))=	6.4 kN			
π π π μ	1 U/I / L/N			

加力ビーム : 2H400*200 1.947 kN 加力ビーム : BH150*150 0.559 kN 合計 2.8 kNを差し引く 加力プレート、ピン 0.340 kN

加力用ジャッキ荷重は、2Pとなるので、 7.1 kN

等分布中央曲げモーメント: Mc wMc=1/24*w*L**2= 3456 Nm スパンLの1/4点に加力Pをしたときの中央曲げモーメント: Mc Mc=a²/L*P wMc=Mc. L= 5.76 a= 1.44 としてPを算定 P=My*L/a²2= 9.6 kN 加力ビーム: 2H400*200 1.947 kN 加力ビーム: BH150*150 0.559 kN 合計 2.8 kNを差し引く 加力プレート、ピン 0.340 kN

加力用ジャッキ荷重は、2Pとなるので、 13.5 kN

3.2.5-3 終局荷重による曲げ実験における加力·測定方法

(1) 加力方法

曲げ実験の加力は,試験体の中央に油圧ジャッキ(容量:150kN)を用いて集中荷 重を加える方法とした.

長期たわみ実験では積載荷重として、1,800(スラブ用)+700(仕上げ用)の合計 2,500N/m²を載荷しているので、油圧ジャッキによる荷重は、積載荷重によるスラブ 固定端部曲げモーメントに等しくなるような加力方法とし、加力に用いた加力ビー ム及び加力プレート、ピンの重量を考慮した.

なお積載荷重用の鉄筋束は、加力に際して支障となるので撤去した.

加力サイクルは,積載荷重時の変形を基準にこの変形の倍数とし,変形制御による片振り加力とする.

振動測定時の加振は、スラブにゴムボール(JISA1418-2:2000の衝撃力特性(2) に規定されている)を落下させた.ボール落下位置は加力用の鉄骨梁がある時には スラブ端部から 1080mm の位置(鉄骨梁の端部),鉄骨梁を取り除いた場合には、加 カフレームを避けた位置(中心から 600mm)に落下させた. 加力装置を図 3.2.5-11 に示す.

(2) 測定方法

荷重はロードセル(容量:200kN),変位は長期たわみ測定時に行っている変位計 (容量:50,5,10mm)では、曲げ終局時に容量が不足するので大きな容量の変位計に 変更した.変更した変位測定位置および変位計を表 3.2.5-2 に示す.なお終局曲げ実 験終了後の長期たわみ測定は、長期たわみ時の容量の変位計に戻した.

長期たわみ実験で用いている積載荷重用の鉄筋束を撤去したときの中央たわみは 26.565mmであったので、本曲げ実験の開始時の変形は、この変形量とした.

ひび割れは,各サイクルの最大荷重時に観測した.幅は,亀裂変位計(容量: 5mm)で測定した.

固有振動数は、載荷鉄筋を除荷した自重のみ、油圧ジャッキによる加力開始前 (加力ビーム及び加力プレート、ピンは積載)と各サイクルの除荷時に振動計(リ オン製:VM-53A)で測定した.測定用ピップアップは、スラブの中央に設置した. 変位および鉄筋ひずみ測定位置は長期載荷試験と同様である.

第3章 あと施工アンカーを端部定着に用いたスラブ試験体の構造性能評価

ゲージNo	測定項目	長期たわみ	終局曲げ
1	中央鉛直	CDP50	CDP100
2	中央鉛直	CDP50	CDP100
3	1/4鉛直	CDP50	
4	1/4鉛直	CDP50	
5	端部鉛直	CDP5	CDP25
6	端部鉛直	CDP5	CDP25
7	端部水平	CDP10	CDP25
8	端部水平	CDP10	CDP25
9	端部回転	CDP10	CDP25
10	端部回転	CDP10	CDP25
11	端部回転	CDP10	CDP25
12	端部回転	CDP10	CDP25
13	スタブ回転	CDP5	CDP25
14	スタブ回転	CDP5	CDP25
15	ひび割れ幅	KG-5A	
16	ひび割れ幅	KG-5A	
17	ひび割れ幅	CDP25(石英管)	
18	ひび割れ幅	CDP25(石英管)	
19	打継水平	CDP25	
20	打継水平	CDP25	

表 3.2.5-2 変位測定位置および変位計

図 3.2.5-11 加力装置(終局荷重)

(3)曲げ降伏荷重の計算値

スラブ固定端部および中央の曲げ降伏荷重を算定する.算定するための力学モデルを図 3.2.5-12 に示す。

アンカー筋のあるスラブ固定端部が中央より先に曲げ降伏荷重に達するように, 加力位置を試験体スパンの1/4とした.

図 3.2.5-12 力学モデル

端部配筋:at 7-D13 スラブ厚さ:t 200mm 鉄筋強度: σv (材料試験結果) 360 N/mm2 端部曲げ降伏モーメント: My 47650030 N/mm2 $My = at * \sigma y * j =$ スパンLの1/4点に加力Pをしたときの端部固定端曲げモーメント:Me Me = a*(L-a)/L*P1440 としてPを算定 My=Me. L= 5760 a =P=My*L/(a*(L-a))= 44.1204 kN

加力用ジャッキ荷重は、2Pとなるので、 88.24 kN

中央配筋:at 7-D10 スラブ厚さ:t 200mm 鉄筋強度:σy 369 N/mm2 (材料試験結果) 中央曲げ降伏モーメント:My My=at*σy*j= 27279709 N/mm2 スパンLの1/4点に加力Pをしたときの中央曲げモーメント:Mc Mc=a²2/L*P My=Mc. L=5760 a= 1440 としてPを算定 P=My*L/a²2= 75.77697 kN 加力用ジャッキ荷重は、2Pとなるので 151.6 kN 長期たわみ実験の積載荷重は、1800(スラブ用)+700(仕上げ用)の合計 2500N/m²を載荷しているので、積載荷重によるスラブ固定端部曲げモーメントに等 しくなるような油圧ジャッキの荷重を算定する.この時加力に使用している加力ビ ーム、加力プレート、ピンの重量を考慮した.

2500 N/m2 積載荷重:w= スパン 5.76 m 等分布端部曲げモーメント: Me wMe=1/12*w*L**2= 6912 Nm スパンLの1/4点に加力Pをしたときの端部固定端曲げモーメント:Me Me=a*(L-a)/L*P wMe=Me. L =5.76 a= 1.44 としてPを算定 P=My*L/(a*(L-a))= 6.4 kN 加力ビーム:2H250*250 2.215 kN

加力ビーム: BH150*150 0.431 kN 合計 3.0 kNを差し引く 加力プレート、ピン 0.340 kN

加力用ジャッキ荷重は、2Pとなるので、

6.8 kN

等分布中央曲け wMc=1/24*w*l	『モーメ』 ∟**2=	ント : Mc 345	56 Nm		
スパンLの1/4点 Mc==~~2/L*P	に加力	Pをした。	ときの中共	央曲げモーメント: Mc	
wMc = Mc. P=Mv*L/a ² =	L=	5.76 9	a= .6 kN	1.44 としてPを算定	

加力ビーム:2H250*250	2.215 kN			
加力ビーム:BH150*150	0.431 kN	合計	3.0 kNを差し引	1<
加カプレート、ピン	0.340 kN			

加力用ジャッキ荷重は、2Pとなるので、

13.2 kN

3.2.5-4 あと施工アンカー単体の各種実験

(1)長期引張実験(クリープ試験)

スラブの長期載荷実験に併せて,接合部に用いているあと施工アンカーの長期載 荷に対する引張性能を確認するために試験体の脇であと施工アンカー筋および先付 け定着筋それぞれ1本のクリープ試験を実施する.

クリープ試験の試験体および試験装置を図 3.2.5-13 に示す.

図 3.2.5-13 クリープ試験試験体および試験装置

(2) あと施工アンカー付着実験

両端固定スラブ試験体(AC 試験体)の製作に際して試験体でのあと施工アンカー単体の性能を確認するために施工したアンカー筋の付着試験を行う.

アンカー筋は、スラブに用いた鉄筋と同径のD13、材料強度はMK785で、埋込み長さ を 65mm(5da)とした、南側スタブ 5 本の内の 1 本 (試験体名: ACS-3) にひずみゲー ジを 2 ヶ所貼付けて、ゲージの防水コーティングの影響を調べた.

あと施工アンカー筋施工時の穿孔穴径,深さ,アンカー筋長さ,埋込み長さ,角度を 表 3.2.5-3 に示す.

付着実験の装置の状況を写真 3.2.5-1 に示す.

試験装置は試験体施工時は、センターホール型の油圧ジャッキ、ロードセルを用いたが、終局曲げ実験時は「あと施工アンカー用引張試験機」(スピードテスタ: SPEED200-50)を用いた.

試験体施工時(2016年1月)

終局曲げ実験時

写真 3.2.5-1 付着試験装置

									単位:	mm
AC:南側	上端	筋								
番号は、手前(東)から	S1		S2		S3		S4		S5	
内径奥(平行)		16.6	1	6.4		16.5		16.4		16.3
内径奥(直角)		16.3	1	6.3		16.5		16.3		16.3
内径手前(平行)		16.3	1	6.4		16.4		16.4		16.3
内径手前(直角)		16.3	1	6.5		16.3		16.4		16.4
									単位:	mm
深さ	S1		S2		S3		S4		S5	
		67.6	6	69.3		67.9		70.1		70.6
									単位:)
勾配	S1		S2		S3		S4		S5	
<u>- ス</u> スラブ面に平行方向		90.9		90.8		91.7		92.9		91.1
スラブ面に直角方向		90.3	8	39.8		88.7		89.2		88.5
									単位:	mm
	S1		S2		S3		S4		S5	
アンカー筋の全長		502		500		734	• ·	501		500
アンカー筋の出長さ		431		429		667		436		431
埋め込み長さ		71		71		67		65		69
	_			<u> </u>	ゲー			00	単位 [.]	, ,
アンカー筋勾配	S1		<u>S2</u>		\$3	-	<u>S4</u>		<u>+ 12.</u> S5	
										_
	_	021	c	121		037		0/3		03
ハジ面に世内が同		52.4		,0.4		50.7		04.0	出任。	
	F 위류	山谷							里位:	mm
AC. 北側 来早け 手前(声)から		1月71	ND		NI2		NI4		NE	
留ちは、于前(朱)から 市区奥(亚行)		16.6	112	6.4	ING	16.4	114	16.2		16.2
	_	16.6	1	6.4		16.2		16.3		16.4
	_	16.2	1	6.4		16.4		16.4		16.4
内住于前(十1)	_	16.5	1	6.5		16.2		16.4		16.5
	_	10.5	I	0.0		10.3		10.4		10.5
資 ナ	_								一首(六)。	00000
	NI1		N12		NI2		N/A		<u>単位:</u> N5	mm
	<u>N1</u>	60 7	N2	6.0	N3	66.0	N4	60.2	单位: N5	<u>mm</u>
	N1	68.7	N2 6	6.0	N3	66.9	N4	69.2	単位: N5 単位:	<u>mm</u> 66.7
	N1	68.7	N2 6	6.0	N3	66.9	N4	69.2	单位: N5 单位: N5	<u>mm</u> 66.7
	N1 N1	68.7	N2 6 N2	6.0	N3 N3	66.9	N4 N4	69.2	单位: N5 単位: N5	66.7
勾配 スラブ面に平行方向 スラブ面に平行方向	N1 N1	<u>68.7</u> 88.9	N2 6 N2 g)6.0	N3 N3	66.9 88.9	N4 N4	<u>69.2</u> <u>88.8</u>	单位: N5 単位: N5	92.5
勾配 スラブ面に平行方向 スラブ面に直角方向	N1 N1	68.7 88.9 87.4	N2 6 N2 9 8	6.0)1.0 36.1	N3 N3	66.9 88.9 88.5	N4 N4	69.2 88.8 89.2	单位: N5 単位: N5	<u>66.7</u> 92.5 87.8
勾配 スラブ面に平行方向 スラブ面に直角方向	N1 N1	68.7 88.9 87.4	N2 6 N2 8	6.0)1.0 6.1	N3 N3	66.9 88.9 88.5	N4	69.2 88.8 89.2	单位: N5 単位: N5 単位:	mm 66.7 92.5 87.8 mm
<u>勾配</u> スラブ面に平行方向 スラブ面に直角方向	N1 N1 N1	68.7 88.9 87.4	N2 6 N2 8 N2	6.0)1.0 36.1	N3 N3 N3	66.9 88.9 88.5	N4 N4 N4	69.2 88.8 89.2	単位: N5 単位: N5 単位: N5	<u>66.7</u> 92.5 87.8 mm
勾配 スラブ面に平行方向 スラブ面に直角方向 アンカー筋の全長	N1 N1 N1 N1	68.7 88.9 87.4 500	N2 6 N2 8 N2	6.0)1.0 36.1	N3 N3 N3	66.9 88.9 88.5 500	N4 N4	69.2 88.8 89.2 498	単位: N5 単位: N5 単位: N5	mm 66.7 92.5 87.8 mm 502
勾配 スラブ面に平行方向 スラブ面に直角方向 アンカー筋の全長 アンカー筋の出長さ	N1 N1 N1 N1	68.7 88.9 87.4 500 436	N2 6 N2 8 N2	6.0 01.0 36.1 501 433	N3 N3 N3	66.9 88.9 88.5 500 431	N4	69.2 88.8 89.2 498 429	単位: N5 単位: N5 単位: N5	mm 66.7 92.5 87.8 mm 502 426
<u>勾配</u> スラブ面に平行方向 スラブ面に直角方向 アンカー筋の全長 アンカー筋の出長さ 埋め込み長さ	N1 N1 N1 N1	68.7 88.9 87.4 500 436 64	N2 6 N2 8 N2	\$6.0 91.0 \$6.1 501 433 68	N3 N3 N3	66.9 88.9 88.5 500 431 69	N4	69.2 88.8 89.2 498 429 69	単位: N5 単位: N5 単位: N5	<u>66.7</u> 92.5 87.8 mm 502 426 76
<u>勾配</u> スラブ面に平行方向 スラブ面に直角方向 アンカー筋の全長 アンカー筋の出長さ 埋め込み長さ	N1 N1 N1 N1	<u>68.7</u> <u>88.9</u> 87.4 <u>500</u> 436 64	N2 N2 N2 N2 N2	6.0)1.0 36.1 501 433 68	N3 N3 N3	66.9 88.9 88.5 500 431 69	N4	69.2 88.8 89.2 498 429 69	単位: N5 単位: 単位: N5 単位: 単位: 単位:	66.7 92.5 87.8 502 426 76
<u>勾配</u> スラブ面に平行方向 スラブ面に直角方向 アンカー筋の全長 アンカー筋の出長さ 埋め込み長さ アンカー筋勾配	N1 N1 N1 N1 N1	68.7 88.9 87.4 500 436 64	N2 6 N2 8 N2 N2 N2	66.0 01.0 86.1 501 433 68	N3 N3 N3 N3	66.9 88.9 88.5 500 431 69	N4	69.2 88.8 89.2 498 429 69	単位: N5 単位: N5 単位: N5 単位: N5	<u>92.5</u> 92.5 87.8 502 426 76
<u>勾配</u> スラブ面に平行方向 スラブ面に直角方向 アンカー筋の全長 アンカー筋の出長さ 埋め込み長さ アンカー筋勾配 スラブ面に平行方向	N1 N1 N1 N1 N1 N1 N1	<u>68.7</u> <u>88.9</u> 87.4 <u>500</u> 436 64	N2 6 N2 8 N2 N2 N2 N2 N2	56.0 01.0 36.1 501 433 68	N3 N3 N3 N3	66.9 88.9 88.5 500 431 69	N4	69.2 88.8 89.2 498 429 69	単位: N5 単位: N5 単位: N5 単位: N5 ー	<u>66.7</u> 92.5 87.8 <u>92.5</u> 87.8 502 426 76

表 3.2.5-3 アンカー施工時の穿孔孔径・深さ・アンカー筋長さ・埋込み長さ・勾配

3.2.6 実験結果

3.2.6-1 長期載荷実験結果

実験の経過報告として,床底板の型枠脱型を行った2016年2月16日から2022年9月29日までの実験結果を以下に示す.

(1) 試験体の変形

各試験体の中央のたわみ量(変位計 No.1)を図 3.2.6-1 に示す.載荷開始から約半年間はたわみが増加してきているが、2016 年 8 月以降は増加が落ち着いてきていることが分かる.2017 年に入ってからはその傾向が顕著に見られる.この傾向は、あと施工アンカーの使用の有無によらず、ほぼ同じとなっている.

図 3.2.6-1 各試験体の中央のたわみ量(上:両端固定,下:片持ち)

各試験体の試験体全体のたわみを図 3.2.6-2~図 3.2.6-4 に示す. 各試験体のたわみ の測定位置は図 3.2.5-1,図 3.2.5-2 に示す.図 3.2.6-1 と同じく,載荷開始から約半年 間はたわみが増加してきているが,2016 年 8 月以降は増加が落ち着いてきているこ とが分かる.これは,あと施工アンカーの使用の有無によらず,ほぼ同じとなって いる.

図 3.2.6-2 試験体 AH および試験体 BA の試験体全体の長期たわみ

図 3.2.6-3 試験体 CA および試験体 CB の試験体全体の長期たわみ

図 3.2.6-4 試験体 AC の試験体全体の長期たわみ

各試験体のスラブ全体の長期たわみの測定値を表 3.2.6-1~表 3.2.6-4 に示す. 各試 験体のたわみの測定位置は図 3.2.5-1,図 3.2.5-2 に示す. 試験体 AH, BA および AC については,3.2.3 項の 6)で求めた弾性計算によるたわみの値 δ_e =1.46 mm に対するた わみ測定位置 1番(すなわち床スラブ長さ中央位置)での測定値の比(すなわちたわみ増 大率 κ に相当)を,あわせて示す.たわみ増大率は κ =12.5 程度であり,これは,あと 施工アンカーの使用の有無によらず,ほぼ同じとなっている.

試験体			試験	体 AH		
			測定位置			たわみ
測定日	5	3	1	4	6	増大率 κ
2016/2/16	0.0650	1.965	3.130	1.935	0.0575	2.14
2016/3/15	0.1145	3.760	6.245	3.685	0.1065	4.28
2016/4/26	0.2225	5.255	8.815	5.150	0.2125	6.04
2016/5/21	0.2725	6.065	10.225	6.010	0.2645	7.00
2016/6/28	0.3110	6.610	11.080	6.550	0.3130	7.59
2016/8/1	0.3600	7.025	11.730	6.955	0.3600	8.03
2016/9/1	0.3835	7.510	12.570	7.445	0.3795	8.61
2016/11/2	0.3645	7.800	13.105	7.720	0.3485	8.98
2016/12/7	0.3500	7.840	13.195	7.765	0.3305	9.04
2017/2/16	0.3500	8.115	13.685	8.045	0.3180	9.37
2017/4/20	0.3885	8.295	13.970	8.220	0.3595	9.57
2017/5/11	0.4075	8.335	14.030	8.260	0.3780	9.61
2017/6/15	0.4245	8.555	14.395	8.475	0.4005	9.86
2017/7/20	0.4470	8.795	14.780	8.720	0.4305	10.12
2017/8/24	0.4570	8.785	14.755	8.725	0.4425	10.11
2017/10/26	0.4255	8.760	14.730	8.705	0.4040	10.09
2017/12/21	0.4210	9.075	15.210	8.920	0.3775	10.42
2018/4/25	0.4625	9.325	15.560	9.125	0.4280	10.66
2018/8/15	0.5000	9.705	16.240	9.550	0.4825	11.12
2019/2/15	0.4560	10.030	16.770	9.800	0.423	11.49
2019/9/30	0.5255	10.290	17.210	10.125	0.50650	11.79
2020/3/1	0.5090	10.205	16.950	9.955	0.4760	11.61
2020/9/15	0.5455	10.525	17.590	10.360	0.5275	12.05
2021/3/1	0.5235	10.575	17.630	10.360	0.4910	12.08
2021/9/7	0.5570	10.680	17.830	10.510	0.5350	12.21
2022/1/13	0.5275	10.61	17.645	10.365	0.4965	12.09
2022/9/29	0.5865	11.005	18.34	10.815	0.562	12.56

表 3.2.6-1 AH 試験体の長期たわみ測定値(単位:mm)

試験体			試験	体 BA		
			測定位置			たわみ
測定日	5	3	1	4	6	増大率κ
2016/2/16	0.0750	2.375	3.735	2.360	0.0750	2.56
2016/3/15	0.1270	4.300	7.110	4.280	0.1295	4.87
2016/4/26	0.2490	5.860	9.835	5.850	0.2375	6.74
2016/5/21	0.3080	6.930	11.695	6.905	0.3005	8.01
2016/6/28	0.3585	7.260	12.220	7.235	0.4460	8.37
2016/8/1	0.4115	7.595	12.810	7.625	0.5875	8.77
2016/9/1	0.4425	8.055	13.600	8.120	0.6345	9.32
2016/11/2	0.4115	8.305	14.070	8.385	0.6270	9.64
2016/12/7	0.3955	8.335	14.130	8.420	0.6170	9.68
2017/2/16	0.389	8.615	14.645	8.710	0.6075	10.03
2017/4/20	0.4330	8.780	14.915	8.875	0.6455	10.22
2017/5/11	0.4540	8.835	14.990	8.925	0.6630	10.27
2017/6/15	0.4780	9.065	15.385	9.165	0.6870	10.54
2017/7/20	0.5080	9.260	15.725	9.370	0.7200	10.77
2017/8/24	0.5195	9.225	15.645	9.355	0.7475	10.72
2017/10/26	0.4795	9.170	15.575	9.315	0.7185	10.67
2017/12/21	0.4340	9.210	15.680	9.375	0.6800	10.74
2018/4/25	0.4835	9.355	15.905	9.520	0.7245	10.89
2018/8/15	0.5465	9.735	16.555	9.920	0.7865	11.34
2019/2/15	0.4635	9.815	16.745	10.03	0.7255	11.47
2019/9/30	0.5630	10.175	17.335	10.405	0.8235	11.87
2020/3/1	0.5325	10.160	17.120	10.250	0.8070	11.73
2020/9/15	0.5935	10.515	17.800	10.670	0.8655	12.19
2021/3/1	0.5615	10.585	17.835	10.665	0.8345	12.22
2021/9/7	0.6065	10.645	17.985	10.775	0.8815	12.32
2022/1/13	0.569	10.595	17.795	10.65	0.8455	12.19
2022/9/29	0.635	10.92	18.42	11.06	0.914	12.62

表 3.2.6-2 BA 試験体の長期たわみ測定値(単位:mm)

表 3.2.6-3 AC 試験体の長期たわみ測定値(単位:mm

試験体			試験	体 AC		
			測定位置			たわみ
測定日	5	3	1	4	6	増大率κ
2016/2/16	0.0745	1.99	3.135	1.935	0.0115	2.29
2016/3/15	0.128	3.67	6.045	3.515	0.0305	4.42
2016/4/26	0.232	5.135	8.58	4.95	0.0715	6.27
2016/5/21	0.2815	5.855	9.82	5.7	0.1005	7.18
2016/6/28	0.328	6.415	10.77	6.255	0.1145	7.87
2016/8/1	0.3785	6.795	11.38	6.64	0.125	8.32
2016/9/1	0.4065	7.27	12.175	7.105	0.1355	8.90
2016/11/2	0.3825	7.535	12.65	7.36	0.126	9.25
2016/12/7	0.365	7.575	12.725	7.405	0.1185	9.30
2017/2/16	0.3515	7.845	13.205	7.675	0.121	9.65
2017/4/20	0.392	8.035	13.54	7.865	0.1255	9.90
2017/5/11	0.4145	8.08	13.605	7.91	0.1295	9.95
2017/6/15	0.437	8.28	13.955	8.115	0.137	10.20
2017/7/20	0.464	8.505	14.335	8.36	0.1405	10.48
2017/8/24	0.4755	8.485	14.305	8.37	0.139	10.46
2017/10/26	0.4385	8.44	14.225	8.325	0.1235	10.40
2017/12/21	0.3945	8.465	14.375	8.425	0.1175	10.51
		短期	期荷重載荷	Ī		
2018/4/25	0.6655	15.87	25.325	15.675	0.1285	-
2018/8/15	0.71	16.405	26.265	16.305	0.1325	-
2019/2/15	0.6615	16.535	26.46	16.385	0.1275	-
2019/9/15	0.7335	17.115	27.44	17.06	0.136	-
2020/3/1	0.704	16.85	26.985	16.77	0.126	-
2020/9/15	0.7485	17.315	27.76	17.275	0.134	-
2021/3/1	0.729	17.405	27.89	17.37	0.136	-
2021/9/7	0.7585	17.425	27.945	17.41	0.1295	-
2022/1/13	0.73	17.315	27.75	17.295	0.125	-
		終月	司荷重載荷			

試験体	試	験体 CA		試験体 CB				
		測定位置			測定位置			
測定日	1	3	4	4	3	1		
2016/2/16	4.585	2.015	0.0655	0.1035	3.070	6.605		
2016/3/15	9.035	3.620	0.1025	0.1735	5.105	11.910		
2016/4/26	12.400	4.850	0.1740	0.2585	6.315	15.195		
2016/5/21	14.050	5.485	0.2055	0.2955	6.915	16.780		
2016/6/28	15.110	5.925	0.2210	0.3080	7.040	17.060		
2016/8/1	15.785	6.240	0.2645	0.3640	7.625	18.485		
2016/9/1	16.765	6.665	0.2860	0.3880	8.010	19.505		
201611/2	17.935	7.120	0.2930	0.3945	8.465	20.850		
2016/12/7	18.210	7.210	0.2880	0.3930	8.580	21.230		
2017/2/16	19.120	7.530	0.2935	0.3995	8.905	22.175		
2017/4/20	19.205	7.570	0.3120	0.4210	8.945	22.190		
2017/5/11	19.140	7.560	0.3220	0.4305	8.925	22.090		
2017/6/15	19.455	7.685	0.3340	0.4455	9.040	22.385		
2017/7/20	19.500	7.710	0.3365	0.4510	9.035	22.295		
2017/8/24	19.535	7.760	0.3500	0.4665	9.115	22.430		
2017/10/26	20.105	7.965	0.3505	0.4680	9.375	23.230		
2017/12/21	20.625	8.120	0.3300	0.4560	9.580	23.920		
2018/4/25	20.540	8.105	0.3500	0.4715	9.540	23.665		
2018/8/15	20.745	8.210	0.3690	0.4910	9.565	23.635		
2019/2/15	21.915	8.620	0.3610	0.4860	9.920	24.820		
2019/9/15	22.095	8.740	0.4020	0.5220	10.085	24.980		
2020/3/1	22.405	8.880	0.4130	0.5430	10.365	25.740		
2020/9/15	22.605	8.970	0.4240	0.5430	10.310	25.500		
2021/3/1	23.350	9.250	0.4370	0.5595	10.660	26.550		
2021/9/7	23.270	9.235	0.4520	0.5715	10.575	26.135		
2022/1/13	23.7	9.38	0.455	0.5775	10.78	26.805		
2022/9/29	23.695	9.415	0.4735	0.591	10.755	26.58		

表 3.2.6-4 片持ち試験体の長期たわみ測定値(単位:mm)

(2)あと施工アンカー筋および定着筋のひずみ

試験体AHのあと施工アンカー筋および試験体BAの標準定着筋のひずみを図3.2.6-5,図3.2.6-6に示す.載荷の瞬間に引張ひずみが生じた後,ひずみ度の値は季節によ る変動を繰り返してはいるが,ピーク値はほぼ一定値のまま推移している.ただし, 試験体 AH のあと施工アンカー孔口付近のひずみゲージ(A2a, A2b)の測定値は,季節 変動を繰り返しながら若干減少していることが分かる.

また,あと施工アンカーを用いた試験体のひずみ度が,標準定着を用いた試験体 のそれらより若干小さかった.減少している原因については,現状では判別できず, あと施工アンカーの抜出しとも考えられない.

AH アンカー筋(中央:スラブ幅方向)ひずみ 800 700 600 (ゴ)を作り 300 500 A1a,A1b A2a,A2b A3a,A3b - A4a,A4b 200 A5a,A5b 100 0 2/16 8/16 2/14 8/15 2/13 8/14 2/12 8/13 2/11 8/11 2/9 8/10 2/8 8/9 2021 2022 2019月日 2020 2016 2017 2018

図 3.2.6-5 あと施工アンカー筋および標準定着筋のひずみ(中央:スラブ幅方向)

図 3.2.6-6 あと施工アンカー筋および標準定着筋のひずみ(端部:スラブ幅方向)

試験体 CA のあと施工アンカー筋および試験体 CB の標準定着筋のひずみを図 3.2.6-7,図 3.2.6-8 に示す. 試験体 AH および BA で見られる傾向とほぼ同じ傾向 が見られる.

図 3.2.6-7 あと施工アンカー筋および標準定着筋のひずみ(中央:スラブ幅方向)

図 3.2.6-8 あと施工アンカー筋および標準定着筋のひずみ(端部:スラブ幅方向)

試験体 AC の終局荷重による曲げ実験までのあと施工アンカー筋のひずみを図 3.2.6-9 に示す.季節変動によってひずみが増減しているが,短期荷重による曲げ実 験時に大きくなったひずみは,経年することによって季節変動しながら小さくなっ てきている.

図 3.2.6-9 AC 試験体のあと施工アンカー筋のひずみ(上:中央,下:端部)

(3)試験体のひび割れ

各試験体のひび割れ図を図 3.2.6-10~図 3.2.6-13 に示す. ひび割れの発生のパター ンについても、あと施工アンカーの使用の有無による違いは見られていない.

第3章 あと施工アンカーを端部定着に用いたスラブ試験体の構造性能評価

図 3.2.6-10 試験体 AH ひび割れ図

光

围

図 3.2.6-12 試験体 BA ひび割れ図

悔

図 3.2.6-13 試験体 CA,CB ひび割れ図

各試験体の目視による観測のひび割れ幅を表 3.2.6-5 に示す.また,ひび割れ幅の 測定位置を図 3.2.6-14 に示す. AH および BA 試験体では,位置 5 番と 6 番(すなわち 床スラブとスタブの打継ぎ部の目開き)で 0.4 mm から 0.5 mm の幅が生じている.こ の点において,あと施工アンカーの使用の有無による違いは見られない. CA および CB 試験体では,位置 3 番と 4 番で 0.35 mm 程度のひび割れが生じており,こちらに ついてもあと施工アンカーの使用の有無による違いは見られない.

図 3.2.6-14 ひび割れ幅測定位置

各試験体のスラブとスタブの打継ぎ部の水平変位を図 3.2.6-15, 図 3.2.6-16 に示 す.また,打継ぎ部の目開き量を表 3.2.6-6 に示す.載荷開始後,8月までは変位が増 大していたが,8月以降は一転して増加が見られずほぼ一定値で推移した.あと施工 アンカーの使用の有無による違いは見られない.なお,試験体 CBの No.11 変位計の 測定値に特異な変化が見られるが,その理由は現状では判然としない.

	試験	体 AH			試験	体 BA			試験	体 CA			試験	体 CB		
	測定	位置			測定位置				測定位置				測定位置			
1	2	3	4	5	6	1	2	3	4	5	6	2	4	1	3*	
0.10		0.10	0.1未満	0.25	0.25	0.10	0.10	0.1未満	0.15	0.30	0.25	0.35	0.1未満	0.10	0.20	
0.10		0.15	0.1未満	0.25	0.25	0.1未満	0.1未満	0.1未満	0.15	0.30	0.25	0.25	0.10	0.10	0.20	
0.10		0.15	0.1未満	0.25	0.25	0.1未満	0.10	0.10	0.10	0.30	0.25	0.30	0.1未満	0.10	0.20	
0.10		0.10	0.10	0.25	0.30	0.10	0.10	0.10	0.10	0.35	0.30	0.10	0.15	0.10	0.35	
0.10	0.10	0.15	0.10	0.30	0.35	0.1未満	0.15	0.10	0.15	0.40	0.35	0.10	0.25	0.15	0.40	
0.15	0.08	0.20	0.15	0.40	0.40	0.04	0.15	0.15	0.15	0.45	0.50	0.10	0.30	0.15	0.45	
0.10	0.06	0.20	0.10	0.40	0.35	0.04	0.10	0.15	0.20	0.40	0.45	0.10	0.35	0.10	0.45	
0.10	0.00	0.10	0.05	0.60	0.30	0.00	0.10	0.20	0.10	0.65	0.45	0.04	0.30	0.06	0.40	
0.10	0.00	0.10	0.06	0.55	0.35	0.00	0.06	0.06	0.06	0.65	0.55	0.04	0.25	0.06	0.45	
0.10	0.00	0.15	0.10	1.00	0.30	0.00	0.06	0.10	0.04	0.65	0.85	0.06	0.25	0.06	0.45	
0.10	0.00	0.10	0.06	0.95	0.30	0.00	0.04	0.08	0.06	0.65	0.60	0.04	0.30	0.06	0.50	
0.06	0.00	0.20	0.15	0.65	0.40	0.00	0.04	0.06	0.08	0.65	0.60	0.04	0.25	0.06	0.65	
0.06	0.00	0.20	0.10	0.55	0.30	0.00	0.04	0.08	0.06	0.50	0.55	0.04	0.20	0.04	0.60	
0.06	0.00	0.25	0.10	0.60	0.35	0.00	0.04	0.08	0.08	0.55	0.60	0.04	0.30	0.08	0.65	
0.04	0.00	0.20	0.10	0.70	0.40											
	1 0.10 0.10 0.10 0.10 0.10 0.10 0.15 0.10 0.10 0.10 0.10 0.10 0.10 0.06 0.06 0.06 0.04 0.04	試験 測定 1 2 0.10 0.10 0.10 0.10 0.10 0.10 0.15 0.08 0.10 0.00 0.15 0.08 0.10 0.00 0.10 0.00 0.10 0.00 0.10 0.00 0.10 0.00 0.00 0.00 0.06 0.00 0.00 0.00	試験体 AH測定位置1230.100.100.100.150.100.150.100.150.100.100.100.100.150.100.100.150.150.080.200.100.060.200.100.000.100.100.000.100.100.000.150.100.000.150.100.000.200.060.000.200.060.000.250.040.000.20	試験体 AH 測定位置12340.100.100.1縁0.100.150.1縁0.100.150.1縁0.100.150.1歳0.100.150.100.100.100.150.100.100.100.150.100.100.060.200.150.100.000.100.050.100.000.150.100.100.000.150.100.100.000.150.100.100.000.100.060.100.000.100.150.060.000.200.150.060.000.200.100.060.000.200.100.060.000.200.100.060.000.200.10	試験体 AH 測定位置123450.100.100.10.250.100.150.10.250.100.150.10.250.100.150.10.250.100.150.10.250.100.100.100.250.100.100.150.100.250.100.100.150.100.300.150.080.200.150.400.100.060.200.100.400.100.000.100.050.600.100.000.100.050.600.100.000.100.060.950.100.000.100.060.950.060.000.200.100.550.060.000.200.100.600.060.000.200.100.600.060.000.200.100.600.060.000.200.100.60	試験体 AH 試験体 AH 測定位置 測定 1 2 3 4 5 6 0.10 0.10 0.1¾ 0.25 0.25 0.10 0.15 0.1¾ 0.25 0.25 0.10 0.15 0.1¾ 0.25 0.25 0.10 0.15 0.1¾ 0.25 0.25 0.10 0.15 0.1¾ 0.25 0.25 0.10 0.15 0.1¾ 0.25 0.25 0.10 0.15 0.1¾ 0.25 0.25 0.10 0.10 0.10 0.25 0.30 0.10 0.10 0.10 0.40 0.35 0.10 0.00 0.10 0.06 0.30 0.10 0.00 0.10 0.06 0.30 0.10 0.00 0.10 0.06 0.30 0.10 <td>試験体 AH 測定位置試験体 BA 測定位置12345610.100.100.10.250.250.100.100.150.10.250.250.10.100.150.10.250.250.10.100.150.10.250.300.100.100.100.100.250.300.100.100.100.150.100.250.300.100.100.100.150.100.300.350.10.100.100.150.100.400.400.040.100.060.200.100.400.350.040.100.000.100.050.600.300.000.100.000.150.101.000.300.000.100.000.150.101.000.300.000.100.000.150.101.000.300.000.100.000.150.101.000.300.000.100.000.100.060.950.300.000.100.000.100.160.650.400.000.100.000.200.150.650.300.000.100.000.200.100.600.350.000.060.000.200.100.600.350.000.0</td> <td>試験体 AH 測定位置 試験体 BA 1 2 3 4 5 6 1 2 0.10 0.10 0.14 0.25 0.25 0.10 0.10 0.10 0.15 0.14 0.25 0.25 0.10 0.13 0.10 0.15 0.14 0.25 0.25 0.14 0.14 0.10 0.15 0.14 0.25 0.25 0.14 0.14 0.10 0.15 0.14 0.25 0.25 0.14 0.16 0.10 0.10 0.10 0.25 0.30 0.10 0.10 0.10 0.10 0.10 0.25 0.30 0.14 0.15 0.11 0.10 0.15 0.10 0.30 0.35 0.44 0.15 0.10 0.00 0.10 0.06 0.55 0.35 0.00 0.06 0.10 0.00</td> <td>試験体 AH 測定位置 試験体 BA 1 2 3 4 5 6 1 2 3 0.10 0.10 0.1$\frac{1}{8}$ 0.25 0.25 0.10 0.1$\frac{1}{8}$ 0.1$\frac{1}{8}$ 0.10 0.15 0.1$\frac{1}{8}$ 0.25 0.25 0.1$\frac{1}{8}$ 0.1$\frac{1}{8}$ 0.10 0.15 0.1$\frac{1}{8}$ 0.25 0.25 0.1$\frac{1}{8}$ 0.1$\frac{1}{8}$ 0.10 0.15 0.1$\frac{1}{8}$ 0.25 0.25 0.1$\frac{1}{8}$ 0.1$\frac{1}{8}$ 0.10 0.15 0.1$\frac{1}{8}$ 0.25 0.30 0.10 0.10 0.10 0.10 0.10 0.25 0.30 0.10 0.10 0.10 0.10 0.10 0.20 0.10 0.30 0.14 0.15 0.10 0.110 0.02 0.10 0.40 0.30 0.04 0.10 0.20 0.10 0.00 0.10 0.06</td> <td> </br></br></br></br></br></br></br></br></br></br></br></br></br></br></td> <td>NSW $+$ AH NSW $+$ AB NSW $+$ AB NSW $+$ AB NSW $+$ A NSW $+$ BA MIC CE NEW $+$ CA 1 2 3 4 5 6 1 2 3 4 5 0.10 0.10 0.13 0.25 0.25 0.13 0.13 0.13 0.30 0.10 0.10 0.14 0.25 0.25 0.13 0.10 0.10 0.10 0.10 0.30 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10</td> <td>$\begin{array}{ c c c c c c c } \hline \\ \hline$</td> <td></td> <td>NYB N NYB N NYB N NYB N <th< td=""><td>State State 1 2 3 4 5 6 2 3 1 1 1 2 3 4 5 6 2 4 1 0.10 0.17 0.18 0.18 0.25 0.25 0.18 0.10 0.10 0.30 0.25 0.13 0.10 0.10 0.33 0.10 0.10 0.10 0.33 0.11 0.10 0.10<!--</td--></td></th<></td>	試験体 AH 測定位置試験体 BA 測定位置12345610.100.100.10.250.250.100.100.150.10.250.250.10.100.150.10.250.250.10.100.150.10.250.300.100.100.100.100.250.300.100.100.100.150.100.250.300.100.100.100.150.100.300.350.10.100.100.150.100.400.400.040.100.060.200.100.400.350.040.100.000.100.050.600.300.000.100.000.150.101.000.300.000.100.000.150.101.000.300.000.100.000.150.101.000.300.000.100.000.150.101.000.300.000.100.000.100.060.950.300.000.100.000.100.160.650.400.000.100.000.200.150.650.300.000.100.000.200.100.600.350.000.060.000.200.100.600.350.000.0	試験体 AH 測定位置 試験体 BA 1 2 3 4 5 6 1 2 0.10 0.10 0.14 0.25 0.25 0.10 0.10 0.10 0.15 0.14 0.25 0.25 0.10 0.13 0.10 0.15 0.14 0.25 0.25 0.14 0.14 0.10 0.15 0.14 0.25 0.25 0.14 0.14 0.10 0.15 0.14 0.25 0.25 0.14 0.16 0.10 0.10 0.10 0.25 0.30 0.10 0.10 0.10 0.10 0.10 0.25 0.30 0.14 0.15 0.11 0.10 0.15 0.10 0.30 0.35 0.44 0.15 0.10 0.00 0.10 0.06 0.55 0.35 0.00 0.06 0.10 0.00	試験体 AH 測定位置 試験体 BA 1 2 3 4 5 6 1 2 3 0.10 0.10 0.1 $\frac{1}{8}$ 0.25 0.25 0.10 0.1 $\frac{1}{8}$ 0.1 $\frac{1}{8}$ 0.10 0.15 0.1 $\frac{1}{8}$ 0.25 0.25 0.1 $\frac{1}{8}$ 0.1 $\frac{1}{8}$ 0.10 0.15 0.1 $\frac{1}{8}$ 0.25 0.25 0.1 $\frac{1}{8}$ 0.1 $\frac{1}{8}$ 0.10 0.15 0.1 $\frac{1}{8}$ 0.25 0.25 0.1 $\frac{1}{8}$ 0.1 $\frac{1}{8}$ 0.10 0.15 0.1 $\frac{1}{8}$ 0.25 0.30 0.10 0.10 0.10 0.10 0.10 0.25 0.30 0.10 0.10 0.10 0.10 0.10 0.20 0.10 0.30 0.14 0.15 0.10 0.110 0.02 0.10 0.40 0.30 0.04 0.10 0.20 0.10 0.00 0.10 0.06	 	NSW $+$ AH NSW $+$ AB NSW $+$ AB NSW $+$ AB NSW $+$ A NSW $+$ BA MIC CE NEW $+$ CA 1 2 3 4 5 6 1 2 3 4 5 0.10 0.10 0.13 0.25 0.25 0.13 0.13 0.13 0.30 0.10 0.10 0.14 0.25 0.25 0.13 0.10 0.10 0.10 0.10 0.30 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	$\begin{array}{ c c c c c c c } \hline \\ \hline $		NYB N NYB N NYB N NYB N <th< td=""><td>State State 1 2 3 4 5 6 2 3 1 1 1 2 3 4 5 6 2 4 1 0.10 0.17 0.18 0.18 0.25 0.25 0.18 0.10 0.10 0.30 0.25 0.13 0.10 0.10 0.33 0.10 0.10 0.10 0.33 0.11 0.10 0.10<!--</td--></td></th<>	State 1 2 3 4 5 6 2 3 1 1 1 2 3 4 5 6 2 4 1 0.10 0.17 0.18 0.18 0.25 0.25 0.18 0.10 0.10 0.30 0.25 0.13 0.10 0.10 0.33 0.10 0.10 0.10 0.33 0.11 0.10 0.10 </td	

表 3.2.6-5 各試験体の目視による観測のひび割れ幅(単位:mm)

*: 2017/6/15 以降測定位置 3 を 3 ~に移行 2019~2022 は、測定なし

図 3.2.6-15 打継ぎ部の水平変位(その1 試験体 AH および BA)

図 3.2.6-16 打継ぎ部の水平変位(その2 試験体 CA および CB)

試験体	言可以	式験体 A 則定位置	H E	試験体 BA 測定位置			日 <* 41 清 () ()	式験体 C 則定位置	<u> -</u> ∠ A ₹	試験体 CB 測定位置		
側正日	5	No. 19	No. 20	5	No. 19	No. 20	4	No. 11	No. 12	3*	No. 11	No. 12
2016/4/26	0.25	0.362	0.354	0.30	0.806	0.486	0.1未満	0.354	0.402	0.20	0.674	0.730
2016/5/21	0.25	0.446	0.420	0.30	1.542	0.576	0.10	0.404	0.452	0.20	0.738	0. 788
2016/6/28	0.25	0.480	0.458	0.30	+****	0.578	0.1未満	0.456	0.474	0.20	0.924	0.824
2016/8/ 1	0.25	0.512	0. 492	0.35	+****	0.578	0.15	0.484	0.494	0.35	1.268	0.850
2016/9/ 1	0.30	0.564	0.542	0.40	+****	0.636	0.25	0.530	0. 538	0.40	1.268	0.850
2016/11/2	0.40	0.576	0.544	0.45	+****	0.648	0.30	0.554	0.566	0.45	1.268	0.850
2016/12/7	0.40	0.572	0. 538	0.40	+****	0.644	0.35	0.554	0. 568	0.45	1.530	0.906
2017/2/16		0.602	0. 552		+****	0.670		0.590	0.618		1.554	0.916
2017/4/20	0.60	0.606	0.568	0.65	+****	0.670	0.30	0.590	0.620	0.40	1.570	0.934
2017/5/11	0.55	0.610	0. 578	0.65	+****	0.674	0.25	0.588	0.614	0.45	1.578	0.940
2017/6/15	1.00	0.626	0. 596	0.65	+****	0.694	0.25	0.596	0.624	0.45	1.606	0.956
2017/7/20	0.95	0.654	0.630	0.65	+****	0.710	0.30	0.610	0.632	0.50	1.636	0.970
2017/8/24	0.65	0.650	0.632	0.65	+****	0.698	0.25	0.606	0.624	0.65	1.658	0.994
2017/10/26	0.55	0.652	0.620	0.50	+****	0.694	0.20	0.616	0.638	0.60	1.670	0.984
2017/12/21	0.60	0.656	0.622	0.55	+****	0.704	0.30	0.628	0.658	0.65	1.678	0. 978
2018/2/13		0.672	0.632		+****	0.712		0.632	0.666		1.692	0.990
2018/4/10		0.680	0.648		+****	0.716		0.636	0.666		1.702	1.008
2018/6/5		0. 690	0.666		+****	0.722		0.636	0.664		1.714	1.024
2018/7/31		0.718	0. 698		+****	0.740		0.648	0.670		1.736	1.036
2018/9/18	0.70	0.728	0.710		+****	0.738		0.652	0.692		1.740	1.034
2018/11/20		0.714	0.694		+****	0.732		0.654	0.700		1.742	1.018
2018/12/25		0.708	0.682		+****	0.726		0.652	0.678		1.736	1.004
2019/2/12		0.712	0.684		+****	0.742		0.662	0.710		1.736	0.998
2019/9/30		0.746	0.75		+****	0.77		0.684	0.72		1.804	1.066
2020/3/1		0.714	0.714		+****	0.752		0.682	0.726		1. 796	1.048
2020/9/15		0.762	0. 768		+****	0.786		0.682	0. 732		1.840	1.084
2021/3/1		0.746	0.770		+****	0.784		0.696	0.754		1.852	1.074
2021/9/7		0.764	0. 796		+****	0.786		0.694	0.740		1.872	1.096
2022/1/13		0.742	0. 762		+****	0.776		0.694	0.752		1.864	1.068
2022/9/29		0.790	0.814		+***	0.801		0.714	0.760		1.912	1.118

表 3.2.6-6 スラブとスタブの打継ぎ部の目開き量(単位:mm)

※「---」:計測未実施,「+****」:測定不能

(4)試験体の振動測定

振動測定による各試験体の固有振動数の測定結果を表 3.2.6-7, 図 3.2.6-17 に示す.

宝殿ケーフ	11日			試験	本名	
夫破ケース	武映		AH	BA	CA	CB
鉄筋載荷前	2016/2/16	1回目	16.7	15.8	14.3	13.0
		2回日	16.7	15.8	14.2	12.9
		3回日	16.7	15.8	14.2	12.9
			16.7	15.8	14.3	13.0
		0回日	16.7	15.0	14.2	12.9
	0010/0/10	1回日	12.6	12.0	9.8	87
跃筋載何後	2016/2/16	2回目	12.0 12.5	12.0 12.0	9.8	8 7
		3回目	12.6	12.0	9.9	8.7
		4 回目	12.6	12.0	9.8	8.7
		5回目	12.5	12.0	9.9	8.7
		平均	12.6	12.0	9.8	8.7
載荷2週間後	2016/3/1	1回目	12.6	12.0	10.1	9.0
報問查检問区	2010/0/1	2回目	12.6	12.0	10.1	9.1
		3回目	12.7	12.0	10.2	9.0
		4回目	12.7	12.0	10.0	9.1
		5回目	12.6	12.0	10.1	9.0
		半均	12.6	12.0	10.1	9.0
載荷4週間後	2016/3/15		12.7	12.0	9.8	9.6
		2回日	12.6	12.0	9.8	9.5
		3四日	12.0	12.0	9.1	9.0
		4回日	12.0	12.1	9.0	9.0
			12.0	12.0	9.0 Q Q	9.0
掛井の子口欲	0016/5/01	1回目	12.0	11 7	9.5	9.0
載何372月後	2016/5/21	2回目	12.1	11.7	9.5	9.2
(13 週後)		3回目	12.1	11.7	9.5	9.2
		4回目	12.1	11.7	9.5	9.2
		5回目	12.1	11.7	9.5	9.2
		平均	12.1	11.7	9.5	9.2
載荷6か月後	2016/8/16	1回目	12.0	11.7	9.1	9.1
(96 週谷)	_010, 0, 10	2回目	12.0	11.7	9.1	9.1
(20)通夜)		3回目	12.0	11.7	9.1	9.1
		4回日	12.0	11.7	9.1	9.1
		5 回日	12.0	11. (9.1	9.1
	/ . /_	平均	<u>12.0</u>	11.1	9.1	<u>9.1</u>
載荷1年後	2017/2/7	1回日 2回日	11.9	11.0 11.6	9.2	9.1
(52 週後)		2回日 3回日	11.9	11.0 11.6	9.2	9.2
		4回日	11.5	11.0 11.6	9.2	9 2
		5回目	11.9	11.6	9.2	9.2
		平均	11.9	11.6	9.2	9.2
載荷1年半後	2017/8/0	1回目	11.7	11.5	8.9	9.1
戦何 I 十十夜	2011/0/9	2回目	11.7	11.5	8.8	9.2
(78 週俊)		3回目	11.7	11.4	8.7	9.2
		4回目	11.7	11.4	8.7	9.2
		5 回目	11.7	11.4	8.7	9.1
		半均	11.7	11.4	8.8	9.2
載荷2年後	2018/2/9	1回目	11.7	11.5	9.1	9.1
(104 週後)		2回日	11.7	11.4	9.1	9.1
		3凹目	11. (11.4	9.1	9.1
		4 凹日 5 同日	11.1	11.4	9.1 Q 1	9.1
		<u>平均</u>	$\frac{11.7}{11.7}$	$\frac{11.4}{11.4}$	9.1	9.1
		1			U. 1	v. 1

表 3.2.6-7 固有振動数の測定結果(単位:Hz)

	⇒+> FCA	н	試験体名						
実験クース	訊騻	Ħ	AH	BA	CA	CB			
載荷3年後	2019/2/15	1回目	11.5	11.3	9	8.7			
(156 週後)		2回目	11.5	11.3	9	8.7			
		3回目	11.5	11.2	9	8.7			
		4回目	11.5	11.3	9	8.7			
		5 回目	11.5	11.3	9	8.7			
		平均	11.5	11.3	9	8.7			
載荷4年後	2020/2/14	1回目	11.6	11.5	9.2	9.2			
(208 週後)		2回目	11.6	11.5	9.2	9.1			
		3回目	11.6	11.5	9.1	9.5			
		4回目	11.6	11.5	9.1	9.1			
		5 回目	11.6	11.5	9.1	9.1			
		平均	11.6	11.5	9.2	9.2			
載荷5年後	2021/2/13	1回目	11.5	11.5	9.5	9.0			
(260 週後)		2回目	11.5	11.5	9.5	9.0			
		3回目	11.6	11.5	9.5	9.0			
		4回目	11.6	11.5	9.5	8.9			
		5回目	11.6	11.5	9.5	8.7			
		平均	11.6	11.5	9.5	8.9			
載荷6年後	2022/2/15	1回目	11.9	11.7	9.18	9.18			
(313 週後)		2回目	11.9	11.7	9.18	9.18			
		3回目	11.9	11.5	9.18	8.98			
		4回目	12.1	11.5	9.76	9.18			
		5 回目	12.1	11.5	9.18	9.27			
		平均	12.0	11.6	9.30	9.16			

X J.2.0 ⁻ / 回日瓜切X √ 肉尾帽木(千匹,112) (肥C)	表 3.2.6-7	固有振動数の測定結果(単位:Hz)	(続き)
--	-----------	-------------------	------

鉄筋載荷当初は標準定着の試験体(BA, CB 両試験体)よりもあと施工アンカー定着の試験体(AH, CA 両試験体)の方がやや固有振動数が大きく(すなわち硬い)なっていたが、すべての試験体とも日数の経過と共に固有振動数がわずかながら低下している.鉄筋載荷後 26 週(半年:2016 年 8 月)経過時以降は、接合筋の定着方法の違いによる固有振動数の違いは、ほぼ見られなくなった.52 週(1 年:2017 年 2 月 7 日)から313 週(6 年:2022 年 2 月 15 日)までの 5 年間もほぼ同じ傾向となっていることが確認された.

0週	2016/2/16	2 週	2016/3/1	4 週	2016/3/15
13 週	2016/5/21	26 週	2016/8/16	52 週	2017/2/7
78 週	2017/8/9	104 週	2018/2/9	156 週	2019/2/15
208 週	2020/2/14	260 週	2021/2/13	313 週	2122/2/15

図 3.2.6-17 振動測定による各試験体の固有振動数の変化

3.2.6-2 短期荷重による曲げ実験結果

長期載荷実験を行っていた AC 試験体について,長期載荷期間が1年6ヶ月を過ぎ たタイミングで短期荷重による載荷実験を行った.

(1) 荷重·変形関係

試験体の荷重と変形の関係を測定位置毎に図 3.2.6-18-~図 3.2.6-27 に示す.

図 3.2.6-18 荷重-変形曲線 中央 (No1,2)

図 3.2.6-19 荷重-変形曲線 1/4 (No3,4)

図 3.2.6-20 荷重-変形曲線 端部 (No5,6)

図 3.2.6-21 荷重-変形曲線 端部水平 (No7,8)

※No9 変位計不良

図 3.2.6-22 荷重-変形曲線 端部回転上 (No9,10)

図 3.2.6-23 荷重-変形曲線 端部回転下 (No11,12)

図 3.2.6-24 荷重-変形曲線 端部スタブ (No13,14)

図 3.2.6-25 荷重-変形曲線 ひび割れ幅 (No15,16)

図 3.2.6-26 荷重-変形曲線 ひび割れ幅 (No17,18)

図 3.2.6-27 荷重-変形曲線 ひび割れ幅 (No19,20)

(2)荷重・ひずみ関係

試験体の荷重とアンカー筋,上端筋,下端筋のひずみを測定位置毎に図 3.2.6-28~ 図 3.2.6-30 に示す.

ひずみは、アンカー筋の孔口付近が最も大きくなる傾向にあった. なお、設計荷 重は短期載荷荷重であったが、アンカー筋の A2b で鉄筋降伏相当のひずみが確認さ れている.

図 3.2.6-28 荷重-ひずみ曲線(アンカー筋)

第3章 あと施工アンカーを端部定着に用いたスラブ試験体の構造性能評価

図 3.2.6-29 荷重-ひずみ曲線(上端筋)

図 3.2.6-30 荷重-ひずみ曲線(下端筋)

(3) ひび割れ状況

試験体のひび割れ状況を図 3.2.6-31~図 3.2.6-33 に示す.

図 3.2.6-32,33 に示す黒丸番号は、曲げ実験時に発生したひび割れで、数字は各ル ープを示す.また、ひび割れ幅を測定している亀裂変位計(測定番号 No15,16)の位 置を図 3.2.6-30 に示す.

亀裂変位計による測定状況を写真 3.2.6-1, 2に示す.

デジタルマイクロスコープ(スカラー(株)製:DG-3)によるひび割れ幅の測定位置(No1,2,3)を赤二重丸で示す.デジタルマイクロスコープによるひび割れ幅は,画像計測ソフト(同社製:マイクロメジャー)にて測定した.測定したひび割れ幅を写真 3.2.6-3 に示す.

写真 3.2.6-1 亀裂変位計測定位置 No.15 写真 3.2.6-2 亀裂変位計測定位置 No.16

展開図(床・側面)

図 3.2.6-31 ひび割れ状況(全体)

図 3.2.6-32 ひび割れ状況(端部上面:南側)

図 3.2.6-33 ひび割れ状況(端部上面:北側)

測定位置 No1 1/10

測定位置 No1 1/11

測定位置 No2 1/10

測定位置 No2 1/11

測定位置 No3 1/11

1/10は、曲げ実験前、1/11は曲げ実験後

写真 3.2.6-3 マイクロスコープ (DG-3) によるひび割れ幅の測定

(4) 試験体の振動測定

振動測定は,載荷荷重,載荷荷重時の変形の2倍,4倍,8倍,短期荷重(固定端部上端筋曲げ降伏時)の5タイプについて各ループ終了後,および加力ビーム撤去後, さらに長期載荷時の鉄筋(2,500N/m²)を載荷後の測定を行った.

各加力パターン終了後にボール落下試験を行った結果を表 3.2.6-8 に示す.

表 3.2.6-8 各ループ後の AC 試験体の固有振動数(2018.01.11) 単位: Hz

試験体内容	1回目	2回目	3回目	4回目	5回目	平均
ループ1:載荷荷重	13.41	13.41	13.41	13.41	13.41	13.4
ループ2:ループ1の2倍	13.41	13.41	13.41	13.41	13.41	13.4
ループ3:ループ1の4倍	13.29	13.29	13.29	13.29	13.29	13.3
ループ4:ループ1の8倍	12.81	12.81	12.81	12.81	12.81	12.8
ループ5:短期荷重	12.24	12.24	12.24	12.24	12.24	12.2
加力ビーム撤去後	13.29	13.29	13.29	13.29	13.29	13.3
鉄筋束による再載荷	10.01	10.01	10.01	10.01	10.01	10.0

3.2.6-3 終局荷重による曲げ実験結果

短期載荷実験を行った AC 試験体について,その後,長期載荷を継続(2022 年 2 月 まで)し,当初から6年を過ぎたタイミングで終局荷重による載荷実験を行った.

(1)荷重·変形関係

試験体の荷重と変形の関係を測定位置毎に図 3.2.6-34~図 3.2.6-38 に示す.

たわみ中央 (No1,2)

図 3.2.6-35 荷重-変形曲線 端部水平変位 (No7,8)

試験体のたわみ分布を図 3.2.6-39 に示す.

図 3.2.6-39 試験体のたわみ分布

(2)荷重・ひずみ関係

試験体の荷重とアンカー筋,上端筋,下端筋の平均ひずみを測定位置毎に,図 3.2.6-40~図 3.2.6-42 に示す.

第3章 あと施工アンカーを端部定着に用いたスラブ試験体の構造性能評価

図 3.2.6-41 上端筋中央の平均ひずみ(左:中央,右:端部)

(3)ひび割れ・最終破壊状況

試験体のひび割れ状況を図 3.2.6-43 に示す.

図 3.2.6-43 ひび割れ状況

試験体の最終破壊状況を、写真 3.2.6-5 に示す.

最終破壊状況 全景

北側西端

北側東端

南側西端

南側東端

中央上端の圧壊(17サイクル) 基礎写真 3.2.6-5 最終破壊状況

基礎梁のひび割れ(8サイクル)

AC試験体の最終破壊時におけるスタブとスラブ上端部との目開き幅を表 3.2.6-9 に示す,併せて端部の破壊状況を写真 3.2.6-6 に示す.また,端部接合筋をはつり出して接合部分の破壊状況を確認した結果を写真 3.2.6-7 に示す.

端部接合筋の破壊は,鉄筋降伏後にスタブ部分のコンクリートを掻き出すような 破壊を示していたが,端部接合筋をはつり出して確認した端部接合筋も接合部分の 鋼材が伸びて生じたと考えられるコンクリートの小さなコーン破壊を起こしてから 最終破壊に至っていることが確認された.

表 3.2.6-9 スタブとスラブ上端部との目開き幅 (単位:mm)

試験体名		北側			南側	
٨	西端	中央	東端	西端	中央	東端
AC	7	9	9	3	8	8

南側上端

北側西端

南側西端

北側中央

 中央
 北側中央(詳細)

 写真 3.2.6-7
 端部接合筋の破壊状況

(4) 試験体の振動測定

振動測定は、自重、載荷荷重、載荷荷重時の変形の 2~18 倍で、各ループ終了後、 および加力ビーム撤去後に測定を行った.各加力パターン終了後にボール落下によ る振動測定を行った結果を表 3.2.6-10 に示す.

计缺采中	計除由应	□+ 赤 恥()	具十本式中午年(LNI)		_	次固有振動	助数f _o (Hz	<u>z</u>)	
<u> 訊</u> 駅	 訊 駅 内 谷	取入変形(mm)	取入変形时何里(KN)	1回目	2回目	3回目	4回目	5回目	Ave
1	自重のみ	26.6		13.0	13.0	13.0	13.0	13.0	13.0
2	加力ビーム	27.5	3.0	11.0	11.0	11.0	11.0	11.0	11.0
3	1 サイクル目	28.1	9.8	12.3	12.3	12.3	12.3	12.3	12.3
4	2 サイクル目	32.0	44.6	11.1	11.1	11.1	11.1	11.1	11.1
5	3 サイクル目	36.0	76.3	11.1	11.1	11.1	11.1	11.1	11.1
6	4 サイクル目	42.1	93.8	11.1	11.1	11.1	11.1	11.1	11.1
7	5 サイクル目	48.0	101.5	10.9	10.9	10.9	10.9	10.9	10.9
8	6 サイクル目	52.5	107.0	10.6	10.6	10.6	10.6	10.6	10.6
9	7 サイクル目	60.2	94.4	10.5	10.5	10.5	10.5	10.5	10.5
10	8サイクル目	68.2	94.7	10.1	10.1	10.1	10.1	10.1	10.1
11	9 サイクル目	80.0	98.0	9.9	9.9	9.9	9.9	9.9	9.9
12	10サイクル目	92.2	91.0	9.5	9.5	9.5	9.5	9.5	9.5
13	11サイクル目	102.2	84.3	9.3	9.3	9.3	9.3	9.3	9.3
14	1 2 サイクル目	112.1	77.9	9.0	9.0	9.0	9.0	9.0	9.0
15	13サイクル目	124.1	67.4	8.9	8.9	8.9	8.9	8.9	8.9
16	14サイクル目	140.1	64.6	8.4	8.4	8.4	8.4	8.4	8.4
17	15サイクル目	158.2	56.6	7.9	7.9	7.9	7.9	7.9	7.9
18	16サイクル目	172.8	52.1	7.4	7.4	7.4	7.4	7.4	7.4
19	17サイクル目	199.8	40.9	7.0	7.0	7.0	7.0	7.0	7.0
20	自重のみ	181.8		8.1	8.1	8.1	8.1	8.1	8.1

表 3.2.6-10 AC 試験体 振動測定結果 (単位:Hz)

AC 試験体の固有振動数の変化,固有振動数と変位及び載荷荷重との関係を,図 3.2.6-44~図 3.2.6-46 に示す.固有振動数は鉄骨ビーム載荷から4サイクルまではほ ぼ変化せず,その後変形量が増えると図 3.2.6-45 に示すように,固有振動数は低下し ていく.固有振動数は最大荷重時の6サイクルまで徐々に低下するが,最大荷重時以 降は,図 3.2.6-46 に示すように荷重の低下とともに,固有振動数も低下していく.

図 3.2.6-44 固有振動数の変化

図 3.2.6-45 固有振動数と変形の関係

図 3.2.6-46 固有振動数と載荷荷重の関係

3.2.6-4 あと施エアンカー単体の実験結果

(1)長期引張実験(クリープ試験)結果

あと施工アンカー筋および先付け定着筋のクリープ試験結果を図 3.2.6-47 に示す. 初期荷重はあと施工アンカー筋が 33.8kN,先付け定着筋 31.0kN である.

クリープ試験の結果 5.5 年載荷時点での変形は,自由端変位は,あと施工アンカー筋で 0.05 mmから 0.19 mm,先付け定着筋で 0.09 mmから 0.45 mmに変形し,あと施工アンカー筋で計測している載荷端変位は 0.56 mmから 0.88 mmと変形量に置き換えるといずれも微小な変形であるが,先付け定着筋が若干変形が進んでいることが確認された.

図 3.2.6-47 単体クリープ試験結果

(2) あと施工アンカー付着実験結果

接着系あと施工アンカーの付着試験として、あと施工アンカーを試験体のスラブが 取り付く側と反対の南側および北側スタブに各5本ずつ施工し、付着試験を行った. 試験体南側のスタブのアンカー筋は試験体施工時の2016年1月に、北側のスタブ のアンカー筋は、施工6年後の2022年5月に付着試験を行った.

付着実験の最大荷重と付着強度を表 3.2.7-11 に示す.

表 3.2.7-11 付着試験の最大荷重と付着強度

試験体名	ACS-1	ACS-2	ACS-3	ACS-4	ACS-5
最大荷重:kN	51.4	53.3	14.9	67.8	70.0
付着強度:N/mm ²	19.8	20.5	5.7	26.1	26.9

試験体名	ACN-1	ACN-2	ACN-3	ACN-4	ACN-5			
最大荷重:kN	49.6	79.3	86.7	68.4	87.1			
付着強度:N/mm ²	19.1	30.5	33.3	33.1	33.5			

(付着強度=最大荷重/(65×40):40 は D13 の周長)

ひずみゲージの防水コーティングの長さは、1ヶ所25mm程度あり合計2ヶ所で50 mmとなるので、アンカー筋の付着に有効な長さは15mm程度と考えられる.従って、ACS-3の付着強度は、有効長さで算定すると、14900N/(40×15) mm²=24.8 N/mm²となり、他の試験体と同等と考えられる.

付着試験の荷重-変形曲線を図 3.2.6-48 に示す.

試験体施工時の付着強度は, SCS-3 を 24.8 N/mm²とすると, 19.8~26.9 N/mm²の範囲にあり, 5 体の平均は 23.6 N/mm²であるのに対し,施工 6 年後の付着強度は, 19.1 ~33.5 N/mm²の範囲にあり, 5 体の平均は 29.9 N/mm²と施工時の 1.25 倍程度となっている.

施工6年後(2022年5月) 図 3.2.6-48 付着試験の荷重-変形曲線

3.2.6-5 コンクリートの乾燥収縮

試験体の留置環境(温度と湿度)を図 3.2.6-49 に示す. 留置環境として, 気温が氷点 下になることや摂氏 30℃を超えることはなく, 湿度についてもほぼ 30%から 90%の 範囲内であった.

図 3.2.6-49 試験体設置位置の温湿度

基礎梁,スラブ,基本試験体および JIS 規格供試体に設置した埋込み型ひずみ計に よる乾燥収縮の測定経過を図 3.2.6-50 に示す.乾燥収縮のひずみ度は,最大で-400 μ程度の範囲に収まっている.

第3章 あと施工アンカーを端部定着に用いたスラブ試験体の構造性能評価

図 3.2.6-50 基礎梁,スラブ,基本試験体および JIS 規格供試体の乾燥収縮

3.2.7 考察

3.2.7-1 たわみ変化量の経過

ここでは実験結果から得られた中央部(端部)のたわみ量を半年ごとの変化量に分け て経過について考察する.

各試験体のたわみ変化量の経過を表 3.2.7-1 に示す. 各試験体ともにたわみの傾向 が鈍化する半年までは,急激にたわみ量が増加しているが,その後,載荷後 2.5 年が 経過する 2018 年までは 1mm 前後のたわみ変化量で維持し,その後は 1mm 未満でか つ微小な増減を繰り返している.

両端固定スラブ試験体で6年から6.5年の間で若干増加の傾向を示しているが,AH 試験体もBA試験体も同様の傾向であることから,接合方法が異なることが原因では ないと推察されるため,今後も経過観察を実施する計画である.

级语在粉	AH 試	.験体	BA 試	験体
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	たわみ量(mm)	<u>変化量(mm)</u>	たわみ量(mm)	<u>変化量(mm)</u>
初期値	0.000	0.000	0.005	0.000
0.5年	-12.485	-12.485	-13.580	-13.585
1年	-13.665	-1.180	-14.620	-1.040
1.5年	-14.710	-1.045	-15.605	-0.985
2年	-15.480	-0.770	-15.830	-0.225
2.5年	-16.545	-1.065	-16.855	-1.025
3年	-16.510	0.035	-16.485	0.370
3.5年	-17.075	-0.565	-17.180	-0.695
4年	-16.895	0.180	-17.060	0.120
4.5年	-17.690	-0.795	-17.925	-0.865
5年	-17.385	0.305	-17.590	0.335
5.5年	-17.555	-0.170	-17.800	-0.210
6年	-17.820	-0.265	-17.995	-0.195
6.5年	-18.420	-0.600	-18.535	-0.540
经调在数	CA 試	験体	CB 討	験体
経過年数	CA 試 たわみ量(mm)	,験体 <u>変化量(mm)</u>	CB 討 たわみ量(mm)	試験体 <u>変化量(mm)</u>
経過年数 初期値	CA 試 たわみ量(mm) 0.000	.験体 <u>変化量(mm)</u> 0.000	CB 討 <u>たわみ量(mm)</u> 0.005	\ <u>変化量(mm)</u> 0.000
経過年数 初期値 0.5年	CA 試 <u>たわみ量(mm)</u> 0.000 -16.605	.験体 <u>変化量(mm)</u> 0.000 -16.605	CB 討 <u>たわみ量(mm)</u> 0.005 -19.200	[【] 験体 <u>変化量(mm)</u> 0.000 −19.205
経過年数 初期値 0.5年 1年	CA 試 <u>たわみ量(mm)</u> 0.000 -16.605 -19.115	.験体 <u>変化量(mm)</u> 0.000 -16.605 -2.510	CB 討 <u>たわみ量(mm)</u> 0.005 -19.200 -22.170	忧験体 <u>変化量(mm)</u> 0.000 −19.205 −2.970
経過年数 初期値 0.5年 1年 1.5年	CA 試 たわみ量(mm) 0.000 -16.605 -19.115 -19.565	.験体 <u>変化量(mm)</u> 0.000 -16.605 -2.510 -0.450	CB 討 <u>たわみ量(mm)</u> 0.005 -19.200 -22.170 -22.450	t験体 <u>変化量(mm)</u> 0.000 −19.205 −2.970 −0.280
経過年数 初期値 0.5年 1年 1.5年 2年	CA 試 <u>たわみ量(mm)</u> 0.000 -16.605 -19.115 -19.565 -20.775	.験体 変化量(mm) 0.000 -16.605 -2.510 -0.450 -1.210	CB 討 <u>たわみ量(mm)</u> 0.005 -19.200 -22.170 -22.450 -24.055	t験体 <u>変化量(mm)</u> 0.000 -19.205 -2.970 -0.280 -1.605
経過年数 初期値 0.5年 1年 1.5年 2年 2.5年	CA 試 たわみ量(mm) 0.000 -16.605 -19.115 -19.565 -20.775 -21.155	.験体 <u>変化量(mm)</u> 0.000 -16.605 -2.510 -0.450 -1.210 -0.380	CB 討 <u>たわみ量(mm)</u> 0.005 -19.200 -22.170 -22.450 -24.055 -24.035	t験体     変化量(mm)     0.000     −19.205     −2.970     −0.280     −1.605     0.020
経過年数 初期値 0.5年 1年 1.5年 2年 2.5年 3年	CA 試 たわみ量(mm) 0.000 -16.605 -19.115 -19.565 -20.775 -21.155 -21.870	.験体 <u>変化量(mm)</u> 0.000 -16.605 -2.510 -0.450 -1.210 -0.380 -0.715	CB 討 <u>たわみ量(mm)</u> 0.005 -19.200 -22.170 -22.450 -24.055 -24.035 -25.105	t験体 <u>変化量(mm)     0.000     -19.205     -2.970     -0.280     -1.605     0.020     -1.070 </u>
経過年数 初期値 0.5年 1年 1.5年 2年 2.5年 3年 3.5年	CA 試 たわみ量(mm) 0.000 -16.605 -19.115 -19.565 -20.775 -21.155 -21.870 -21.855	験体 変化量(mm) 0.000 -16.605 -2.510 -0.450 -1.210 -0.380 -0.715 0.015	CB 討 <u>たわみ量(mm)</u> 0.005 -19.200 -22.170 -22.450 -24.055 -24.035 -25.105 -24.660	t験体 <u>変化量(mm)         0.000         −19.205         −2.970         −0.280         −1.605         0.020         −1.070         0.445         0.445         </u>
経過年数 初期値 0.5年 1年 1.5年 2年 2.5年 3年 3.5年 4年	CA 試 たわみ量(mm) 0.000 -16.605 -19.115 -19.565 -20.775 -21.155 -21.870 -21.855 -22.260	歳体 <u>変化量(mm)</u> 0.000 -16.605 -2.510 -0.450 -1.210 -0.380 -0.715 0.015 -0.405	CB 討 <u>たわみ量(mm)</u> 0.005 -19.200 -22.170 -22.450 -24.055 -24.035 -25.105 -24.660 -25.480	t験体 <u>変化量(mm)         0.000         −19.205         −2.970         −0.280         −1.605         0.020         −1.070         0.445         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820         −0.820       </u>
経過年数 初期値 0.5年 1年 1.5年 2年 2.5年 3年 3年 3.5年 4年 4.5年	CA 試 たわみ量(mm) 0.000 -16.605 -19.115 -19.565 -20.775 -21.155 -21.855 -21.855 -22.260 -22.500	.験体 <u>変化量(mm)</u> 0.000 -16.605 -2.510 -0.450 -1.210 -0.380 -0.715 0.015 -0.405 -0.240	CB 討 たわみ量(mm) 0.005 -19.200 -22.170 -22.450 -24.055 -24.035 -24.035 -25.105 -24.660 -25.480 -25.480	t験体 <u>変化量(mm)         0.000         −19.205         −2.970         −0.280         −1.605         0.020         −1.070         0.445         −0.820         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070         0.070      </u>
経過年数 初期値 0.5年 1年 1.5年 2年 2.5年 3年 3.5年 4年 4.5年 5年	CA 試 たわみ量(mm) 0.000 -16.605 -19.115 -19.565 -20.775 -21.155 -21.855 -21.855 -22.260 -22.500 -23.010	験体 変化量(mm) 0.000 -16.605 -2.510 -0.450 -1.210 -0.380 -0.715 0.015 -0.405 -0.240 -0.510	CB 討 <u>たわみ量(mm)</u> 0.005 -19.200 -22.170 -22.450 -24.055 -24.035 -24.035 -24.035 -24.660 -25.480 -25.410 -26.135	、 酸体 <u>変化量(mm)</u> 0.000 -19.205 -2.970 -0.280 -1.605 0.020 -1.070 0.445 -0.820 0.070 -0.725
経過年数 初期値 0.5年 1年 1.5年 2年 2.5年 3年 3.5年 4年 4.5年 5年 5.5年	CA 試 <u>たわみ量(mm)</u> 0.000 -16.605 -19.115 -19.565 -20.775 -21.155 -21.870 -21.870 -21.855 -22.260 -22.500 -22.500	験体 変化量(mm) 0.000 -16.605 -2.510 -0.450 -1.210 -0.380 -0.715 0.015 -0.405 -0.240 -0.240 0.255	CB 討 <u>たわみ量(mm)</u> 0.005 -19.200 -22.170 -22.450 -24.055 -24.035 -24.035 -25.105 -25.105 -25.460 -25.410 -25.410 -25.410	t験体 <u>変化量(mm)         </u> 0.000         -19.205         -2.970         -0.280         -1.605         0.020         -1.070         0.445         -0.820         0.070         -0.725         0.675         0.675
経過年数 初期値 0.5年 1年 1.5年 2年 2.5年 3年 3年 3.5年 4年 4.5年 5年 5.5年 6年	CA 試 たわみ量(mm) 0.000 -16.605 -19.115 -19.565 -20.775 -21.155 -21.855 -21.855 -22.260 -22.260 -22.500 -23.010 -23.015 -23.855	.験体 変化量(mm) 0.000 -16.605 -2.510 -0.450 -1.210 -0.380 -0.715 0.015 -0.405 -0.405 -0.240 -0.510 0.255 -1.100	CB 討 <u>たわみ量(mm)</u> 0.005 -19.200 -22.170 -22.450 -24.055 -24.035 -24.035 -25.105 -24.660 -25.480 -25.480 -25.480 -25.460 -25.460 -25.460	t験体 <u>変化量(mm)         0.000         -19.205         -2.970         -0.280         -1.605         0.020         -1.605         0.020         -1.070         0.445         -0.820         0.070         -0.725         0.675         -1.540         -1.540         -0.540 </u>

表 3.2.7-1 各試験体のたわみ変化量の経過

## 3.2.7-2 スラブ端部接合筋の負担応力度

表-3.2.7-2 に 5.5 年経過時点で得られている各試験体のスラブ端部接合筋の最大ひ ずみから負担している応力度を算出した結果を示す.両端固定スラブのあと施工アン カー部分の長期許容応力度比は 49.1%から 50.5%となっている.なお,短期載荷を経 験した AC 試験体は短期載荷実験で鉄筋が降伏ひずみに達しているため,参考値とし て示す.

また、片持ちスラブ試験体のあと施工アンカー部分の長期許容応力度比は 42.6%から 56.3%となっており、両端固定スラブ試験体と大きな差はないことが分かる.

			AH試験体			BA試験体				
項目	アンカ-	─部分		スラブ内		定着部分 スラブ内				
	A1	A2	A3	A4	A5	T1	T2	Т3	T4	T5
ひずみ(μ)	471	484	393	306	253	566	596	649	542	381
推定応力度(N/mm ² )	96.6	99.2	80.6	62.7	51.8	116.0	122.1	132.9	111.1	78.1
鉄筋の降伏点強度比	0.327	0.336	0.273	0.213	0.175	0.393	0.414	0.451	0.377	0.265
長期許容応力度比	0.491	0.505	-	-	-	-	-	-	-	-
						2				
項目	アンカ-	─部分		スラブ内						
	A1	A2	A3	A4	A5				2	
ひずみ(μ)	632	2278	709	684	533	业大月月 0 0	(ノ) 示3	x — 2.03( ∕	~ 10 N/ IIIII	,
推定応力度(N/mm ² )	129.6	466.9	145.3	140.2	109.2	アンカー	−の長期諸	<b>ት容応力度</b>	₹=196.7(I	√mm²)
鉄筋の降伏点強度比	0.439	1.583	0.493	0.475	0.370				<b>-</b> + b + b - b	- 25 ( )
長期許容応力度比	0.659	2.374	-	-	-	×AC	試験体の	A2 は短其	期載荷によ	って降伏
			CA試験体					CB試験体		
項目	アンカ-	─部分		スラブ内		定着	部分		スラブ内	
	A1	A2	A3	A4	A5	T1	T2	Т3	T4	Т5
ひずみ(μ)	409	541	466	507	388	641	638	710	652	491
推定応力度(N/mm ² )	83.7	110.8	95.4	103.9	79.4	131.3	130.8	145.4	133.6	100.6
鉄筋の降伏点強度比	0.284	0.376	0.323	0.352	0.269	0.445	0.443	0.493	0.453	0.341
長期許容応力度比	0.426	0.563	-	-	-	-	-	-	-	-

表 3.2.7-2 スラブ端部接合筋の応力度

#### 3.2.7-3 打継部の目開き量とたわみ量の関係

両端固定試験体の端部水平変位と中央部および 1/4 点のスラブたわみの最大値を図 -3.2.7-1 に示す.また,端部水平変位から推定した各点の変化量との比較を表-3.2.7-3 に示す.

推定した各点の変化量は、図 3.2.7-2 に示すように下端の水平変位を 0 mmとして、 スラブが剛体変形していることを仮定して、上端の端部水平変位から回転角を算出 し、各点の距離をかけて変化量を推定した.

各試験体とも同じような傾向を示しており,あと施工アンカーの使用の有無によ る違いは見られなかった.また,端部水平変位から推定した変形と実際のたわみ量 との間には差があるが,推定した変形量はスラブの変形を考慮していないためであ り,実際に生じているたわみは,端部鉄筋の抜け出しによるものより RC スラブの変 形によるものが大きいものと推察される.これは,単体のクリープ試験の結果から 端部鉄筋の変形は少ないことからも言える.



図 3.2.7-1 両端固定試験体の端部水平変位とたわみ



図 3.2.7-2 推定変形量算出の模式図

表 3.2.7-3	端部水平変位から	推定される	変形量と	:たわみ
-----------	----------	-------	------	------

試験体	端部水平変位 (mm)	回転角 (度)	推定変形量 (㎜)	たわみ(最大値) (mm)
лц	0.812	0.220	11.561 (中央)	18.075 (中央)
AII	0.812	0.230	5.781 (1/4)	10.825 (1/4)
RΔ	0.804	0.230	11.561 (中央)	18.255 (中央)
DIA	0.004	0.230	5.781 (1/4)	10.790 (1/4)

## 3.2.7-4 将来たわみ量および増大率の推定

(1) 将来たわみ量の推定

BA 試験体の計測データを基に将来のたわみ量を推定するために最小二乗法による 対数近似を用いて 100 年後のたわみ量を推定した結果を図-3.2.7-3 および表-3.2.7-4 に示す.

使用したデータは、4.1 項のたわみ変化量の経過から載荷後 0.5 年を経過するとた わみ変化量が落ち着き、2.5 年を経過すると微小となることから、載荷後 0.5 年から 2.5 年を一区切りとし、2.5 年から 6 年のデータを用いた.計測は継続しているが、6 年から 6.5 年のデータを経過観察する必要があることから、6 年までのデータで将来 たわみ量を推定しており、傾きの傾向から対数近似としている.



BA 試験体では 2.5 年までのデータで一般的なたわみ増大率(y:16)

図 3.2.7-3 将来たわみの推定

	試験体 0.5年~2.5年		2.5年~6年		
ΛЦ	式	y=-2.378 ln(x) + 7.855	$y = -1.816 \ln(x) + 1.908$		
AII	100 年後	-24.68	-22.94		
D.	式	y=-1.871 ln(x) + 2.349	y = -1.968 ln(x) + 3.378		
DA	100 年後	-23.25	-23. 55		

表 3.2.7-4 100 年後のたわみ量の推定

※x=経過時間, y=推定たわみ量(mm)

赤字は一般的なたわみ増大率で算出された値(23.3 mm)を超える値

### (2) たわみ増大率の推定

スラブ中央部のたわみ測定結果を用いて,(3.2.7-1)式に示す双曲線式から係数 A, B, Cを求め,たわみ増大率を推定する.

 $Y_t = \frac{t}{A+B\cdot t} + C$  (3.2.7-1)式 ここで、 $Y_t$  :載荷開始後の任意時間 t までに生じる増大率 t :経過時間(鉄筋載荷日を基準とし、単位は日とする) A,B :測定結果から決まる定数

1,0 . 例に加木かり込よるたち

C:載荷完了時の増大率

実験結果から(3.3.7-1)式の常数 *A*, *B* および *C* を決定するため, 次に示す方法を用いた.

各測定時間  $t_1$ ,  $t_2$ ,  $t_3$ ··· $t_n$ における増大率を  $Y_{t1}$ ,  $Y_{t2}$ ,  $Y_{t3}$ ··· $Y_{tn}$ とする. これらを(3.3.7-1)式に代入すると(3.3.7-2)式となる.

$$A + B \cdot t_i = \frac{t_i}{Y_{t_i}} \quad (i = 1, 2, 3 \cdots n) \quad \dots \quad (3.2.7-2)$$

これらのn個の式を全て加算して(3.3.7-3)式を得る.

$$\mathbf{n} \cdot \mathbf{A} + \mathbf{B} \sum_{i=1}^{n} t_i = \sum_{i=1}^{n} \frac{t_i}{Y_{t_i}} \qquad (3.2.7-3) \neq \mathbf{C}$$

また, (3.2.7-2)式の両辺に tiを乗ずると(3.3.7-4)式となる.

これらのn個の式を全て加算して(3.3.7-5)式を得る.

$$A\sum_{i=1}^{n} t_{i} + B\sum_{i=1}^{n} t_{i}^{2} = \sum_{i=1}^{n} \frac{t_{i}^{2}}{Y_{t_{i}}} \qquad (3.2.7-5)$$

(3.2.7-3)式と(3.2.7-5)式より A および B を求めると, (3.2.7-6)式および(3.2.7-7)式となる.

$$A = \frac{\sum_{i=1}^{n} t_{i}^{2} \cdot \sum_{i=1}^{n} \frac{t_{i}}{Y_{t_{i}}} - \sum_{i=1}^{n} t_{i} \cdot \sum_{i=1}^{n} \frac{t_{i}^{2}}{Y_{t_{i}}}}{n \cdot \sum_{i=1}^{n} t_{i}^{2} - (\sum_{i=1}^{n} t_{i})^{2}} \qquad (3.2.7-6)$$
  
$$B = \frac{n \cdot \sum_{i=1}^{n} \frac{t_{i}^{2}}{Y_{t_{i}}} - \sum_{i=1}^{n} t_{i} \cdot \sum_{i=1}^{n} \frac{t_{i}}{Y_{t_{i}}}}{n \cdot \sum_{i=1}^{n} t_{i}^{2} - (\sum_{i=1}^{n} t_{i})^{2}} \qquad (3.2.7-7)$$
  
$$(3.2.7-7)$$

推定した結果を図 3.2.7-4 に示す.また,以下に推定倍率と推定変位を示す.

【AH試験体】

a=	10.339		a=	8.446	
b=	0.079		b=	0.079	
c=	2.18	自重+積載	c=	2.81	自重+積載

<予測年>	<倍率>	<変位>	<予測年>	<倍率>	<変位>
50年	14.73	20.15	50年	15.33	20.98
100年	14.78	20.22	100年	15.37	21.03



図 3.2.7-4 たわみ増大率の推定(上:AH 試験体,下:BA 試験体)

#### 3.2.7-5 穿孔方法の違いによる影響

あと施工アンカーを施工する際にコンクリートの穿孔に用いる機械が異なること によって増設スラブの長期性能に影響を与えるか確認するためにハンマードリルで 穿孔した AH 試験体,湿式コアドリルで穿孔した AC 試験体および標準定着させた BA 試験体の長期たわみの比較を実施した.

比較は,長期載荷を開始した 2016 年 2 月から AC 試験体を短期荷重で載荷する前の約 2 年間の試験体の長期的な力学的性状を観察した.



3試験体のスラブ中央部での長期たわみの経時変化を図 3.2.7-5 に示す.

図 3.2.7-5 3 試験体の長期たわみの比較

標準定着試験体よりあと施工アンカーの両試験体の長期たわみの経時変化は小さい値を示しており、最初の半年間は大きくたわむが、その後の変形は3試験体ともほぼ同じような傾向を示している.これに加えて、3試験体に生じたひび割れの観察結果やアンカー筋のひずみ度の経時変化などにも大きな差はなかった.

よって,3試験体の上記期間内における長期載荷に対する力学的性質は,ほぼ同じ であり,特にあと施工アンカー試験体同士の傾向は同様のものであると推察される.

あと施工アンカー施工時の穿孔に湿式コアドリルを使用した AC 試験体と,ハンマ ードリルを使用した AH 試験体で,長期荷重による力学的性質にほとんど差はないと 考えられる.

## 3.2.7-6 短期荷重による曲げ実験後のスラブ試験体の検討

(1) 荷重·変形の検討

AC 試験体の各ループおよび自重のみ,加力ビーム,プレート,ローラー積載時 (2.8kN)の荷重と変形を図 3.2.7-および表 3.2.7-5 に示す.



図 3.2.7-4 各ループの荷重-中央変形 (No.1)

ループ	載荷・加力荷重	変形(mm)	荷重(kN)
	自重のみの変形	13.54	
0	加力ビーム、プレート、ローラーの荷重による変形	13.98	2.8
1	積載荷重相当のジャッキによる荷重による変形	14.46	10.2
2	ループ1の変形から自重のみの変形を差し引た値	15 51	24.8
	(14.455-13.535)=0.92>1mmの2倍の変形	15.51	
3	同上の3倍の変形:14.37+1.26*3=18.15>20	17.51	47.9
4	同上の6倍の変形:14.37+1.26*6=21.93>24	21.53	72.0
5	同上の140倍の変形:14.37+1.26*140=190.77>180	33.07	86.4
	加力ビーム、プレート、ローラーの荷重による変形	24.72	2.8
	自重のみの変形	23.77	

表 3.2.7-5 各ループの荷重一中央変形 (No.1)

長期たわみ測定開始から曲げ実験終了後の中央変形(測定点 No1)および標準定 着試験体(BA),積載荷重2,500N/m²のたわみ計算値を図3.2.7-5に示す.曲げ実験前 後のたわみ経過の拡大図を図3.2.7-6に示す.



図 3.2.7-5 長期たわみ測定時の中央変形(測定点 No.1)



図 3.2.7-6 曲げ実験前後の長期たわみの中央変形(測定点 No1)

図 3.2.7-6 に示すように曲げ実験前の長期たわみは 14.365mm であった.また長期載 荷用の鉄筋束の撤去後の自重のみのたわみは, 13.5mm であった.

図 5.1 に示すように曲げ実験開始前の自重のみのたわみは 13.535mm, 加力ビーム, プレート, ローラー積載時 (2.8N) のたわみは 13.975mm であった. その後油圧ジャ ッキにより 1~5 ループの曲げ実験を行った.

1 ループの積載荷重相当の油圧ジャッキによる荷重(10.148kN)の変形は, 14.455mmと曲げ実験前の長期たわみの14.365mmに対する比率は1.006であった.

曲げ実験終了後の自重のみのたわみは、23.77mm であった. 積載荷重用の鉄筋束

を再度載せた時のたわみは、25.045mmとなった.

よって、曲げ実験によるたわみの増加量は、25.045-14.365=10.68mmとなった. (2)短期荷重の計算値に示すように、固定端部の降伏荷重はジャッキ荷重に換算する と、88.24kN であるので、最終の 5 ループのアンカー筋が短期荷重時のひずみ (1900µ)まで変形させたときの荷重である 86.4kN との比率は、86.4/88.24=0.98 で あるので、ほぼアンカー筋が降伏近傍までに達していたと考えられる.

(2)荷重・ひずみの検討

試験体固定端部に設置したアンカー筋のひずみについて,スラブ幅の中央および 端部にあるアンカー筋の平均ひずみをまとめて図 3.2.7-7,図 3.2.7-8 に示す.各ひず み測定位置の平均ひずみを図 3.2.7-9 に示す.

アンカー筋の平均ひずみの最大値は3,300µ(A2a,A2b)と、実験予定の1,900µを超 えて加力することとなった.この原因は A2b の歪みが、最終ループの加力時に加力 プレートが滑りにより低下した荷重を超えるように加力している時に、A2b の歪み が 5,000µと急激に増大したためである.



図 3.2.7-7 アンカー筋の全平均ひずみ (中央 スラブ幅方向)



図 3.2.7-8 アンカー筋の全平均ひずみ (端部 スラブ幅方向)



図 3.2.7-9 アンカー筋の各平均ひずみ
長期たわみ測定開始から曲げ実験終了後のアンカー筋平均ひずみ(中央)および (端部)を図 3.2.7-10, 11 に示す.曲げ実験前後の平均ひずみ経過の拡大図を図 3.2.7-12, 13 に示す.

図 3.2.7-12, 13 に示すように曲げ実験前のアンカー筋平均ひずみは中央で 121~265 µ,端部で 131~258 µ であった.

載荷用の鉄筋束を除荷したことにより,平均歪みは 20~120 µ 程度小さくなった. 曲げ実験終了後,積載荷重用の鉄筋束を再度載せた時の平均ひずみは中央で 478~ 644 µ となり,降伏歪みに達した A2 は 2235.5 µ と実験予定の 1900 µ を超えた.また 端部の平均ひずみは 411~627 µ と 1900 µ には達していなかった.



図 3.2.7-10 長期たわみ測定開始から曲げ実験終了後のアンカー筋平均ひずみ(中央)



図 3.2.7-11 長期たわみ測定開始から曲げ実験終了後のアンカー筋平均ひずみ(端部)



図 3.2.7-12 曲げ実験前後の平均ひずみ経過の拡大図(中央)



図 3.2.7-13 曲げ実験前後の平均ひずみ経過の拡大図(端部)

(3) ひび割れの検討

ひび割れの検討は,(4)3)ひび割れ状況に示すマイクロスコープによるひび割れ幅, スラブとスタブとの目開き(変位測定 No.19,20)およびひび割れ発生後から測定し ている位置(変位測定 No.15,16)のひび割れ幅について行う.

マイクロスコープによるひび割れ幅の測定結果を表 3.2.7-6 に示す. 測定位置は, 図 3.2.6-29, 30 ひび割れ状況に DG-3 と記した No1.~3 である.

0.04mm

0.04mm

0.05mm

0.04mm

0.04mm

0. 04mm

曲げ実験前

表 3.2.7-6 マイクロスコープによるひび割れ幅の測定	結果
-------------------------------	----

測定位置 No.1

曲け

げ実験前	曲げ実験後
り 夫 厥 刖	田り夫厥医

	1
「「「「」「「」「」「」「」「」「」「」「」「」「」「」」「」「」」「」「」」「」」「」」「」」「」」「」」」	
11日 1	

No.

1 2

3

4

5

曲げ実験後

値

0.04mm

0.05mm

0.05mm

0.04mm

0.04mm

0.04mm

測定位置 No.2

No.	計測	値	値
1	距離−2点間	0.07mm	0.06mm
2	距離−2点間	0.06mm	0.08mm
3	距離−2点間	0.05mm	0.10mm
4	距離−2点間	0.06mm	0.10mm
5	距離−2点間	0.06mm	0.07mm
	平均值	0. 06mm	0. 08mm

平均値

計測

距離-2点間

距離-2点間

距離-2点間

距離-2点間

距離-2点間

平均値

0.08mm

測定位置 No.3

曲げ実験前

曲げ実験後

No.	計測	値	値
1	距離−2点間	0.07mm	0.05mm
2	距離−2点間	0.07mm	0.06mm
3	距離−2点間	0.07mm	0.07mm
4	距離−2点間	0.07mm	0.06mm
5	距離−2点間	0.06mm	0.06mm
	平均值	0. 07mm	0.06mm

曲げ実験前後で, 測定位置 No.1 では変わらず, No.2 では 0.02mm 増, No.3 では 0.01mm 減と測定位置により多少の違いはあるが、微小な差異であるので、マイクロ スコープによるひび割れ幅の測定には変わりないと考えられる.

長期たわみ測定開始から曲げ実験終了後のスラブとスタブとの目開き(変位測定 No.19,20) を図 3.2.7-14 に示す.曲げ実験前後のスラブとスタブとの目開きの拡大図 を図 3.2.7-15 に示す.



図 3.2.7-14 長期たわみ測定開始から曲げ実験終了後のスラブとスタブとの目開き



図 3.2.7-15 曲げ実験前後のスラブとスタブとの目開きの拡大図

図 3.2.7-15 に示すように曲げ実験前のスラブとスタブとの目開きは測定番号 No.19 で 0.636mm, No.20 で 0.578mm であった.

載荷用の鉄筋束を除荷したことにより、目開きは 0.05mm 程度減少した.

曲げ実験終了後,積載荷重用の鉄筋束を再度載せた時のスラブとスタブとの目開 きは No.19 で 1.716mm, No.20 で 1.648mm となったので,曲げ実験による見開きの増 大量は,No.19 で 1.08mm, No.20 で 1.07mm とほぼ同量であった.

ひび割れ幅について、亀裂変位計を用いてひび割れ発生後(5/21)から曲げ実験終

了後まで測定した結果を図 3.2.7-16 に示す. (変位測定番号 No.15,16) 曲げ実験前後のひび割れ幅の拡大図を図 3.2.7-17 に示す.



図 3.2.7-16 ひび割れ発生後(5/21)から曲げ実験終了後までのひび割れ幅



図 3.2.7-17 曲げ実験前後のひび割れ幅の拡大図

図 3.2.7-17 に示すように曲げ実験前のひび割れ幅は No.15 で 0.0575mm, No.16 で 0.053mm であった.

載荷用の鉄筋束を除荷したことにより、ひび割れ幅は 0.005mm 程度減少した.

曲げ実験終了後,積載荷重用の鉄筋束を再度載せた時のひび割れ幅は No.15 で 0.0811mm, No.16 で 0.0774mm となったので,曲げ実験によるひび割れ幅の増大量は,

No.15,16ともに 0.02mm と微小量であった.

曲げ実験によるひび割れの変化は、ひび割れ状況を示す図 4.29~図 4.30 に記載した黒丸番号(数字は各ループ)のひび割れが新たに生じたことと、スラブとスタブ との目開き量が、1.6~1.7mm となり、曲げ実験により見開き量が 1.1mm 程度増大したことが挙げられる.

(4) 振動数の検討

表 3.2.7-7 に AC 試験体の短期載荷までの固有振動数の変化を示す.長期荷重時の 直近(2017.08.09)の固有振動数は11.9Hz であったが,今回最後の鉄筋束による再荷 重時の結果は10.0Hz となり,短期載荷によって1.9Hz 固有振動数が低下した.

表 3.2.7-7 長期荷重時から短期載荷時までのスラブ固有振動数の経時変化

試験体 タイプ	2016 2/16 無載荷	2016 2/16 載荷	2016 3/1 半月	2016 3/15 1 か月	2016 5/21 3 か月	2016 8/16 6 か月	2017 2/7 1 年	2017 8/9 1 年半	短期 載荷
AC	16.7	12.6	12.6	12.7	12.2	12.1	12.0	11.9	10.0

(単位:Hz)

(5)考察

長期たわみ実験経過時に実施した短期荷重による曲げ実験において以下の知見を 得た.

① スラブ中央部のたわみ

積載荷重相当の油圧ジャッキによる荷重(10.148kN)のたわみは 14.455mm と, 曲げ実験前の積載荷重用の鉄筋束による長期たわみ 14.365mm に対する比率は 1.006 であった.

曲げ実験終了後,積載荷重用の鉄筋束を再度載せた時のたわみは 25.045mm と なった.よって,曲げ実験によるたわみの増加量は,25.045-14.365=10.68mm となった.

② アンカー筋のひずみ

短期荷重の計算値は、固定端部のアンカー筋が降伏する 88.24kN である. アン カー筋が短期荷重時のひずみ(1900µ)まで変形させたときの荷重である 86.4kN との比率は、0.98 であるのでアンカー筋は降伏近傍までに達していたと考えら れる.

曲げ実験前のアンカー筋平均ひずみは試験体中央で 121~265µ, 端部で 131~258µ であった.

曲げ実験によるアンカー筋の平均ひずみの最大値は 3300µ と,実験予定の 1900µ を超えて加力することとなった.この原因は,最終ループの加力時に加力 プレートが滑りにより低下した荷重を超えるように加力している時に,ひずみ (A2b)が 5000μと急激に増大したためである.

曲げ実験終了後,積載荷重用の鉄筋束を再度載せた時の平均ひずみは中央で 478~644µとなり,降伏歪みに達したゲージ(A2b)のある平均ひずみは2235.5µと 実験予定の1900µを超えた.また端部の平均ひずみは411~627µと1900µには達 していなかった.

③ 試験体のひび割れ

ひび割れの検討は、マイクロスコープによるひび割れ幅、スラブとスタブと の目開きおよびひび割れ発生後から測定している位置のひび割れ幅について行 った.

マイクロスコープによるひび割れ幅は曲げ実験前後で、測定位置により多少 の違いはあるが、微小な差異(最大で 0.02mm)であるので、マイクロスコープに よるひび割れ幅の測定には変わりないと考えられる.

スラブとスタブとの曲げ実験前の目開きは 0.636mm, 0.578mm であった.

曲げ実験終了後,積載荷重用の鉄筋束を再度載せた時の目開きは 1.716mm, 1.648 mmとなったので,曲げ実験による見開きの増大量は,1.08mm, 1.07mm とほぼ同量であった.

ひび割れ発生後から測定している位置の曲げ実験前のひび割れ幅は 0.0575mm, 0.053mm であった.

曲げ実験終了後,積載荷重用の鉄筋束を再度載せた時のひび割れ幅は 0.0811mm, 0.0774mmとなったので,曲げ実験によるひび割れ幅の増大量は,と もに 0.02mm と微小量であった.

曲げ実験によるひび割れの変化は、多少新たに生じたひび割れもあるが、長期たわみ実験時に生じたひび割れが伸びたことと、スラブとスタブとの目開き量が 1.6~1.7mm となり、曲げ実験により見開き量が 1.1mm 程度増大したことが挙げられる.

④ スラブの固有振動数

振動測定結果は、長期荷重時の直近(2017.08.09)の固有振動数は11.9Hz であったが、本実験最後の鉄筋束による再荷重時の結果は10.0Hz となり、1.9Hz 固有振動数が低下した.

# 3.2.7-7 終局荷重による曲げ実験後のスラブ試験体の検討

(1)荷重・変形の検討

AC 試験体の各サイクルおよび自重のみ,加力ビーム,プレート,ローラー積載時 (3kN)の荷重と変形を図 3.2.7-18 および表 3.2.7-8 に示す.





サイクル	目標変形(mm):	変形(mm)	荷重(kN)
	自重のみの変形	26.57	
0	加力ビーム、プレート、ローラーの荷重による変形	27.47	3
1	積載荷重相当のジャッキによる荷重(6.8kN)による変形	28.13	9.8
	ループ1の変形から自重のみの変形を差し引た値		
	(28.13-26.57)=1.56mmの2倍の変形		
	26.57+1.56*2=29.68>1サイクルと同程度のため省略		
2	同上の3倍の変形:26.6+1.56*3=31.25>32	32.01	44.6
3	同上の6倍の変形:26.6+1.56*6=35.93>36	36.02	76.3
4	同上の10倍の変形:26.6+1.56*10=42.17>42	42.09	93.8
5	同上の14倍の変形:26.6+1.56*14=48.41>48	48.01	101.5
6	同上の18倍の変形:26.6+1.56*18=54.65>54	52.51	107
7	同上の22倍の変形:26.6+1.56*22=60.89>60	60.22	94.4
8	同上の26倍の変形:26.6+1.56*26=67.13>68	68.22	94.7
9	同上の34倍の変形:26.6+1.56*34=79.61>80	80.01	98
10	同上の42倍の変形:26.6+1.56*42=92.09>92	92.16	91
11	同上の48倍の変形:26.6+1.56*48=101.45>102	102.23	84.3
12	同上の54倍の変形:26.6+1.56*54=110.81>112	112.14	77.9
13	同上の62倍の変形:26.6+1.56*62=123.29>124	124.12	67.4
14	同上の72倍の変形:26.6+1.56*72=138.89>140	140.1	64.6
15	同上の84倍の変形:26.6+1.56*84=157.07>158	158.21	56.6
16	同上の98倍の変形:26.6+1.56*98=179.45>180	172.85	52.1
17	同上の114倍の変形:26.6+1.56*114=204.41>206	199.76	40.9
	加力ビーム、プレート、ローラーの荷重による変形	187.59	3
	自重のみの変形	181.83	
	最大荷重:109.9kN(6サイクル)、同変形:52.51mm		

AC 試験体は,部材角(中央部分のたわみ変形をスラブの内法スパンの半分で除し た値)が 1/110 程度で定着先のスタブにアンカー筋がコンクリートを掻き上げること によって引張ひび割れが入り,最大荷重(109.9kN)となった.その後,部材角 1/30 程 度まで載荷したところ,端部接合部は破壊したがスラブの脱落等は生じなかった.

(2)荷重・ひずみの検討

試験体固定端部に設置したアンカー筋のひずみについて,スラブ幅の中央および 端部にあるアンカー筋の平均ひずみをまとめて図 3.2.7-19,図 3.2.7-20 に示す.



図 3.2.7-19 アンカー筋の全平均ひずみ (中央 スラブ幅方向)



図 3.2.7-20 アンカー筋の全平均ひずみ (端部 スラブ幅方向)

端部あと施工アンカー筋は 105.4kN 程度の載荷時の部材角 1/120 程度で打継ぎ付近 の試験体スタブ側のあと施工アンカー筋で降伏したが, 3.3 に示す曲げ降伏荷重到達 時は,鉄筋の降伏は確認されなかった.これらより,接合部の破壊はアンカー筋降 伏後に起こった現象であることが確認された.なお,スラブ中央部下端の鉄筋は最 終破壊時点でも降伏しなかった.(図 3.2.7-20 下端筋中央 平均歪み 参照)

(3)曲げ実験終了後の変形

曲げ実験終了後3週間の中央変形(測定点 No1)を図 3.2.7-21 に示す.



図 3.2.7-21 曲げ実験終了後の中央変形(測定点 No1)

曲げ実験終了時の自重のみのたわみは,181.8mmであった.実験終了後2週間のたわみは,182~182.5mmの0.5mm程度の小さな範囲で変動していた.

曲げ実験終了後のスラブとスタブとの目開き(変位測定 No.19)を図 3.2.7-22 に示す. 目開き(変位測定 No.20)は、実験途中より測定出来ていなかったので図示していない.



図 3.2.7-22 曲げ実験終了後のスラブとスタブとの目開き

スラブとスタブとの目開き量は曲げ実験開始前では 1.9mm であったのが,曲げ実 験終了時には 3.8mm と大きく増大した.実験終了後 2 週間のたわみは 3.8mm と一定 であった.

曲げ実験終了後,ひび割れ幅(変位測定番号 No15,16)について測定した結果を図 3.2.7-23 に示す.



図 3.2.7-23 曲げ実験終了後のひび割れ幅

曲げ実験終了時のひび割れ幅は No15 で 0.10mm, No16 で 0.09mmとなり,実験終 了後 2 週間の変動も微小である. (4)振動数の検討

表 3.2.7-9 に長期載荷から短期載荷を経て,終局載荷後のスラブの固有振動数を示す.

			•					<i>′</i>
封驗休	2016	2016	2016	2016	2016	2016	2017	2017
武硬件	2/16	2/16	3/1	3/15	5/21	8/16	2/7	8/9
711	無載荷	載荷	半月	1か月	3 か月	6 か月	1年	1 年半
AC	16.7	12.6	12.6	12.7	12.2	12.1	12	11.9

表 3.2.7-9 長期荷重時のスラブの固有振動数の経時変化 (単位:Hz)

試験体 タイプ	2018 1/11 短期荷重	2018 2/9 2 年	2019 2/15 3 年	2020 2/14 4 年	2021 2/13 5 年	2022 3/17 6 年	2022 3/24 終局
AC	10.0	10.1	10.1	10.1	10.1	10.1	8.1

AC 試験体の固有振動数は,長期荷重時の直近(2017.8.9)では 11.9Hz であったが, 短期荷重載荷後の鉄筋束による再荷重時(2018.1.11)の結果は 10.0Hz となり, 1.9Hz 固有振動数が低下していた.

終局曲げ実験の直近(2022.3.17)の固有振動数は 10.1Hz であったが,終局曲げ実 験後の自重のみの固有振動数は 8.1Hz となり 2Hz 低下していた.

(5)考察

あと施工アンカーを用いた床スラブの長期たわみ試験体について,長期たわみ実 験終了時に終局曲げ実験を実施し,破壊性状を確認した結果,以下の知見を得た.

① スラブ中央部のたわみ

曲げ実験終了時の自重のみのたわみは,181.8mm であった.実験終了後2週間 のたわみは,182~182.5mm の0.5mm 程度の小さな範囲で変動していた.スラ ブとスタブとの目開き量は曲げ実験開始前では,1.9mm であったのが,曲げ実 験終了時には3.8mm と大きく増大した.実験終了後3週間のたわみは,3.8mm と一定であった.

② アンカー筋のひずみ

端部あと施工アンカー筋は 105.4kN 程度の載荷時の部材角 1/120 程度で打継ぎ 付近の試験体スタブ側のあと施工アンカー筋で降伏したが,計算値による曲げ 降伏荷重到達時には,鉄筋の降伏は確認されなかった.これらより,接合部の 破壊はアンカー筋降伏後に起こった現象であることが確認された.なお,スラ ブ中央部下端の鉄筋は最終破壊時点でも降伏しなかった. ③ 試験体のひび割れ

試験体の破壊過程は、アンカー筋が降伏した後、部材角が 1/110 程度で定着 先のスタブにアンカー筋がコンクリートを掻き上げるひび割れが入り、最大荷 重(109.9kN)となった. その後、部材角 1/30 程度まで載荷したところ、端部接 合部は破壊したがスラブの脱落等は生じなかった.

また,端部接合部をはつり出して確認した結果,アンカー筋周辺のコンクリート表層の小さなコーン状のひび割れが確認されたことから,アンカー筋降伏後に接合部分の変形が進みスタブ部分にひび割れを生じさせたものと推察される.



④ スラブの固有振動数

終局曲げ実験の直近(2022.3.17)の固有振動数は 10.1Hz であったが,終局 曲げ実験後の自重のみの固有振動数は 8.1Hz となり 2Hz 低下していた.

本試験体では接合部のあと施工アンカーがコンクリートを掻き上げる破壊を起こ し強度低下した.本試験体のように定着先にへりあきやはしあきがある場合,その 影響も考慮したあと施工アンカーの埋込長さの設計および強度評価を行うことが肝 要である. 3.2.8 まとめ

(1) 長期載荷実験

RC 床スラブの増設を想定したスラブの長期性能の確認実験において,載荷後約 6 年の結果は,以下の知見を得た.

- ・試験体のたわみについて、載荷直後から半年間は大きく増大したが、半年以降 はその増加が鈍化し、2.5年が経過した2017年以降は微小な増減を繰り返しなが ら少しずつ増加したたわみの値や期間を経ることによる増大の傾向という点に おいて、あと施工アンカーの使用の有無による大きな違いは現時点で見られて いない。
- ・試験体に発生したひび割れの幅や床スラブとスタブの打継ぎ部の目開きの幅は、 載荷後半年で幅が増幅した後は、その後もわずかながら増加を続けており、載 荷5年半の経過時点のAH試験体で0.81mm程度、BA試験体で0.8mm程度であ り、たわみと同様にあと施工アンカーの使用の有無による大きな違いはなかった。
- ・試験体のたわみから,弾性たわみに対する測定結果の比(たわみの増大率)を求めると、両端固定一方向スラブの試験体で12程度であり、現時点では安全側を示している.将来たわみの推定方法は、供用期間の設定や推定式について安全側となるよう適切に選択する必要がある.

(2) 短期載荷実験

長期載荷実験経過中に短期載荷による曲げ実験を実施した結果,以下の知見を得た.

- ・曲げ実験終了後,積載荷重用の鉄筋束を再度載せた時のたわみは25.045mmとなった.よって,曲げ実験によるたわみの増加量は,25.045-14.365=10.68mmとなった.
- ・曲げ実験によるアンカー筋の平均ひずみの最大値は 3300µと,実験予定の 1900µ を超えて加力することとなった.終了後,積載荷重用の鉄筋束を再度載せた時 の平均ひずみは中央で 478~644µとなり,降伏歪みに達したゲージ(A2b)のある 平均ひずみは 2235.5µと実験予定の 1900µを超えた.また端部の平均ひずみは 411~627µと 1900µには達していなかった.
- ・曲げ実験によるひび割れの変化は、多少新たに生じたひび割れもあるが、長期 たわみ実験時に生じたひび割れが伸びたことと、スラブとスタブとの目開き量 が1.6~1.7mmとなり、曲げ実験により見開き量が1.1mm程度増大したことが挙 げられる.
- ・振動測定の結果,長期荷重時の直近の固有振動数は11.9Hzに対して,本実験最後の鉄筋束による再荷重時の結果は10.0Hzとなり,1.9Hz 固有振動数が低下した.

(3) 終局載荷実験

長期載荷実験終了時に終局曲げ実験を実施した結果,以下の知見を得た.

- ・試験体の破壊過程は、部材角が 1/110 程度で定着先のスタブにアンカー筋がコンクリートを掻き上げるひび割れが入り、最大荷重となったが、部材角 1/30 程度まで載荷しても端部接合部は破壊したがスラブの脱落等は生じなかった。
- ・接合部のあと施工アンカーがコンクリートを掻き上げる破壊を起こし強度低下しており、本試験体のように定着先にへりあきやはしあきがある場合、その影響も考慮したあと施工アンカーの埋込長さの設計および強度評価を行うことが肝要である。

#### 3.3 実建築物における実験結果

#### 3.3.1 実験の主旨・概要

本実験は、実建築物における新設スラブの主筋定着に接着系あと施工アンカーを 用いたときの当該スラブの長期性状を把握することを目的とした.実建築物の新設 スラブでは、前節のスタブに固定した場合の試験条件と異なり、その支持部材の乾 燥収縮は収束していることから、新設スラブのみ収縮が進行し、その影響によりあ と施工アンカーに引張力が付加される可能性がある.また、壁式鉄筋コンクリート 造建築物の耐力壁にあと施工アンカーを用いた場合、耐力壁の回転変形が新設スラ ブのたわみ性能に及ぼす影響が無視できない可能性もあるため、これを検証するた めに、実建築物の壁に支持した lm 幅のスラブ試験体に対して長期載荷実験を行うこ ととした.

また,長期荷重を載荷した試験体について,一般的なスラブの設計では用いない 終局状態を想定した荷重の載荷を行い,接着系あと施工アンカーを用いたスラブへ の影響の有無についての確認を行う.

### 3.3.2 計画方針

実建築物として,独立行政法人 都市再生機構清瀬旭ヶ丘団地内の実験棟(壁式鉄 筋コンクリート造5階建て建築物(1967年建設))の2階201号室および1階101号室の 北側居室に,スパン5,940mm,幅1000mm,厚さ200mm,の接着系あと施工アンカ 一定着によるスラブおよび標準定着によるスラブを製作し,居室相当の載荷荷重(2.5 kN/m²)を積載して,長期たわみ性状を把握することとした.

実験スラブ配置図を図 3.3.2-1 に示す.



接着系あと施工アンカー定着試験体(2階201号室) 標準定着試験体(1階101号室) 図 3.3.2-1 実験スラブ配置図

## 3.3.3 設計方針·計算例

設計方針・計算例は、3.2.3 項参照.

3.3.4 試験体計画·製作概要

試験体は,新設スラブと既存壁との定着に接着系あと施工アンカーを用いたもの, および既存壁のコンクリートを一部撤去し,所要の定着長さを有する上端筋と下端 筋を配筋した後にはつり部分にコンクリートを打ち込み,硬化後に新設スラブを作 成したものとする.

新設スラブは、1階および2階の北側居室において階高の1/2の位置に設置する. この時、新設スラブが取り付く両側の耐力壁の新設スラブ際に縦方向にスリットを 入れて、周囲の壁と切り離し影響を受けないようにする.

新設スラブのコンクリートの目標圧縮強度は,18 N/mm²(呼び強度)とした. 新設スラブの配筋リストを表 3.3.4-1 に示す.

スラブ配筋図を図 3.3.4-1, 新設スラブと既存壁との接合詳細を図 3.3.4-2 に示す.

坂回 位署		主筋	方向	配力筋方向		
1汉/子	7些	端部	中央	端部	中央	
200	上	D13@150	D13@300	D10@300	D10@300	
200 下	D10@300	D10 @150	D10@300	D10@300		

表 3.3.4-1 新設スラブの配筋リスト

既存壁および新設スラブの材料試験結果を表 3.3.4-2, 表 3.3.4-3 に示す.





図 3.3.4-2 新設スラブと既存壁との接合詳細

表 3.3.4-2	コンクリ	ート材料試験結果
-----------	------	----------

No.	直径 (cm)	整形後高さ (cm)	高さ/直径	補正係数	断面積 (cm ² )	質量 (g)	かさ比重	最大荷重 (kN)	強度 (N/mm ² )	備考
101号室右	7.61	15.45	2.030	1.000	45.48	1630	2.320	161.3	35.5	既存壁
101号室一左	7.61	15.29	2.009	1.000	45.48	1597	2.296	145.9	32.1	既存壁
201号室一右	7.61	15.22	2.000	1.000	45.48	1592	2.300	128.9	28.3	既存壁
201号室一左	7.61	15.45	2.030	1.000	45.48	1608	2.288	190.2	41.8	既存壁

#### 試験実施日:2015年12月21日(月)

No.	直径 (cm)	整形後高さ (cm)	高さ/直径	補正係数	断面積 (cm ² )	質量 (g)	かさ比重	最大荷重 (kN)	強度 (N/mm ² )	備考
18-18-20N 1W No.1	10.00	19.92	1.992	1.000	78.54	3408	2.178	118.7	15.1	壁
18-18-20N 1W No.2	10.00	19.78	1.978	1.000	78.54	3378	2.174	123.3	15.7	
18-18-20N 1 W No.3	10.00	19.97	1.997	1.000	78.54	3405	2.171	115.9	14.8	

#### 試験実施日:2015年12月29日(火)

No.	直径 (cm)	整形後高さ (cm)	高さ/直径	補正係数	断面積 (cm ² )	質量 (g)	かさ比重	最大荷重 (kN)	強度 (N/mm ² )	備考
18-18-20N 1W No.1	10.00	20.22	2.022	1.000	78.54	3595	2.264	149.1	19.0	スラブ
18-18-20N 1W No.2	10.00	20.27	2.027	1.000	78.54	3618	2.273	138.1	17.6	
18-18-20N	10.00	20.27	2.027	1.000	78.54	3615	2.271	156.3	19.9	

#### 試験実施日:2016年01月12日(火)

No.	直径 (cm)	整形後高さ (cm)	高さ/直径	補正係数	断面積 (cm ² )	質量 (g)	かさ比重	最大荷重 (kN)	強度 (N/mm ² )	静弾性係数 (N/mm ² )	備考
18-18-20N 4W No.1	10.00	19.68	1.968	1.000	78.54	3344	2.163	192.6	24.5	2.25	壁
18-18-20N 4W No.2	10.00	19.84	1.984	1.000	78.54	3380	2.169	188.6	24.0	2.59	
18-18-20N 4W No.3	10.00	19.91	1.991	1.000	78.54	3390	2.168	195.6	24.9	2.31	

試験実施日:2016年01月19日(火) ※											$t \times 10^4 N/mm^2$
No.	直径 (cm)	整形後高さ (cm)	高さ/直径	補正係数	断面積 (cm ² )	質量 (g)	かさ比重	最大荷重 (kN)	強度 (N/mm ² )	静弾性係数 (N/mm ² )	備考
18-18-20N 4W No.1	10.00	19.83	1.983	1.000	78.54	3534	2.269	226.2	28.8	2.79	スラブ
18-18-20N 4W No.2	10.00	19.93	1.993	1.000	78.54	3566	2.278	227.8	29.0	3.02	
18-18-20N 4W No.3	10.00	19.78	1.978	1.000	78.54	3544	2.281	243.8	31.0	2.98	
								AVE.=	29.6	2.93	

#### 試験実施日:2016年02月02日(火)

No.	直径 (cm)	整形後高さ (cm)	高さ/直径	補正係数	断面積 (cm ² )	質量 (g)	かさ比重	最大荷重 (kN)	強度 (N/mm ² )	備考
18-18-20N 6W No.1	10.00	19.88	1.988	1.000	78.54	3531	2.261	216.6	27.6	スラブ
18-18-20N 6W No.2	10.00	19.85	1.985	1.000	78.54	3515	2.255	237.4	30.2	
18-18-20N 6W No.3	10.00	19.87	1.987	1.000	78.54	3522	2.257	210.2	26.8	

### 試験実施日:2016年03月15日(火)

No.	直径 (cm)	整形後高さ (cm)	高さ/直径	補正係数	断面積 (cm ² )	質量 (g)	かさ比重	最大荷重 (kN)	強度 (N/mm ² )	備考
清瀬壁 13W No.1	10.00	20.02	2.002	1.000	78.54	3399	2.162	199.8	25.4	壁
清瀬 壁 13W No.2	10.00	19.93	1.993	1.000	78.54	3429	2.191	219.8	28.0	
清瀬 壁 13W No.3	10.00	19.96	1.996	1.000	78.54	3431	2.189	218.8	27.9	

# 試験実施日:2016年03月22日(火)

No.	直径 (cm)	整形後高さ (cm)	高さ/直径	補正係数	断面積 (cm ² )	質量 (g)	かさ比重	最大荷重 (kN)	強度 (N/mm ² )	備考
清瀬 床 13W No.1	10.00	19.92	1.992	1.000	78.54	3522	2.251	253.4	32.3	スラブ
清瀬 床 13W No.2	10.00	19.82	1.982	1.000	78.54	3507	2.253	248.0	31.6	
清瀬 床 13W No.3	10.00	19.87	1.987	1.000	78.54	3553	2.277	255.6	32.5	

試験実施日:2016年	06月13日(月	)									
No.	直径 (cm)	整形後高さ (cm)	高さ/直径	補正係数	断面積 (cm ² )	質量 (g)	かさ比重	最大荷重 (kN)	強度 (N/mm ² )	静弾性係数 (N/mm ² )	備考
清瀬 壁 26W No 1	10.00	19.12	1.912	1.000	78.54	3279	2.184	237.4	30.2	2.67	壁
清瀬 壁 26₩ No.2	10.00	19.02	1.902	1.000	78.54	3284	2.198	256.0	32.6	2.63	
清瀬 壁 26W No.3	10.00	18.98	1.898	0.992	78.54	3260	2.187	246.2	31.1	2.75	
										※静弾性係数(	$\pm \times 10^4 \text{N/mm}^2$
<u> </u>	直径	整形後高さ			断面秸	哲昰		最大荷重	強度	静碰性係数	
No.	(cm)	(cm)	高さ/直径	補正係数	(cm ² )	(g)	かさ比重	取八何重 (kN)	(N/mm ² )	(N/mm ² )	備考
/ / / / / / / / / / / / / / / / / / /	10.00	19.89	1.989	1.000	78.54	3517	2.251	287.0	36.5	2.90	スラブ
/ / / / / / / / / / / / / / / / / / /	10.00	19.88	1.988	1.000	78.54	3531	2.261	294.2	37.5	3.05	
「) 「) 「) 「) 「) 「) 「) 「) 「) 「) 」 () () () () () () () () () () () () ()	10.00	19.77	1.977	1.000	78.54	3501	2.255	281.4	35.8	3.04	
討論実施日·2016年	12日12日(日							AVE.=	36.6	3.00	
No.	直径 (cm)	が 整形後高さ	高さ/直径	補正係数	断面積 (cm ² )	質量	かさ比重	最大荷重 (kN)	強度 (N/mm ² )	静弾性係数 (N/mm ² )	備考
清瀬 壁 52\//_Na1	10.00	19.85	1.985	1.000	78.54	3414	2.190	263.5	33.5	2.93	壁
	10.00	19.97	1.997	1.000	78.54	3412	2.175	264.6	33.7	2.85	
清瀬 壁	10.00	19.89	1.989	1.000	78.54	3417	2.187	270.6	34.5	2.97	
52 W N0.5										※静弾性係数(	$J \times 10^4 N/mm^2$
試験実施日:2016年	12月28日(7	k)									
No.	直径 (cm)	整形後高さ (cm)	高さ/直径	補正係数	断面積 (cm ² )	質量 (g)	かさ比重	最大荷重 (kN)	強度 (N/mm ² )	静弾性係数 (N/mm ² )	備考
清瀬 床 53W No.1	10.00	19.89	1.989	1.000	78.54	3466	2.219	311.2	39.6	2.85	スラブ
清瀬 床 53W No.2	10.00	19.79	1.979	1.000	78.54	3478	2.238	308.7	39.3	3.07	
清瀬 床 53W No.3	10.00	19.96	1.996	1.000	78.54	3522	2.247	325.0	41.4	3.19	
討點宝施日·2018年	2日6日(水)									※静弾性係数(	$\pm \times 10^4 \text{N/mm}^2$
	直径	整形後高さ	古+/直久	端正底粉	断面積	質量	かさい声	最大荷重	強度	静弾性係数	供去
清瀬 壁	(cm)	(cm)	同C/ 直注	1000	(cm ² )	(g)	から比重	(kN)	(N/mm ² )	(N/mm ² )	· 開 ? 5
<u>112W No.1</u> 清瀬 壁	10.00	19.64	1.964	1.000	78.54	3392	2.199	248.2	31.6	2.68	壁
<u>112W No.2</u> 清瀬 壁	10.00	19.48	1.948	1.000	78.54	3384	2.212	261.0	33.2	2.92	
112W No.3	10.00	19.70	1.970	1.000	/8.54	3445	2.227	258.8	33.0	2.91	$\pm \times 10^4 N / mm^2$
試験実施日:2018年	2月6日(火)									小时作用工作或	
No.	直径 (cm)	整形後高さ (cm)	高さ/直径	補正係数	断面積 (cm ² )	質量 (g)	かさ比重	最大荷重 (kN)	強度 (N/mm ² )	静弾性係数 (N/mm ² )	備考
清瀬 床 111W No.1	10.00	19.60	1.960	1.000	78.54	3489	2.266	293.4	37.4	2.86	スラブ
清瀬 床 111W No.2	10.00	19.65	1.965	1.000	78.54	3522	2.282	313.6	39.9	3.12	
清瀬 床 111W No.3	10.00	19.50	1.950	1.000	78.54	3539	2.311	329.6	42.0	3.15	
		 								※静弾性係数(	$\pm \times 10^4 \text{N/mm}^2$
武映天池口:2019年		***********			断面秸	哲皇		最大荷重	碖度	静碰性係数	
No. 法还亡	(cm)		高さ/直径	補正係数	(cm ² )	<u> 気里</u> (g)	かさ比重	#x 八叩里 (kN)	(N/mm ² )	(N/mm ² )	備考
	10.00	19.88	1.988	1.000	78.54	3484	2.231	311.8	39.7	3.04	スラブ
/	10.00	19.91	1.991	1.000	78.54	3470	2.219	302.8	38.6	2.94	
/月/根 床 168W No.3	10.00	19.85	1.985	1.000	78.54	3508	2.250	305.8	38.9	3.04	h
	1									いい きょう 一世 小石 米山	T V 10"NI /
壁コンクリート打設日	:2015年12	月14日(月)								※前1911年11年15月1	4 × 10 N/mm

表 3.3.4-2 コンクリート材料試験結果(続き)

	異形領	跌筋D10 (SI	D295)	異形	跌筋D13 (SI	D295)
	Ι	Π	Ш	Ι	Π	Ш
公称直径(mm)	9.53	9.53	9.53	12.7	12.7	12.7
公称断面積(mm ² )	71.33	71.33	71.33	126.7	126.7	126.7
上降伏荷重(N)	27320	27180	26790	46270	45890	46680
上降伏点応力(N/mm ² )	383.0	381.0	375.6	365.2	362.2	368.4
下降伏荷重(N)	26180	26030	25990	44760	44380	44780
下降伏点応力(N/mm ² )	367.0	364.9	364.4	353.3	350.3	353.4
最大荷重(N)	36050	35600	35550	62200	62500	62600
引張強さ(N/mm ² )	505.4	499.1	498.4	490.9	493.3	494.1
標点間距離(mm)	91.7	92.8	91.6	101.1	102.2	101.1
試験後標点間距離(mm)	110.2	109.9	108.2	120.4	122.3	121.5
破断伸び(%)	20.2	18.4	18.1	19.1	19.6	20.2
静弾性係数(×10⁵N/mm²)	2.10	1.95	1.73	1.74	1.78	1.69
破断箇所	А	А	A	А	Α	А

表 3.3.4-3 鉄筋材料試験結果

試験体施工時の接着系あと施工アンカーの施工位置を図 3.3.4-3 に示す.また施工 時の穿孔穴径,深さ,アンカー筋長さ,埋込み長さ,勾配等の施工記録を表-3.3.4-5 に示す.



図 3.3.4-3 接着系あと施工アンカーの施工位置

# 表 3.3.4-5 接着系あと施工アンカー施工時の穿孔穴径,深さ,アンカー筋長さ,

# 埋込み長さ、勾配

										単位:m	m
201号室:妻側	上端筋							下端筋			
番号は、手前(南)から	E1	E2	E3	E4	E5	E6	E7	E8	E9	E10	E11
内径奥(平行)	14.6	14.4	13.7	14.4	14.0	14.2	14.7	14.8	14.6	14.7	14.2
内径奥(直角)	15.5	15.6	14.5	15.2	14.1	14.3	15.2	13.9	13.7	14.6	14.4
内径手前(平行)	16.1	16.4	16.2	16.3	16.1	16.0	15.9	16.0	16.1	15.7	16.5
内径手前(直角)	16.3	15.9	15.8	16.1	16.4	16.1	16.1	16.6	19.7	16.0	16.1
										単位:m	m
深さ	E1	E2	E3	E4	E5	E6	E7	E8	E9	E10	E11
	167.5	166.0	162.4	162.3	162.2	161.3	161.4	97.4	101.2	101.3	98.8
										<u>単位:</u> ゜	
勾配	E1	E2	E3	E4	E5	E6	E7	E8	E9	E10	E11
スラブ面に平行方向	90.3	92.0	95.2	95.3	93.4	91.3	92.4	93.5	92.3	91.3	94.4
スラブ面に直角方向	92.2	90.4	92.2	90.1	91.4	92.2	89.1	91.2	93.1	92.2	89.5
							•			<u>単位:m</u>	m
	E1	E2	E3	E4	E5	E6	E7	E8	E9	E10	E11
アンカー筋の全長	775	776	775	774	773	774	774	710	710	710	711
アンカー筋の出長さ	612	623	615	613	619	616	629	614	613	612	615
埋め込み長さ	163	153	160	161	154	158	145	96	97	98	96
										<u>単位:</u> °	
アンカー筋勾配	E1	E2	E3	E4	E5	E6	E7	E8	E9	E10	E11
スラブ面に平行方向											
スラブ面に直角方向	89.7	89.6	89.7	89.8	90.3	89.3	88.2				
								測定不可	ज		
										単位:m	im
201号室:階段側	上端筋							下端筋		<u>単位:m</u>	im
201号室:階段側 番号は、手前(南)から	<u>上端筋</u> W1	W2	W3	W4	W5	W6	W7	<u>下端筋</u> W8	W9	単位:m W10	w11
201号室:階段側 番号は、手前(南)から 内径奥(平行)	<u>上端筋</u> W1 14.2	W2 14.6	W3 14.5	W4 14.6	W5 14.8	W6 14.3	W7 13.9	下端筋 W8 14.6	W9 13.6	単位:m W10 14.4	W11 13.9
201号室:階段側 番号は、手前(南)から 内径奥(平行) 内径奥(直角)	<u>上端筋</u> W1 14.2 15.2	W2 14.6 14.4	W3 14.5 14.6	W4 14.6 15.2	W5 14.8 14.7	W6 14.3 14.2	W7 13.9 12.8	下端筋 W8 14.6 15.1	W9 13.6 15.9	単位:m W10 14.4 15.2	W11 13.9 12.8
201号室:階段側 番号は、手前(南)から 内径奥(平行) 内径奥(直角) 内径気(すて)	上端筋 W1 14.2 15.2 16.3	W2 14.6 14.4 16.3	W3 14.5 14.6 15.9	W4 14.6 15.2 16.9	W5 14.8 14.7 16.4	W6 14.3 14.2 16.3	W7 13.9 12.8 16.1	<u>下端筋</u> W8 14.6 15.1 15.9	W9 13.6 15.9 16.1	単位:m W10 14.4 15.2 16.1	W11 13.9 12.8 15.6
201号室:階段側 <u>番号は、手前(南)から</u> 内径奥(平行) 内径奥(直角) 内径手前(平行) 内径手前(直角)	<u>上端筋</u> W1 14.2 15.2 16.3 16.4	W2 14.6 14.4 16.3 16.1	W3 14.5 14.6 15.9 16.2	W4 14.6 15.2 16.9 19.5	W5 14.8 14.7 16.4 20.0	W6 14.3 14.2 16.3 16.4	W7 13.9 12.8 16.1 18.0	<u>下端筋</u> W8 14.6 15.1 15.9 15.7	W9 13.6 15.9 16.1 16.3	単位:m W10 14.4 15.2 16.1 15.8	W11 13.9 12.8 15.6 15.2
201号室:階段側 番号は、手前(南)から 内径奥(平行) 内径奥(直角) 内径手前(平行) 内径手前(直角)	上端筋 W1 14.2 15.2 16.3 16.4	W2 14.6 14.4 16.3 16.1 ゲージ	W3 14.5 14.6 15.9 16.2	W4 14.6 15.2 16.9 19.5 ゲージ	W5 14.8 14.7 16.4 20.0	W6 14.3 14.2 16.3 16.4	W7 13.9 12.8 16.1 18.0	<u>下端筋</u> W8 14.6 15.1 15.9 15.7	W9 13.6 15.9 16.1 16.3	単位:m W10 14.4 15.2 16.1 15.8 単位:m	W11 13.9 12.8 15.6 15.2 m
201号室:階段側 番号は、手前(南)から 内径奥(平行) 内径奥(直角) 内径手前(平行) 内径手前(直角) 深さ	上端筋 W1 14.2 15.2 16.3 16.4 W1	W2 14.6 14.4 16.3 16.1 ゲージ W2	W3 14.5 14.6 15.9 16.2 W3	W4 14.6 15.2 16.9 19.5 ゲージ W4	W5 14.8 14.7 16.4 20.0 W5	W6 14.3 14.2 16.3 16.4 W6	W7 13.9 12.8 16.1 18.0 W7	下端筋 W8 14.6 15.1 15.9 15.7 W8	W9 13.6 15.9 16.1 16.3 W9	単位:m W10 14.4 15.2 16.1 15.8 単位:m W10	W11 13.9 12.8 15.6 15.2 m W11 W12
201号室:階段側 番号は、手前(南)から 内径奥(平行) 内径奥(直角) 内径手前(平行) 内径手前(直角) 深さ	上端筋 W1 14.2 15.2 16.3 16.4 W1 163.4	W2 14.6 14.4 16.3 16.1 ゲージ W2 169.4	W3 14.5 15.9 16.2 W3 166.4	W4 14.6 15.2 16.9 19.5 ゲージ W4 W4	W5 14.8 14.7 16.4 20.0 W5 168.2	W6 14.3 14.2 16.3 16.4 W6 <u>貫通</u>	W7 13.9 12.8 16.1 18.0 W7 161.2	下端筋 W8 14.6 15.1 15.9 15.7 W8 99.1	W9 13.6 15.9 16.1 16.3 W9 99.9	単位:m W10 14.4 15.2 16.1 15.8 単位:m W10 100.2	W11 13.9 12.8 15.6 15.2 m W11 97.1
201号室:階段側 番号は、手前(南)から 内径奥(平行) 内径奥(直角) 内径手前(平行) 内径手前(直角) 深さ	上端筋 W1 14.2 15.2 16.3 16.4 W1 163.4 貫通	W2 14.6 14.4 16.3 16.1 ゲージ W2 169.4 : アンカー	W3 14.5 14.6 15.9 16.2 W3 166.4 -筋の抜	W4 14.6 15.2 16.9 19.5 ゲージ W4 貫通 け出し測	W5 14.8 14.7 16.4 20.0 W5 168.2 定のため	W6 14.3 14.2 16.3 16.4 W6 貫通 文. 世ん孑	W7 <u>13.9</u> 12.8 16.1 18.0 W7 <u>161.2</u> 七穴を貫)	下端筋 W8 14.6 15.1 15.9 15.7 W8 99.1 低て開	W9 13.6 15.9 16.1 16.3 W9 99.9 17 <i>f</i> _	単位:m W10 14.4 15.2 16.1 15.8 単位:m W10 100.2 単位:	W11 13.9 12.8 15.6 15.2 m W11 97.1
201号室:階段側 番号は、手前(南)から 内径奥(平行) 内径奥(直角) 内径手前(平行) 内径手前(直角) 深さ	<u>上端筋</u> W1 14.2 15.2 16.3 16.4 W1 163.4 貫通 W1	W2 14.6 14.4 16.3 16.1 ゲージ W2 169.4 : アンカ- W2	W3 14.5 15.9 16.2 W3 166.4 -筋の抜 W3	W4 14.6 15.2 16.9 19.5 ゲージ W4 貫通 け出し測 W4	W5 14.8 14.7 16.4 20.0 W5 168.2 定のため W5	W6 14.3 14.2 16.3 16.4 W6 貫通 り、せん子 W6	W7 <u>13.9</u> 12.8 16.1 18.0 W7 <u>161.2</u> 七穴を貫) W7	<u>下端筋</u> W8 14.6 15.1 15.9 15.7 W8 99.1 重して開 W8	W9 13.6 15.9 16.1 16.3 W9 99.9 ( <i>††</i> _ W9	単位:m W10 14.4 15.2 16.1 15.8 単位:m W10 100.2 単位: [°] W10	W11 13.9 12.8 15.6 15.2 M W11 97.1 W11
201号室:階段側 番号は、手前(南)から 内径奥(平行) 内径奥(直角) 内径手前(平行) 内径手前(直角) 深さ 勾配 スラブ面に平行方向	上端筋 W1 14.2 15.2 16.3 16.4 W1 163.4 貫通 W1 96.1	W2 14.6 14.4 16.3 16.1 ゲージ W2 169.4 :アンカー W2 92.6	W3 14.5 15.9 16.2 W3 166.4 -筋の抜 W3 95.3	W4 14.6 15.2 16.9 19.5 ゲージ W4 貫通 け出し測 W4 91.5	W5 14.8 14.7 16.4 20.0 W5 168.2 定のため W5 92.1	W6 14.3 14.2 16.3 16.4 W6 貫通 り、せん子 W6 92.6	W7 13.9 12.8 16.1 18.0 W7 161.2 七穴を貫〕 W7 92.3 97.3	下端筋 W8 14.6 15.1 15.9 15.7 W8 99.1 五して開 W8 93.5	W9 13.6 15.9 16.1 16.3 W9 99.9 ( <i>††</i> _ W9 95.2	単位:m W10 14.4 15.2 16.1 15.8 単位:m W10 100.2 単位:° W10 94.4	W11 13.9 12.8 15.6 15.2 m W11 97.1 W11 98.5
201号室:階段側 <u>番号は、手前(南)から</u> 内径奥(平行) 内径奥(直角) 内径手前(平行) 内径手前(直角) 深さ 勾配 スラブ面に平行方向 スラブ面に直角方向	上端筋 W1 14.2 15.2 16.3 16.4 W1 163.4 貫通 W1 96.1 93.2	₩2 14.6 14.4 16.3 16.1 ゲージ ₩2 169.4 :アンカ- ₩2 92.6 91.3	W3 14.5 14.6 15.9 16.2 W3 166.4 −筋の抜 W3 95.3 90.6	W4 14.6 15.2 16.9 19.5 ゲージ W4 貫通 け出し測 W4 91.5 91.5	W5 14.8 14.7 16.4 20.0 W5 168.2 定のたと W5 92.1 91.4	W6 14.3 16.3 16.4 W6 貫通 S、せん子 W6 92.6 92.3	W7 13.9 16.1 18.0 W7 161.2 七穴を貫) W7 92.3 87.6	下端筋 下端筋 14.6 15.1 15.9 15.7 W8 99.1 通して開 W8 93.5 91.5	W9           13.6           15.9           16.1           16.3           W9           99.9           17±           W9           95.2           92.5	単位:m W10 14.4 15.2 16.1 15.8 単位:m W10 94.4 90.4	W11 13.9 12.8 15.6 15.2 m W11 97.1 W11 98.1 88.5
201号室:階段側 <u>番号は、手前(南)から</u> 内径奥(平行) 内径奥(直角) 内径手前(平行) 内径手前(直角) 深さ 勾配 スラブ面に平行方向 スラブ面に直角方向	上端筋 W1 14.2 15.2 16.3 16.4 W1 163.4 貫通 W1 96.1 93.2	W2 14.6 14.4 16.3 16.1 ゲージ W2 169.4 :アンカー W2 92.6 91.3	W3 14.5 14.6 15.9 16.2 W3 166.4 一筋の抜 W3 95.3 90.6	W4 14.6 15.2 16.9 19.5 ゲージ W4 貫通 け出し測 W4 91.5 91.5	W5 14.8 14.7 16.4 20.0 W5 168.2 定のたと W5 92.1 91.4	W6 14.3 16.3 16.3 16.4 W6 貫通 92.6 92.3	W7 13.9 12.8 16.1 18.0 W7 161.2 七穴を貫) W7 92.3 87.6	下端筋 下端筋 14.6 15.1 15.9 15.7 W8 99.1 通して開 W8 93.5 91.5	W9           13.6           15.9           16.1           16.3           W9           99.9           (77_2)           W9           95.2           92.5	単位:m W10 14.4 15.2 16.1 15.8 単位:m W10 94.4 90.4 単位:m	W11 13.9 12.8 15.6 15.2 m W11 97.1 W11 98.1 88.5 m
201号室:階段側 <u>番号は、手前(南)から</u> 内径奥(平行) 内径奥(直角) 内径手前(平行) 内径手前(直角) 深さ 勾配 スラブ面に平行方向 スラブ面に直角方向	上端筋 W1 14.2 15.2 16.3 16.4 W1 163.4 貫通 W1 96.1 93.2 W1	W2 14.6 14.4 16.3 16.1 ゲージ W2 169.4 :アンカー W2 92.6 91.3 W2	W3 14.5 14.6 15.9 16.2 W3 166.4 一筋の抜 W3 95.3 90.6	W4 14.6 15.2 16.9 19.5 ゲージ W4 貫通 け出し測 W4 91.5 91.5	W5 14.8 14.7 16.4 20.0 W5 168.2 定のため W5 92.1 91.4 W5	W6 14.3 16.3 16.4 W6 貫通 り、せん子 W6 92.6 92.3 W6	W7 13.9 12.8 16.1 18.0 W7 161.2 七穴を貫う W7 92.3 87.6 W7	下端筋 14.6 15.1 15.9 15.7 W8 99.1 通して開 W8 93.5 91.5 91.5	W9           13.6           15.9           16.1           16.3           W9           99.9           17∠           W9           95.2           92.5           W9	単位:m W10 14.4 15.2 16.1 5.8 単位:m W10 94.4 90.4 単位:m W10 94.4 90.4	W11 13.9 12.8 15.6 15.2 m W11 97.1 W11 88.5 m W11 710
201号室:階段側 番号は、手前(南)から 内径奥(平行) 内径奥(直角) 内径手前(平行) 内径手前(直角) 深さ 勾配 スラブ面に平行方向 スラブ面に直角方向	上端筋 W1 14.2 15.2 16.3 16.4 W1 163.4 貫通 W1 96.1 93.2 W1 773 773	W2 14.6 14.4 16.3 16.1 ゲージ W2 169.4 :アンカー W2 92.6 91.3 W2 775	W3 14.5 14.6 15.9 16.2 W3 166.4 -筋の抜 W3 95.3 90.6 W3 776	W4 14.6 15.2 16.9 19.5 ゲージ W4 貫通 (ナ出し測 W4 91.5 91.5 91.5	W5 14.8 14.7 16.4 20.0 W5 168.2 定のため W5 92.1 91.4 W5 774	W6 14.3 16.3 16.4 W6 貫通 92.6 92.3 W6 776	W7 13.9 12.8 16.1 18.0 W7 161.2 1穴を貫近 W7 92.3 87.6 W7 773	下端筋 W8 14.6 15.1 15.9 15.7 W8 99.1 通して開 W8 93.5 91.5 91.5 W8 710 0	W9 13.6 15.9 16.1 16.3 W9 99.9 97.2 92.5 W9 7111 014	単位:m W10 14.4 15.2 16.1 15.8 単位:m W10 94.4 90.4 単位:m W10 710 710	W11 13.9 12.8 15.6 15.2 m W11 97.1 W11 98.1 88.5 m W11 710 215
201号室:階段側         番号は、手前(南)から         内径奥(平行)         内径手前(平行)         内径手前(直角)         次さ         勾配         スラブ面に三角方向         スラブ面に直角方向         アンカー筋の全長         アンカー筋の出長さ         畑肉はスターク	上端筋 W1 14.2 15.2 16.3 16.4 W1 163.4 貫通 W1 96.1 93.2 W1 773 617	W2 14.6 14.4 16.3 16.1 ゲージ W2 169.4 :アンカー W2 92.6 91.3 W2 775 623 150	W3 14.5 14.6 15.9 16.2 W3 166.4 一筋の抜 W3 95.3 90.6 W3 776 620	W4 14.6 15.2 16.9 19.5 ゲージ W4 貫通 (ナ出し測 W4 91.5 91.5 91.5 W4 776 6160	W5 14.8 14.7 16.4 20.0 W5 168.2 定のため W5 92.1 91.4 W5 774 628	W6 14.3 16.3 16.4 W6 算通 92.6 92.3 W6 776 623	W7 13.9 12.8 16.1 18.0 W7 161.2 1穴を貫近 W7 92.3 87.6 W7 773 618	下端筋 W8 14.6 15.1 15.7 15.7 W8 99.1 重して開 W8 93.5 91.5 91.5 W8 710 613 07	W9 13.6 15.9 16.1 16.3 W9 99.9 99.9 (77z W9 95.2 92.5 W9 711 614 67	単位:m W10 14.4 15.2 16.1 15.8 単位:m W10 94.4 90.4 単位:m W10 710 622 000	W11 13.9 12.8 15.6 15.2 m W11 97.1 W11 98.1 88.5 m W11 97.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1 07.1
201号室: 階段側 <u>番号は、手前(南)から</u> 内径奥(平行) 内径美前(平行) 内径手前(直角) 深さ 勾配 スラブ面に正平行方向 スラブ面に直角方向 アンカー筋の全長 アンカー筋の出長さ 埋め込み長さ	上端筋 W1 14.2 15.2 16.3 16.4 W1 163.4 貫通 W1 96.1 93.2 W1 773 617 156	<ul> <li>₩2</li> <li>14.6</li> <li>14.4</li> <li>16.3</li> <li>16.1</li> <li>ゲージ</li> <li>₩2</li> <li>92.6</li> <li>91.3</li> <li>₩2</li> <li>775</li> <li>623</li> <li>152</li> </ul>	W3         14.5         15.9         16.2         W3         166.4         -筋の抜         W3         95.3         90.6         W3         776         620         156	W4 14.6 15.2 16.9 19.5 ゲージ W4 貫通 け出し測 W4 91.5 91.5 91.5 W4 776 616 160	W5 14.8 14.7 16.4 20.0 W5 168.2 定のため 92.1 91.4 W5 774 628 146	W6 14.3 16.3 16.4 W6 算通 92.6 92.3 W6 776 623 153	W7 13.9 12.8 16.1 18.0 W7 161.2 1穴を貫近 W7 92.3 87.6 W7 773 618 155	下端筋 W8 14.6 15.1 15.9 15.7 W8 99.1 五して開 W8 93.5 91.5 91.5 91.5 91.5 91.5 91.5 91.5 91	W9           13.6           15.9           16.1           16.3           W9           99.9           17±           W9           95.2           92.5           W9           711           614           97	単位:m W10 14.4 15.2 16.1 15.8 単位:m W10 94.4 90.4 単位:m W10 710 622 888 単位:°	W11 13.9 12.8 15.6 15.2 m W11 97.1 W11 98.1 88.5 m W11 710 615 95
201号室: 階段側 <u>番号は、手前(南)から</u> 内径奥(平行) 内径奥(直角) 内径手前(三角) 内径手前(直角) 深さ 勾配 スラブ面に正平行方向 スラブ面に直角方向 アンカー筋の全長 アンカー筋の出長さ 埋め込み長さ	上端筋 W1 14.2 15.2 16.3 16.4 W1 163.4 貫通 W1 96.1 93.2 W1 773 617 156	W2 14.6 14.4 16.3 16.1 ゲージ W2 169.4 :アンカー W2 92.6 91.3 W2 775 623 152	W3 14.5 14.6 15.9 16.2 W3 166.4 -筋の抜 W3 95.3 90.6 W3 776 620 156	W4 14.6 15.2 16.9 19.5 ゲージ W4 貫通 (ナ出し測 W4 91.5 91.5 91.5 W4 776 616 160	W5 14.8 14.7 16.4 20.0 W5 168.2 定のため W5 92.1 91.4 W5 774 628 146	W6 14.3 16.3 16.4 W6 <u>貫通</u> 92.6 92.3 W6 776 623 153	W7 13.9 12.8 16.1 18.0 W7 161.2 七穴を貫〕 W7 92.3 87.6 W7 773 618 155	下端筋 W8 14.6 15.1 15.9 15.7 W8 99.1 通して開 W8 93.5 91.5 91.5 W8 710 613 97	W9           13.6           15.9           16.1           16.3           W9           99.9           17t           W9           95.2           92.5           W9           711           614           97	単位:m W10 14.4 15.2 16.1 15.8 単位:m W10 94.4 90.4 単位:m W10 710 622 88 単位: [°]	W11 13.9 12.8 15.6 15.2 m W11 97.1 W11 98.1 88.5 m W11 710 615 95
201号室:階段側         番号は、手前(南)から         内径奥(平行)         内径奥(直角)         内径手前(車角)         内径手前(直角)         深さ         勾配         スラブ面に正角方向         アンカー筋の全長         アンカー筋の出長さ         埋め込み長さ         アンカー筋勾配         スラブ面に取らたちの	上端筋 W1 14.2 15.2 16.3 16.4 W1 163.4 <b>受</b> 163.4 <b>受</b> 96.1 93.2 W1 773 617 156 W1	W2           14.6           14.4           16.3           16.1           ゲージ           W2           169.4           :アンカ-           W2           92.6           91.3           W2           775           623           152           W2	W3         14.5         14.6         15.9         16.2         W3         166.4         -筋の抜         W3         95.3         90.6         W3         776         620         156         W3	W4 14.6 15.2 16.9 19.5 ゲージ W4 貫通 (ナ出し測 W4 91.5 91.5 91.5 W4 776 616 160 W4	W5 14.8 14.7 16.4 20.0 W5 168.2 定のため W5 92.1 91.4 W5 774 628 146 W5	W6 14.3 16.3 16.4 W6 夏通 92.6 92.3 W6 776 623 153 W6	W7 13.9 12.8 16.1 18.0 W7 161.2 1穴を貫) W7 92.3 87.6 W7 773 618 155 W7	<ul> <li>下端筋</li> <li>下端筋</li> <li>14.6</li> <li>15.1</li> <li>15.9</li> <li>15.7</li> <li>W8</li> <li>99.1</li> <li>五して開</li> <li>W8</li> <li>93.5</li> <li>91.5</li> <li>W8</li> <li>710</li> <li>613</li> <li>97</li> <li>W8</li> </ul>	W9           13.6           15.9           16.1           16.3           W9           99.9           (††z)           W9           95.2           92.5           W9           711           614           97           W9	単位:m W10 14.4 15.2 16.1 15.8 単位:m W10 94.4 90.4 単位:m W10 622 88 単位:° W10 622 88 単位:°	W11 13.9 12.8 15.6 15.2 m W11 97.1 W11 98.1 88.5 m W11 710 615 95 W11
201号室:階段側         番号は、手前(南)から         内径奥(平行)         内径奥(直角)         内径手前(車角)         内径手前(直角)         深さ         勾配         スラブ面に下行方向         スラブ面に直角方向         アンカー筋の全長         アンカー筋の乱長さ         埋め込み長さ         アンカー筋勾配         スラブ面に平行方向         スラブ面にっちっ	上端筋 W1 14.2 15.2 16.3 16.4 W1 163.4 <b>度</b> 163.4 <b>夏</b> 93.2 W1 773 617 156 W1	W2           14.6           16.1           ゲージ           W2           169.4           :アンカー           W2           92.6           91.3           W2           775           623           152           W2	W3         14.5         14.6         15.9         16.2         W3         166.4         -筋の抜         W3         95.3         90.6         W3         776         620         156         W3            01.2	W4 14.6 15.2 16.99 19.5 ゲージ W4 貫通 け出し測 W4 91.5 91.5 91.5 W4 776 616 160 W4	W5 14.8 14.7 16.4 20.0 W5 168.2 定のため W5 92.1 91.4 W5 774 628 146 W5	W6 14.3 16.3 16.4 W6 夏通 92.6 92.3 W6 776 623 153 W6 	W7 13.9 12.8 16.1 18.0 W7 161.2 七穴を貫) W7 92.3 87.6 W7 773 618 155 W7	<u>下端筋</u> W8 14.6 15.1 15.9 15.7 W8 99.1 通して開 W8 93.5 91.5 W8 710 613 97 W8 	W9           13.6           15.9           16.1           16.3           W9           99.9           17t_           W9           95.2           92.5           W9           711           614           97           W9	単位:m W10 14.4 15.2 16.1 15.8 単位:m W10 100.2 単位:° W10 94.4 90.4 単位:m W10 622 88 単位:° W10 622 88 単位:°	W11 13.9 12.8 15.6 15.2 m W11 97.1 W11 98.1 88.5 m W11 710 615 95 W11 

測定不可

## 3.3.5 加力·計測方法

# 3.3.5-1 長期載荷実験における加力・計測方法

(1)加力方法

加力は長期荷重の載荷として,スラブ面全体に一般的な居室の積載荷重に固定荷 重を考慮した 2.5kN/m²(積載荷重 1.8 kN/m²,仕上げ荷重 0.7 kN/m²)の重量を等分布荷 重相当として,鉄筋束を用いて加力する.

載荷は,支保工撤去後にスラブ自重(27.6 kN/m²)のみによる変動を測定後,その直後から載荷を開始する.

(2)スラブたわみと壁回転量測定

1 階および 2 階に新設したスラブのたわみを,変位計を取り付けた測定用ビームを 設置し測定する.(図 3.3.5-1 参照)

測定項目は、スラブの鉛直・水平変位、既存壁の水平変位、アンカー筋の抜出し 量とする. (図 3.3.5-2, 図 3.3.5-3 参照)

測定位置番号と測定変位を以下に示す.

- ①~⑥ スラブの鉛直変位
- ⑦・⑧ 壁の水平変位
- ⑨・⑩ スラブの壁からの鉛直変位

①~18 壁の水平変位(階段室壁:南側①・13 北側15・10,妻壁:南側12・14 北 側16・18)

- (19・20) 壁間の水平変位
- ②・② アンカー筋の抜出し(201号室, 階段室側)

23~28 壁のスラブからの水平変位(201号室33・24 101号室25・26)



図 3.3.5-1 測定用ビーム設置位置



図 3.3.5-2 アンカー筋の抜出し量測定図(201 号室, 階段室側)



図 3.3.5-3 水平·鉛直変位測定位置図

(2)鉄筋ひずみの測定

スラブ筋、アンカー筋および定着筋のひずみの測定を行う.

鉄筋のひずみ測定位置を図 3.3.5-4~図 3.3.5-6 に示す. なお, ひずみゲージは鉄筋の上下面に貼付けている.



図 3.3.5-4 アンカー筋および定着筋のひずみ測定位置(平面図,写真)

(3) その他の計測

3.2 項と同様にスラブ振動,乾燥収縮,コンクリート強度の測定,およびひび割れの観測を,定期的に実施する.



図 3.3.5-5 鉄筋(スラブ筋)ひずみ測定位置図



# 3.3.5-2 終局荷重による曲げ実験における加力・計測方法

(1) 加力方法

加力は,H型鋼を用いた門型フレームを長期たわみ試験体のスパン中央部に設置 し、門型フレームの加力梁中央に取り付けた油圧ジャッキ(容量 100kN)を使用し て、両端固定スラブのスパン 1/4 点に加力ビームを介して行った.

加力装置を図 3.2.5-11 に示す.



図 3.2.5-11 加力装置(上:側面図,下:断面図)

(2) 加力計画

加力は,長期たわみ実験により 16mm(部材角 1/360)程度変形しているので,設 計荷重,部材角 1/400, 1/200, 1/100, 1/75, 1/50 とし, 1/25 程度(230mm)または 最大荷重の低下まで一方向加力とする.

なお現在載荷してある鉄筋束は,加力ビームの設置に際して支障となるので撤去 した. 設計荷重として,以下のスラブ固定端部および中央の曲げ降伏荷重を算定して決定した.算定するための力学モデルを図 3.3.5-12 に示す。

アンカー筋のあるスラブ固定端部が中央より先に曲げ降伏荷重に達するように, 加力位置を試験体スパンの 1/4 とした.



図 3.3.5-12 力学モデル

端部配筋:at	7-D13		
スラブ厚さ:t	200mm		
鉄筋強度: σy	352 N/mm	2 (材料試験結果)	
端部曲げ降伏モーメン	∕ト:My		
$My = at * \sigma y * j =$	46548040 N/mm	2	
スパンLの1/4点に加力	bPをしたときの端音	®固定端曲げモーメント:M	le
Me=a*(L-a)/L*P			
My=Me. L=	5760 a=	1440 としてPを算定	
$P=M_V*L/(a*(L-a))=$	43.10004 kN		
• • • •			
加力用ジャッキ荷重は	、2Pとなるので、	86.2 kN	

中央配筋:at 7-D10 スラブ厚さ:t 200mm 鉄筋強度:σy 365 N/mm2 (材料試験結果) 中央曲げ降伏モーメント:My My=at*σy*j= 26983994 N/mm2 スパンLの1/4点に加力Pをしたときの中央曲げモーメント:Mc Mc=a²2/L*P My=Mc. L=5760 a= 1440 としてPを算定 P=My*L/a²2= 74.95554 kN 加力用ジャッキ荷重は、2Pとなるので 149.9 kN 長期たわみ実験の積載荷重は、1800(スラブ用)+700(仕上げ用)の合計 2500N/m²を載荷しているので、積載荷重によるスラブ固定端部曲げモーメントに等 しくなるような油圧ジャッキの荷重を算定する.この時加力に使用している加力ビ ーム、加力プレート、ピンの重量を考慮した.

積載荷重:w= 2500 N/m2 5.76 m スパン 等分布端部曲げモーメント: Me wMe=1/12*w*L**2= 6912 Nm スパンLの1/4点に加力Pをしたときの端部固定端曲げモーメント:Me Me = a*(L-a)/L*PL= 5.76 a= wMe=Me. 1.44 としてPを算定  $P=M_V*L/(a*(L-a))=$ 6.4 kN 加力ビーム: 2H250*250 2.215 kN 加カプレート、ピン 0.340 kN 合計 2.6 kNを差し引く 加力用ジャッキ荷重は、2Pとなるので、 7.7 kN

等分布中央曲げモーメント: Mc wMc=1/24*w*L**2= 3456 Nm スパンLの1/4点に加力Pをしたときの中央曲げモーメント: Mc Mc=a²2/L*P wMc=Mc. L= 5.76 a= 1.44 としてPを算定 P=My*L/a²2= 9.6 kN 加力ビーム: 2H250*250 2.215 kN

加カプレート、ピン 0.340 kN 合計 2.6 kNを差し引く 加力用ジャッキ荷重は、2Pとなるので、 14.1 kN (3) スラブたわみと壁回転量測定

スラブたわみおよび壁回転量の測定は,3.2.5-1 項の長期載荷実験に用いた変位計 を使用するが,大きな変形まで計測できるように図3.3.5-13 に示すように計測機器の 変更および新たな計測位置の追加を行う.

測定位置番号と測定変位を以下に示す.

- ①~⑥ スラブの鉛直変位
- ⑦・⑧ 壁の水平変位
- ⑨・⑩ スラブの壁からの鉛直変位
- ①~18
   壁の水平変位(階段室壁:南側①・13
   北側15・10,妻壁:南側12・14
   北側16・18)
- 19・20 なし
- ② ・② アンカー筋の抜出し(201 号室, 階段室側)
- 32~36 壁のスラブからの水平変位(201号室33・24 101号室35・26)
- ②・28 壁の水平変位(階段室壁:中央部②,妻壁:中央部29)
- ③・③ 壁の鉛直変位(階段室壁:中央部③,妻壁:中央部③)



図 3.3.5-13 終局載荷実験における水平・鉛直変位測定位置図

(4) スラブの固有振動数

加力開始前と各ループの荷重除去時に固有振動数を振動計で測定する.

## 3.3.5-3 あと施工アンカー単体の各種実験

(1)長期引張実験(クリープ試験)

スラブの長期載荷実験に併せて,接合部に用いているあと施工アンカーの長期載 荷に対する引張性能を確認するために現地でクリープ試験を実施する.

クリープ試験の諸元を以下に示す.

・載荷荷重(P):アンカー筋のひずみ値より算定する.

```
P=a \times E \times \varepsilon_{max} = 1.74 \times 10^5 \times 350 \times 10^{-6} \times 127 = 7.7 \text{ kN}
```

- *a* : アンカー筋断面積(D13)127 mm²
- E:アンカー筋ヤング係数(引張試験による)1.74×10⁵

N/mm²

・接着剤種類:201号室のアンカー筋と同じ

· 載荷時温度:室温

- ・試験体数:2体 ひずみゲージの有無
- ・試験場所:201号室でのアンカー筋施工は,現状の測定に影響があるので,隣 室の202号室の階段室側壁で行う.

試験装置を図 3.3.5-7, 図 3.3.5-8, 写真 3.3.5-1 に示す. 加力用チャック, ロードセル, 油圧ジャッキ, 加力用溝形鋼, 鋼管は載荷後撤去する.



図 3.3.5-7 長期クリープ試験装置(平面図,下側)



図 3.3.5-8 長期クリープ試験装置(立面図)





写真 3.3.5-1 長期クリープ試験装置(加力時)
(2)終局引張実験

長期たわみ実験終了時にあと施工アンカーの現地での性能を確認するために施工 してあったアンカー筋 D1~D6, ア~オについて終局引張実験を行う.

施工記録の残っているアンカー筋 D1~D6 の穿孔穴径,深さ,勾配を表 3.3.5-1 に 示す.併せて施工位置の関係を図 3.3.5-9 に示す.

また,引抜き試験装置を図 3.3.7-10 および写真 3.3.5-2 に示す.

表 3.3.5-1 アンカー筋の穿孔穴径, 深さ	5,勾配 単位:mm
--------------------------	------------

引張試験	上端筋			下端筋		
	D1	D2	D3	D4	D5	D6
内径奥(平行)	14.81	14.69	14.65	14.26	14.25	14.2
内径奥(直角)	15.66	15.71	15.46	13.47	14.69	14.35
内径手前(平行)	16.2	16.03	16.13	16.06	15.96	16.04
内径手前(直角)	16.5	16.03	16.24	16.37	16.25	16.46

単位:mm

深さ	D1	D2	D3	D4	D5	D6
	165.04	166.41	162.86	99.89	101.24	97.76

単位:度

勾配	D1	D2	D3	D4	D5	D6
(平行)	94.39	93.56	91.44	92.49	91.49	89.19
(直角)	90.4	89.02	88.08	89.4	88.23	89.13

	Y2通	IJ			Y1通	IJ
北		D3	D2	D1		南
		0	0	0		
		D6	D5	D4		
		0	0	0		



図 3.3.5-9 引抜き試験体名 D1~D6, ア~オの施工位置(単位:mm)



図 3.3.5-10 引抜き試験装置



写真 3.3.5-2 引抜き試験装置

### 3.3.6 実験結果

#### 3.3.6-1 長期載荷実験の実験結果

長期載荷実験を行ったスラブ試験体の実験の経過報告として,床底板の型枠脱型 を行った 2016 年 1 月 29 日から 2020 年 1 月 31 日(経過日数:1463 日)までの実験結果 を以下に示す.

(1) 試験体の変形

201,101 号室の中央のたわみ量を図 3.3.6-1 に、あと施工アンカー筋の抜出し(201 号室,階段室側)を図 3.3.6-2 に示す.両端固定の一方向スラブの計算値(1.07 mm)を示す.計算値に用いたコンクリートの静弾性係数は、材令4週の材料試験結果(2.93×10⁴ N/mm²)とした.



図 3.3.6-1 201, 101 号室の中央のたわみ量



図 3.3.6-2 あと施工アンカー筋の抜出し(201 号室, 階段室側)







図 3.3.6-3 201, 101 号室のたわみ分布

(2) あと施工アンカー筋および定着筋のひずみ

201 号室のあと施工アンカー筋および 101 号室の標準定着筋のひずみを図 3.3.6-4, 図 3.3.6-5 に示す. ひずみは, 各ひずみ測定位置の上下に貼りつけたゲージの平均とした.

あと施工アンカー筋および標準定着筋の設計時ひずみは, 3.2.3 項の計算例より, 実験スラブの端部上端(M_{x1})の応力を用いて以下のように定めた.

 $M_{xl} = 1/12 \times w \times \ell_x^2 = 20.18 \text{ kN} \cdot \text{m}$ 

 $\varepsilon = \sigma / E_s = M_x / (a_t \times j) / E_s = 157 / 1.74 \times 10^5 = 90.4 \times 10^{-5} = 904 \,\mu$ 

ここで, *a*_t :実験スラブのアンカー筋断面積 7-D13 (*a*_t=889 mm²)

```
E<sub>s</sub>:鉄筋のヤング係数 1.74×10<sup>5</sup> N/mm<sup>2</sup>(材料試験結果より)
```





⁽中央:スラブ幅方向)

図 3.3.6-4 201 号室のあと施工アンカー筋および 101 号室の標準定着筋のひずみ





(端部:スラブ幅方向)

図 3.3.6-5 201 号室のあと施工アンカー筋および 101 号室の標準定着筋のひずみ

## (3) 試験体のひび割れ





図 3.3.6-6 201 号室 ひび割れ図



図 3.3.6-7 101 号室 ひび割れ図

201 号室および 101 号室のひび割れ幅を, デジタルマイクロスコープを用いて測定 を行った.測定位置は, 201 号室では妻壁の南側(測定位置 1~6)および北側(測定位置 1, 2)と, 101 号室では妻壁の南側(測定位置 1)を, ひび割れ測定を行った日に測定し た.

測定位置を,図3.3.6-6,図3.3.6-7に示す.ひびわれ幅の測定経過の一覧を表3.3.6-1に示す.デジタルマイクロスコープを用いて撮影した画像例(201号室 妻壁 南側 測定位置1)を写真3.3.6-1に示す.ひびわれ幅は,専用ソフトを用いて各画像で5ケ 所ずつ計り平均値とした.

201号室	妻壁 南側								
测定位置				測5	定日				
測正111直	2016/4/30	2016/7/30	2017/1/28	2017/8/12	2018/1/31	2018/7/27	2019/1/28	2020/2/3	
1	0.05	0.04	0.06	0.06	0.06	0.05	0.07	0.05	
2	0.04	0.03	0.05	0.04	0.05	0.06	0.04	0.04	
3	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.03	
4	0.05	0.04	0.04	0.05	0.04	0.06	0.04	0.04	
5				0.05	0.05	0.04	0.04	0.03	
6					0.05	0.06	0.06	0.05	
201号室	妻壁 北側								
····································				測別	定日				
測正位直	2016/4/30	2016/7/30	2017/1/28	2017/8/12	2018/1/31	2018/7/27	2019/1/28	2020/2/3	
1		0.05	0.06	0.05	0.04	0.06	0.05	0.04	
2		0.03	0.04	0.04	0.04	0.04	0.03	0.05	
101号室	妻壁 南側								
测点注率		測定日							
測正位直	2016/4/30	2016/7/30	2017/1/28	2017/8/12	2018/1/31	2018/7/27	2019/1/28	2020/2/3	
1		0.04	0.05	0.04	0.04	0.06	0.06	0.05	

表 3.3.6-1 ひびわれ幅の測定経過の一覧 (単位:mm)

201 号室および 101 号室の既存壁と試験床との打継面に生じた目開きの幅を,クラ ックスケール等を用いて測定を行った.測定位置は,201 号室および 101 号室の階段 室側壁と妻側壁の南側および北側各1箇所を,ひび割れ測定を行った日に測定した. 打ち継ぎ面の目開き幅の測定経過一覧を表 3.3.6-2 に示す.

201号室									
ぎり	估罢				測定日				
测足	山同	2016/7/30	2017/1/28	2017/8/12	2018/1/31	2018/7/27	2019/1/28	2020/2/3	
此机中度	南側	0.7	0.8	0.8	0.9	1.0	1.0	1.1	
陌权主堂	北側	0.9	0.9	1.0	1.1	1.2	1.2	1.2	
201号室									
当中	位墨				測定日				
测足	迎直	2016/7/30	2017/1/28	2017/8/12	2018/1/31	2018/7/27	2019/1/28	2020/2/3	
本時	南側	0.4	0.5	0.5	0.6	0.7	0.7	0.9	
安堂	北側	0.3	0.4	0.4	0.4	0.5	0.5	0.7	
101号室									
调查	<u> 上</u> 里	測定日							
測正	卫直	2016/7/30	2017/1/28	2017/8/12	2018/1/31	2018/7/27	2019/1/28	2020/2/3	
此机中度	南側	0.3	0.4	0.5	0.6	0.6	0.7	0.7	
陌权主堂	北側	0.3	0.3	0.4	0.5	0.6	0.6	0.6	
101号室									
ぎり	估罢				測定日				
测足	山同	2016/7/30	2017/1/28	2017/8/12	2018/1/31	2018/7/27	2019/1/28	2020/2/3	
事時	南側	0.4	0.4	0.5	0.6	0.6	0.6	0.6	
安堂	北側	0.4	0.4	0.4	0.4	0.5	0.5	0.5	

表 3.3.6-2 打ち継ぎ面の目開き幅 測定経過一覧(単位:mm)



測定日 2016/4/30



測定日 2018/1/31



測定日 2017/1/28



測定日 2019/1/28 測定日 2020/2/3 画像中の太い黒墨線はひび割れ測定用のマス目 (201号室 妻壁 南側 測定位置1) 写真 3.3.6-1 デジタルマイクロスコープによるひび割れ幅の撮影画像例 (4) 試験体の振動測定

201,101 号室の固有振動数の測定結果を表 3.3.6-3 に示す.2018 年 1 月 31 日以降に,振動測定は行っていない.

建筑载荷溪	生野口	振動数(Hz)			
<u> </u>	天殿口	201号室	101号室		
4日	2016/2/2	12.5	15.6		
18日	2016/2/16	12.5	14.1		
33日(5W)	2016/3/2	12.2	13.6		
89日(13W)	2016/4/27	11.6	13		
194日(28W)	2016/8/10	11.4	12.2		
369日(53W)	2017/2/1	11.3	12.5		
550日(79W)	2017/8/1	11.4	11.7		
733日(105W)	2018/1/31	11.1	12.5		

表 3.3.6-3 201, 101 号室の固有振動数の測定結果

### 3.3.6-2 終局荷重による曲げ実験結果

(1) 試験体の変形

101,201号室の荷重-変形(中央のたわみ量)曲線を図 3.3.6-8,表 3.3.6-4 に,各 室のたわみ分布を図 3.3.6-9 に示す.



図 3.3.6-8 101, 201 号室の荷重-変形(中央のたわみ量)曲線

101号室			
ループ	目標変形(mm):	最大変形(mm)	最大変形時荷重(kN)
	自重のみの変形	16.34	
0	加力ビーム、プレート、ローラーの荷重による変形	16.9	2.6
1	積載荷重相当のジャッキによる荷重(7.7kN)による変形	17.51	10.5
	ループ1の変形から自重のみの変形を差し引た値		
2	(17.51-16.34)=1.17>1.17mmの2倍の変形	18.1	18
	16.34+1.17*2=18.68>18		
3	同上の3倍の変形:16.34+1.17*3=19.85>20	20	35.5
4	同上の6倍の変形:16.34+1.17*6=23.36>24	24.3	48.4
5	同上の10倍の変形:16.34+1.17*10=28.04>28	28.1	59.8
6	同上の14倍の変形:16.34+1.17*14=32.72>32	32.4	61.9
7	同上の18倍の変形:16.34+1.17*18=34.34>36	36.1	70.2
8	同上の22倍の変形:16.34+1.17*22=42.08>42	42.2	78
9	同上の26倍の変形:16.34+1.17*26=46.76>48	48.7	84.1
10	同上の34倍の変形:16.34+1.17*34=56.12>56	56.5	87.1
11	同上の42倍の変形:16.34+1.17*42=65.48>64	65.1	92.4
12	同上の48倍の変形:16.34+1.17*48=72.5>72	72.5	94.9
13	同上の54倍の変形:16.34+1.17*54=79.52>80	81.1	97.2
14	同上の62倍の変形:16.34+1.17*62=88.88>90	91.1	99.4
15	同上の72倍の変形:16.34+1.17*72=100.58>100	100.5	101.4
16	同上の88倍の変形:16.34+1.17*88=119.3>120	120	104.3
17	同上の106倍の変形:16.34+1.17*106=140.36>140	140.9	106.3
18	同上の140倍の変形:16.34+1.17*140=180.14>180	181	106.4
	加力ビーム、プレート、ローラーの荷重による変形	155	2.6
	白重のみの変形		
	最大荷重:110.4kN(18ループ)、同変形:173.8mm		
	1		
201号室			
201号 <u>室</u> ループ	目標変形(mm):	最大変形(mm)	最大変形時荷重(kN)
<u>201号室</u> ループ	目標変形(mm): 自重のみの変形	最大変形(mm) 14.37	最大変形時荷重(kN) 
201号室 ループ 0	目標変形(mm): 自重のみの変形 加力ビーム、プレート、ローラーの荷重による変形	最大変形(mm) 14.37 14.97	最大変形時荷重(kN)  2.6
201号室 ループ 0 1	目標変形(mm): 自重のみの変形 加力ビーム、プレート、ローラーの荷重による変形 積載荷重相当のジャッキによる荷重による変形	最大変形(mm) 14.37 14.97 15.63	最大変形時荷重(kN)  2.6 10.3
201号室 ループ 0 1	目標変形(mm): 自重のみの変形 加力ビーム、プレート、ローラーの荷重による変形 積載荷重相当のジャッキによる荷重による変形 ループ1の変形から自重のみの変形を差し引た値	最大変形(mm) 14.37 14.97 15.63	最大変形時荷重(kN)  2.6 10.3
201号室 ループ 0 1 2	目標変形(mm): 自重のみの変形 加力ビーム、プレート、ローラーの荷重による変形 積載荷重相当のジャッキによる荷重による変形 ループ1の変形から自重のみの変形を差し引た値 (15.63-14.37)=1.26mmの2倍の変形	最大変形(mm) 14.37 14.97 15.63 18.02	最大変形時荷重(kN)  2.6 10.3 33.48
201号室 ループ 0 1 2	目標変形(mm): 自重のみの変形 加力ビーム、プレート、ローラーの荷重による変形 積載荷重相当のジャッキによる荷重による変形 ループ1の変形から自重のみの変形を差し引た値 (15.63-14.37)=1.26mmの2倍の変形 14.37+1.26*2=16.89>18	最大変形(mm) 14.37 14.97 15.63 18.02	最大変形時荷重(kN)  2.6 10.3 33.48
201号室 ループ 0 1 2 3	目標変形(mm): 自重のみの変形 加力ビーム、プレート、ローラーの荷重による変形 積載荷重相当のジャッキによる荷重による変形 ループ1の変形から自重のみの変形を差し引た値 (15.63-14.37)=1.26mmの2倍の変形 14.37+1.26*2=16.89>18 同上の3倍の変形:14.37+1.26*3=18.15>20	最大変形(mm) 14.37 14.97 15.63 18.02 20.04	最大変形時荷重(kN)  2.6 10.3 33.48 44.15
201号室 ループ 0 1 2 3 4	目標変形(mm): 自重のみの変形 加力ビーム、プレート、ローラーの荷重による変形 積載荷重相当のジャッキによる荷重による変形 ループ1の変形から自重のみの変形を差し引た値 (15.63-14.37)=1.26mmの2倍の変形 14.37+1.26*2=16.89>18 同上の3倍の変形:14.37+1.26*3=18.15>20 同上の6倍の変形:14.37+1.26*6=21.93>24	最大変形(mm) 14.37 14.97 15.63 18.02 20.04 24.11	最大変形時荷重(kN)  2.6 10.3 33.48 44.15 57.29
201号室 ループ 0 1 2 3 4 5	目標変形(mm): 自重のみの変形 加力ビーム、プレート、ローラーの荷重による変形 積載荷重相当のジャッキによる荷重による変形 ループ1の変形から自重のみの変形を差し引た値 (15.63-14.37)=1.26mmの2倍の変形 14.37+1.26*2=16.89>18 同上の3倍の変形:14.37+1.26*3=18.15>20 同上の6倍の変形:14.37+1.26*6=21.93>24 同上の10倍の変形:14.37+1.26*10=26.97>28	最大変形(mm) 14.37 14.97 15.63 18.02 20.04 24.11 28.18	最大変形時荷重(kN)  2.6 10.3 33.48 44.15 57.29 63.43
201号室 ループ 0 1 2 3 4 5 6	目標変形(mm): 自重のみの変形 加力ビーム、プレート、ローラーの荷重による変形 積載荷重相当のジャッキによる荷重による変形 ループ1の変形から自重のみの変形を差し引た値 (15.63-14.37)=1.26mmの2倍の変形 14.37+1.26*2=16.89>18 同上の3倍の変形:14.37+1.26*3=18.15>20 同上の6倍の変形:14.37+1.26*6=21.93>24 同上の10倍の変形:14.37+1.26*10=26.97>28 同上の14倍の変形:14.37+1.26*14=32.01>32	最大変形(mm) 14.37 14.97 15.63 18.02 20.04 24.11 28.18 32.1	最大変形時荷重(kN)  2.6 10.3 33.48 44.15 57.29 63.43 68.03
201号室 ループ 1 2 3 4 5 6 7	目標変形(mm): 自重のみの変形 加力ビーム、プレート、ローラーの荷重による変形 積載荷重相当のジャッキによる荷重による変形 ループ1の変形から自重のみの変形を差し引た値 (15.63-14.37)=1.26mmの2倍の変形 14.37+1.26*2=16.89>18 同上の3倍の変形:14.37+1.26*3=18.15>20 同上の6倍の変形:14.37+1.26*6=21.93>24 同上の10倍の変形:14.37+1.26*10=26.97>28 同上の14倍の変形:14.37+1.26*11=32.01>32 同上の18倍の変形:14.37+1.26*18=37.05>36	最大変形(mm) 14.37 14.97 15.63 18.02 20.04 24.11 28.18 32.1 36.11	最大変形時荷重(kN)  2.6 10.3 33.48 44.15 57.29 63.43 68.03 72.5
201号室 ループ 0 1 2 3 4 5 6 7 8	目標変形(mm): 自重のみの変形 加力ビーム、プレート、ローラーの荷重による変形 積載荷重相当のジャッキによる荷重による変形 ループ1の変形から自重のみの変形を差し引た値 (15.63-14.37)=1.26mmの2倍の変形 14.37+1.26*2=16.89>18 同上の3倍の変形:14.37+1.26*3=18.15>20 同上の6倍の変形:14.37+1.26*10=26.97>28 同上の10倍の変形:14.37+1.26*10=26.97>28 同上の14倍の変形:14.37+1.26*14=32.01>32 同上の18倍の変形:14.37+1.26*18=37.05>36 同上の22倍の変形:14.37+1.26*22=42.09>42	最大変形(mm) 14.37 14.97 15.63 18.02 20.04 24.11 28.18 32.1 36.11 42.13	最大変形時荷重(kN)  2.6 10.3 33.48 44.15 57.29 63.43 68.03 72.5 79.51
201号室 ループ 0 1 2 3 4 5 6 7 8 9	目標変形(mm): 自重のみの変形 加力ビーム、プレート、ローラーの荷重による変形 積載荷重相当のジャッキによる荷重による変形 ループ1の変形から自重のみの変形を差し引た値 (15.63-14.37)=1.26mmの2倍の変形 14.37+1.26*2=16.89>18 同上の3倍の変形:14.37+1.26*3=18.15>20 同上の6倍の変形:14.37+1.26*10=26.97>28 同上の10倍の変形:14.37+1.26*10=26.97>28 同上の14倍の変形:14.37+1.26*14=32.01>32 同上の18倍の変形:14.37+1.26*18=37.05>36 同上の22倍の変形:14.37+1.26*22=42.09>42 同上の26倍の変形:14.37+1.26*26=46.76>48	最大変形(mm) 14.37 14.97 15.63 18.02 20.04 24.11 28.18 32.1 36.11 42.13 48.51	最大変形時荷重(kN)  2.6 10.3 33.48 44.15 57.29 63.43 68.03 72.5 79.51 84.71
201号室 ループ 1 2 3 4 5 6 7 8 9 10	目標変形(mm): 自重のみの変形 加力ビーム、プレート、ローラーの荷重による変形 積載荷重相当のジャッキによる荷重による変形 ループ1の変形から自重のみの変形を差し引た値 (15.63-14.37)=1.26mmの2倍の変形 14.37+1.26*2=16.89>18 同上の3倍の変形:14.37+1.26*3=18.15>20 同上の6倍の変形:14.37+1.26*10=26.97>28 同上の10倍の変形:14.37+1.26*10=26.97>28 同上の14倍の変形:14.37+1.26*14=32.01>32 同上の14倍の変形:14.37+1.26*18=37.05>36 同上の22倍の変形:14.37+1.26*22=42.09>42 同上の26倍の変形:14.37+1.26*26=46.76>48 同上の34倍の変形:14.37+1.26*34=57.21>56	最大変形(mm) 14.37 14.97 15.63 18.02 20.04 24.11 28.18 32.1 36.11 42.13 48.51 56.2	最大変形時荷重(kN)  2.6 10.3 33.48 44.15 57.29 63.43 68.03 72.5 79.51 84.71 86.98
201号室 ループ 1 2 3 4 5 6 7 8 9 10 11	目標変形(mm): 自重のみの変形 加力ビーム、プレート、ローラーの荷重による変形 積載荷重相当のジャッキによる荷重による変形 ループ1の変形から自重のみの変形を差し引た値 (15.63-14.37)=1.26mmの2倍の変形 14.37+1.26*2=16.89>18 同上の3倍の変形:14.37+1.26*3=18.15>20 同上の6倍の変形:14.37+1.26*10=26.97>28 同上の10倍の変形:14.37+1.26*10=26.97>28 同上の14倍の変形:14.37+1.26*14=32.01>32 同上の14倍の変形:14.37+1.26*18=37.05>36 同上の22倍の変形:14.37+1.26*22=42.09>42 同上の26倍の変形:14.37+1.26*26=46.76>48 同上の34倍の変形:14.37+1.26*34=57.21>56 同上の42倍の変形:14.37+1.26*42=67.29>64	最大変形(mm) 14.37 14.97 15.63 18.02 20.04 20.04 24.11 28.18 32.1 36.11 42.13 48.51 56.2 64.06	<u>最大変形時荷重(kN)</u>  2.6 10.3 33.48 44.15 57.29 63.43 68.03 72.5 79.51 84.71 84.71 86.98 88.84
201号室 ループ 1 2 3 4 5 6 7 8 9 10 11 12	目標変形(mm): 自重のみの変形 加力ビーム、プレート、ローラーの荷重による変形 積載荷重相当のジャッキによる荷重による変形 ループ1の変形から自重のみの変形を差し引た値 (15.63-14.37)=1.26mmの2倍の変形 14.37+1.26*2=16.89>18 同上の3倍の変形:14.37+1.26*3=18.15>20 同上の6倍の変形:14.37+1.26*10=26.97>28 同上の10倍の変形:14.37+1.26*10=26.97>28 同上の14倍の変形:14.37+1.26*14=32.01>32 同上の14倍の変形:14.37+1.26*18=37.05>36 同上の22倍の変形:14.37+1.26*22=42.09>42 同上の26倍の変形:14.37+1.26*26=46.76>48 同上の26倍の変形:14.37+1.26*34=57.21>56 同上の34倍の変形:14.37+1.26*42=67.29>64 同上の48倍の変形:14.37+1.26*48=74.85>72	最大変形(mm) 14.37 14.97 15.63 18.02 20.04 20.04 24.11 28.18 32.1 36.11 42.13 48.51 56.2 64.06 72.07	<u>最大変形時荷重(kN)</u>  2.6 10.3 33.48 44.15 57.29 63.43 68.03 72.5 79.51 84.71 86.98 88.84 91.38
201号室 ループ 1 2 3 4 5 6 7 8 9 10 11 12 13	目標変形(mm): 自重のみの変形 加力ビーム、プレート、ローラーの荷重による変形 積載荷重相当のジャッキによる荷重による変形 ループ1の変形から自重のみの変形を差し引た値 (15.63-14.37)=1.26mmの2倍の変形 14.37+1.26*2=16.89>18 同上の3倍の変形:14.37+1.26*3=18.15>20 同上の6倍の変形:14.37+1.26*10=26.97>28 同上の10倍の変形:14.37+1.26*10=26.97>28 同上の14倍の変形:14.37+1.26*14=32.01>32 同上の14倍の変形:14.37+1.26*18=37.05>36 同上の22倍の変形:14.37+1.26*22=42.09>42 同上の26倍の変形:14.37+1.26*34=57.21>56 同上の26倍の変形:14.37+1.26*42=67.29>64 同上の34倍の変形:14.37+1.26*48=74.85>72 同上の4倍の変形:14.37+1.26*54=82.41>80	最大変形(mm) 最大変形(mm) 14.37 14.97 15.63 18.02 20.04 24.11 28.18 32.1 36.11 42.13 48.51 56.2 64.06 72.07 80.14	<u>最大変形時荷重(kN)</u>  2.6 10.3 33.48 44.15 57.29 63.43 68.03 72.5 79.51 84.71 86.98 88.84 91.38 93.85
201号室 ループ 1 2 3 4 5 6 7 8 9 10 11 12 13 14	目標変形(mm): 自重のみの変形 加力ビーム、プレート、ローラーの荷重による変形 積載荷重相当のジャッキによる荷重による変形 ループ1の変形から自重のみの変形を差し引た値 (15.63-14.37)=1.26mmの2倍の変形 14.37+1.26*2=16.89>18 同上の3倍の変形:14.37+1.26*3=18.15>20 同上の6倍の変形:14.37+1.26*3=18.15>20 同上の10倍の変形:14.37+1.26*10=26.97>28 同上の10倍の変形:14.37+1.26*14=32.01>32 同上の14倍の変形:14.37+1.26*14=32.01>32 同上の18倍の変形:14.37+1.26*18=37.05>36 同上の22倍の変形:14.37+1.26*22=42.09>42 同上の26倍の変形:14.37+1.26*34=57.21>56 同上の26倍の変形:14.37+1.26*42=67.29>64 同上の34倍の変形:14.37+1.26*48=74.85>72 同上の48倍の変形:14.37+1.26*54=82.41>80 同上の62倍の変形:14.37+1.26*62=92.49>90	最大変形(mm) 最大変形(mm) 14.37 14.97 15.63 18.02 20.04 24.11 28.18 32.1 36.11 42.13 48.51 56.2 64.06 72.07 80.14 90.12	<u>最大変形時荷重(kN)</u>  2.6 10.3 33.48 44.15 57.29 63.43 68.03 72.5 79.51 84.71 86.98 88.84 91.38 93.85 97.05
201号室 ループ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	目標変形(mm): 自重のみの変形 加力ビーム、プレート、ローラーの荷重による変形 積載荷重相当のジャッキによる荷重による変形 ループ1の変形から自重のみの変形を差し引た値 (15.63-14.37)=1.26mmの2倍の変形 14.37+1.26*2=16.89>18 同上の3倍の変形:14.37+1.26*3=18.15>20 同上の6倍の変形:14.37+1.26*3=18.15>20 同上の10倍の変形:14.37+1.26*10=26.97>28 同上の10倍の変形:14.37+1.26*14=32.01>32 同上の14倍の変形:14.37+1.26*14=32.01>32 同上の18倍の変形:14.37+1.26*18=37.05>36 同上の22倍の変形:14.37+1.26*22=42.09>42 同上の26倍の変形:14.37+1.26*34=57.21>56 同上の26倍の変形:14.37+1.26*42=67.29>64 同上の34倍の変形:14.37+1.26*48=74.85>72 同上の48倍の変形:14.37+1.26*54=82.41>80 同上の54倍の変形:14.37+1.26*54=82.41>80 同上の62倍の変形:14.37+1.26*54=92.49>90 同上の72倍の変形:14.37+1.26*72=105.09>100	最大変形(mm) 14.37 14.97 15.63 18.02 20.04 24.11 28.18 32.1 36.11 42.13 48.51 56.2 64.06 72.07 80.14 90.12 100.06	<u>最大変形時荷重(kN)</u>  2.6 10.3 33.48 44.15 57.29 63.43 68.03 72.5 79.51 84.71 86.98 88.84 91.38 93.85 97.05
201号室 ループ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	目標変形(mm): 自重のみの変形 加力ビーム、プレート、ローラーの荷重による変形 積載荷重相当のジャッキによる荷重による変形 ループ1の変形から自重のみの変形を差し引た値 (15.63-14.37)=1.26mmの2倍の変形 14.37+1.26*2=16.89>18 同上の3倍の変形:14.37+1.26*3=18.15>20 同上の6倍の変形:14.37+1.26*3=18.15>20 同上の10倍の変形:14.37+1.26*10=26.97>28 同上の10倍の変形:14.37+1.26*14=32.01>32 同上の14倍の変形:14.37+1.26*18=37.05>36 同上の22倍の変形:14.37+1.26*22=42.09>42 同上の26倍の変形:14.37+1.26*34=57.21>56 同上の26倍の変形:14.37+1.26*42=67.29>64 同上の34倍の変形:14.37+1.26*48=74.85>72 同上の4倍の変形:14.37+1.26*54=82.41>80 同上の54倍の変形:14.37+1.26*54=82.41>80 同上の62倍の変形:14.37+1.26*54=82.41>80 同上の72倍の変形:14.37+1.26*54=82.41>100 同上の72倍の変形:14.37+1.26*88=125.25>120	最大変形(mm) 最大変形(mm) 14.37 14.97 15.63 18.02 20.04 24.11 28.18 32.1 36.11 42.13 48.51 56.2 64.06 72.07 80.14 90.12 100.06 120.23	<u>最大変形時荷重(kN)</u>  2.6 10.3 33.48 44.15 57.29 63.43 68.03 72.5 79.51 84.71 86.98 88.84 91.38 93.85 97.05 98.65 99.78
201号室   ループ   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17	目標変形(mm): 自重のみの変形 加力ビーム、プレート、ローラーの荷重による変形 積載荷重相当のジャッキによる荷重による変形 ループ1の変形から自重のみの変形を差し引た値 (15.63-14.37)=1.26mmの2倍の変形 14.37+1.26*2=16.89>18 同上の3倍の変形:14.37+1.26*3=18.15>20 同上の6倍の変形:14.37+1.26*6=21.93>24 同上の10倍の変形:14.37+1.26*10=26.97>28 同上の14倍の変形:14.37+1.26*14=32.01>32 同上の14倍の変形:14.37+1.26*14=32.01>32 同上の18倍の変形:14.37+1.26*18=37.05>36 同上の22倍の変形:14.37+1.26*22=42.09>42 同上の26倍の変形:14.37+1.26*34=57.21>56 同上の26倍の変形:14.37+1.26*42=67.29>64 同上の34倍の変形:14.37+1.26*48=74.85>72 同上の54倍の変形:14.37+1.26*54=82.41>80 同上の54倍の変形:14.37+1.26*54=82.41>80 同上の72倍の変形:14.37+1.26*54=82.41>100 同上の72倍の変形:14.37+1.26*88=125.25>120 同上の106倍の変形:14.37+1.26*106=147.93>140	最大変形(mm) 最大変形(mm) 14.37 14.97 15.63 18.02 20.04 24.11 28.18 32.1 36.11 42.13 48.51 56.2 64.06 72.07 80.14 90.12 100.06 120.23 140.13	<u>最大変形時荷重(kN)</u>  2.6 10.3 33.48 44.15 57.29 63.43 68.03 72.5 79.51 84.71 86.98 88.84 91.38 93.85 97.05 98.65 99.78 95.18
201号室 ループ 0 1 2 3 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18	目標変形(mm):   自重のみの変形   加力ビーム、プレート、ローラーの荷重による変形   積載荷重相当のジャッキによる荷重による変形   液荷重相当のジャッキによる荷重による変形   ループ1の変形から自重のみの変形を差し引た値   (15.63-14.37) = 1.26mmの2倍の変形   14.37+1.26*2=16.89>18   同上の3倍の変形:14.37+1.26*3=18.15>20   同上の16倍の変形:14.37+1.26*10=26.97>28   同上の10倍の変形:14.37+1.26*10=26.97>28   同上の14倍の変形:14.37+1.26*14=32.01>32   同上の18倍の変形:14.37+1.26*2=42.09>42   同上の26倍の変形:14.37+1.26*34=57.05>36   同上の22倍の変形:14.37+1.26*34=57.21>56   同上の26倍の変形:14.37+1.26*42=67.29>64   同上の34倍の変形:14.37+1.26*48=74.85>72   同上の4倍の変形:14.37+1.26*54=82.41>80   同上の54倍の変形:14.37+1.26*54=82.41>80   同上の54倍の変形:14.37+1.26*54=92.49>90   同上の72倍の変形:14.37+1.26*106=147.93>100   同上の72倍の変形:14.37+1.26*106=147.93>140   同上の106倍の変形:14.37+1.26*106=147.93>140   同上の140倍の変形:14.37+1.26*140=190.77>180	最大変形(mm) 最大変形(mm) 14.37 14.97 15.63 18.02 20.04 24.11 28.18 32.1 36.11 42.13 136.11 42.13 10.06 72.07 80.14 90.12 100.06 120.23 140.13 180.1	<u>最大変形時荷重(kN)</u>  2.6 10.3 33.48 44.15 57.29 63.43 68.03 72.5 79.51 84.71 86.98 88.84 91.38 93.85 97.05 98.65 99.78 95.18 97.98
201号室 ループ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	目標変形(mm): 自重のみの変形 加力ビーム、プレート、ローラーの荷重による変形 積載荷重相当のジャッキによる荷重による変形 ルーブ1の変形から自重のみの変形を差し引た値 (15.63-14.37)=1.26mmの2倍の変形 14.37+1.26*2=16.89>18 同上の3倍の変形:14.37+1.26*3=18.15>20 同上の3倍の変形:14.37+1.26*3=18.15>20 同上の10倍の変形:14.37+1.26*10=26.97>28 同上の10倍の変形:14.37+1.26*10=26.97>28 同上の14倍の変形:14.37+1.26*14=32.01>32 同上の18倍の変形:14.37+1.26*18=37.05>36 同上の22倍の変形:14.37+1.26*34=57.21>56 同上の24倍の変形:14.37+1.26*34=57.21>56 同上の42倍の変形:14.37+1.26*42=67.29>64 同上の54倍の変形:14.37+1.26*54=82.41>80 同上の72倍の変形:14.37+1.26*54=82.41>80 同上の72倍の変形:14.37+1.26*88=125.25>120 同上の72倍の変形:14.37+1.26*106=147.93>140 同上の106倍の変形:14.37+1.26*140=190.77>180 加力ビーム、プレート、ローラーの荷重による変形	最大変形(mm) 14.37 14.97 15.63 18.02 20.04 24.11 28.18 32.1 36.11 42.13 1.3 6.11 42.13 1.3 6.11 42.13 1.3 1.3 1.3 1.3 1.3 1.3 1.3	最大変形時荷重(kN)  2.6 10.3 33.48 44.15 57.29 63.43 68.03 72.5 79.51 84.71 84.71 84.71 84.71 84.71 84.71 93.85 93.85 97.05 98.65 99.78 99.78 95.18 97.98

表 3.3.6-4 101, 201 号室の荷重-変形(中央のたわみ量)

最大荷重:103.9kN(16ループ)、同変形:115.9mm 2ループ以降の目標変形は、101号室に合わせた





図 3.3.6-9 各室のたわみ分布図



あと施工アンカーの抜出し(201号室, 階段室側)を図 3.3.6-10 に示す.

図 3.3.6-10 あと施工アンカー筋の抜出し(201 号室, 階段室側)

No21 の変形は,実験途中で変位計の測定子がコンクリートに引っかかり測定が止まってしまったが,変位計用測定子を球付きに変えることにより測定を継続した.

(2) あと施工アンカー筋および定着筋のひずみ

101 号室の標準定着筋(T1c~T10c, T1e~T10e)および 201 号室のあと施工アン カー筋(A1c~A10c, A1e~A10e)のひずみを図 3.3.6-11~図 3.3.6-14 に示す. ひずみは,各ひずみ測定位置の上下に貼りつけたゲージの平均とした.



### 第3章 あと施工アンカーを端部定着に用いたスラブ試験体の構造性能評価

図 3.3.6-11 101 号室標準定着筋および 201 号室あと施工アンカーのひずみ



図 3.3.6-12 101 号室標準定着筋および 201 号室あと施工アンカーのひずみ



### 第3章 あと施工アンカーを端部定着に用いたスラブ試験体の構造性能評価

図 3.3.6-13 101 号室標準定着筋および 201 号室あと施工アンカーのひずみ



図 3.3.6-14 101 号室標準定着筋および 201 号室あと施工アンカーのひずみ

(3) 試験体のひび割れ・破壊状況

101 号室, 201 号室の曲げ実験終了後のひび割れ(赤線)を図 3.3.6-15, 図 3.3.6-16 に示す.



.3.0-13 101 万主 0.0.高加



図 3.3.6-16 201 号室 ひび割れ図



101 号室, 201 号室の最終破壊状況を写真 3.3.6-2, 写真 3.3.6-3 に示す.

写真 3.3.6-2 101 号室 最終破壊状況



写真 3.3.6-3 201 号室 最終破壊状況

101 号室, 201 号室の曲げ実験開始前と終了後における既存壁とスラブ上端部との 目開き幅を,表 3.3.6-5,写真 3.3.6-4 および写真 3.3.6-5 に示す.

表 3.3.6-5 既存壁とスラブ上端部との目開き幅(単位:mm) (曲げ実験開始前)

云夕		階段室側		妻側			
王石	南側	中央	北側	南側	中央	北側	
101	0.7	0.9	0.6	0.6	0.7	0.5	
201	1.2	1.0	1.2	1.0	0.8	0.7	

(曲げ実験終了後) (単位:mm)

安夕		階段室側		妻側			
王石	南側	中央	北側	南側	中央	北側	
101	9	8	10	8	8	10	
201	11	12	10	10	10	10	



写真3.3.6-4 曲げ実験終了後の既存壁とスラブ上端部との目開き幅(101号室)



写真 3.3.6-5 曲げ実験終了後の既存壁とスラブ上端部との目開き幅(201 号室)

(4) 試験体の振動測定

振動測定は、自重、載荷荷重、載荷荷重時の変形の 2~18 倍で、耐力低下が見られるまで各ループ終了後、および加力ビーム撤去後に測定を行った。

各加力パターン終了後にボール落下による振動測定を行った結果を表 3.3.6-6, 表 3.3.6-7 に示す.

		変位mm	kN	No.1	No.2	No.3	No.4	No.5	平均
ID1	CAL								
ID3	自重のみ			14.1595	14.3449	13.9764	14.1595	13.9764	14.1233
ID4	ビームのみ	, •載荷		12.1126	12.1126	12.1126	12.1126	12.1126	12.1126
ID5	1ループ	17.05	7.7	12.1126	12.1126	12.1126	12.1126	12.1126	12.1126
ID6	2ループ	18	14	12.1126	12.1126	12.1126	12.1126	12.1126	12.1126
ID7	3ループ	20	33	12.1126	12.1126	12.1126	12.1126	12.1126	12.1126
ID8	4ループ	24	47.2	11.6488	11.6488	11.4983	11.6488	11.6488	11.6187
ID9	5ループ	28	57.9	11.3496	11.3496	11.3496	11.3496	11.3496	11.3496
ID10	6ループ	32	61.5	10.9151	10.9151	10.774	10.774	10.774	10.8304
ID11	7ループ	36	67.9	10.4972	10.4972	10.4972	10.4972	10.4972	10.4972
ID12	8ループ	42	76	10.3615	10.0954	10.0954	10.0954	10.0954	10.1486
ID13	9ループ	48	81.8	9.836	9.9649	9.836	9.836	9.9649	9.88756
ID14	10ループ	56	87.7	9.7089	9.7089	9.7089	9.7089	9.7089	9.7089
ID15	11ループ	64	91.6	9.5834	9.5834	9.5834	9.5834	9.5834	9.5834
ID16	12ループ	72	93.1	9.3372	9.3372	9.3372	9.3372	9.3372	9.3372
ID17	13ループ	80	96.1	9.2165	9.2165	9.0973	8.9797	9.0973	9.12146
ID18	14ループ	90	99.8	9.0973	9.0973	9.0973	9.0973	8.9797	9.07378
ID19	15ループ	100	99.7	8.9797	8.8636	8.8636	8.8636	8.8636	8.88682
ID20	16ループ	120	102.3	8.7491	8.636	8.7491	8.7491	8.7491	8.72648
ID22	17ループ	140	105.7	8.7491	8.636	8.5243	8.636	8.5243	8.61394
ID23	18ループ	180	106.9	8.5243	8.5243	8.5243	8.3053	8.5243	8.4805

表 3.3.6-6 101 号室 振動測定結果 (単位:Hz)

		変位mm	kN	No.1	No.2	No.3	No.4	No.5	平均
ID1	CAL								
ID2	自重のみ			13.6174	13.6174	13.6174	13.6174	13.6174	13.62
ID3	ビームのみ載荷			11.6488	11.6488	11.6488	11.6488	11.6488	11.65
ID4	1ループ	15.63	7.7	11.6488	11.6488	11.6488	11.6488	11.6488	11.65
ID5	2ループ	18	31.28	11.6488	11.6488	11.6488	11.6488	11.4983	11.62
ID6	3ループ	20	41.6	11.4983	11.4983	11.4983	11.4983	11.4983	11.50
ID7	4ループ	24	55.09	11.3496	11.2029	11.0581	11.0581	11.2029	11.17
ID8	5ループ	28	61.9	10.9151	10.9151	10.9151	10.9151	10.9151	10.92
ID9	6ループ	32	65.7	10.4972	10.4972	10.4972	10.4972	10.4972	10.50
ID10	7ループ	36	70.3	10.3615	10.3615	10.3615	10.3615	10.3615	10.36
ID11	8ループ	42	77.5	10.0954	10.0954	10.0954	9.9649	9.9649	10.04
ID12	9ループ	48	83.2	9.9649	9.836	9.836	9.836	9.7089	9.84
ID13	10ループ	56	85.5	9.7089	9.5834	9.5834	9.5834	9.5834	9.61
ID14	11ループ	64	86.5	9.5834	9.4595	9.3372	9.3372	9.3372	9.41
ID15	12ループ	72	88.9	9.3372	9.3372	9.2165	9.0973	9.0973	9.22
ID16	13ループ	80	92.1	9.0973	9.0973	9.0973	9.0973	8.9797	9.07
ID18	14ループ	90	94	8.9797	8.9797	8.8636	8.8636	8.8636	8.91
ID19	15ループ	100	96.4	8.8636	8.9797	8.9797	8.8636	8.8636	8.91
ID20	16ループ	120	99.6	8.7491	8.7491	8.7491	8.7491	8.7491	8.75
ID21	17ループ	140	95.1	8.636	8.5243	8.636	8.5243	8.5243	8.57
ID22	18ループ	180	95.5	8.5243	8.5243	8.5243	8.5243	8.4141	8.50
ID23	自重のみ	(測定後)		9.7089	9.7089	9.7089	9.5834	9.7089	9.68

表 3.3.6-7 201 号室 振動測定結果(単位:Hz)

101,201 号室の固有振動数の変化,固有振動数とスラブ中央部のたわみ変位及び載荷荷重との関係を,図3.3.6-17~3.3.6-19 に示す.







図 3.3.6-18 固有振動数と変位の関係



図 3.3.6-19 固有振動数と載荷荷重の関係

固有振動数は鉄骨ビーム載荷から 3 ループまではほぼ変化せず,その後載荷荷重 が増えると図 3.3.6-19 に示すように,固有振動数は急激に変化するが,100mm を超 えたところから大きな変化はしていない.この傾向は101,201 号室共にほぼ同様の結果 であった. (5) あと施工アンカー定着部の観察

曲げ実験終了後,アンカー筋を打ち込んだ既存壁の状態についてスラブ上端部の コンクリートをはつり調査を実施した.コンクリートはつり後の状態を写真 3.3.6-5, 写真 3.3.6-6 に示す.

アンカー筋は, 階段室側(W1~7) および妻壁側(E1~7) に各 7 本ずつ打ち込ん であり, 階段室側のW4 とW6 には, 歪みゲージを貼り付けていた.

アンカー筋の歪みは、既存壁内および打継ぎ面近傍では 2000 µ まで達しているの で、アンカー筋は降伏していると考えられる.

アンカー筋周囲のコンクリートは,接着剤と共に剥離している程度で,コーン状の破壊は見られなかった.

このようなコンクリート破壊形状は,後述のアンカー筋の引抜き試験に示す試験 体(D1~D6)と同様な破壊形状であった.



写真3.3.6-5 終局曲げ実験後のあと施工アンカー孔口の状況(階段側壁)



写真3.3.6-6 終局曲げ実験後のあと施工アンカー孔口の状況(妻側壁)

# 3.3.6-3 あと施工アンカー単体の各種実験結果

(1)長期引張実験結果(クリープ試験)

スラブの長期載荷実験に併せて現地で計測したあと施工アンカー単体のクリープ 実験結果として,図 3.3.6-20 にあと施工アンカー鉄筋の抜け出し変形量,図 3.3.6-21 にひずみ,およびクリープ試験中の荷重の変化を図 3.3.6-22 に示す.



また,試験体のある 201, 101 号室の温湿度を図 3.3.6-23 に示す.

図 3.3.6-20 長期クリープ試験(抜け出し)



図 3.3.6-21 長期クリープ試験(歪み)



図 3.3.6-22 長期クリープ試験(荷重)



図 3.3.6-23 201, 101 号室の温湿度

抜け出し変形は、計測を開始して 6 ヶ月程度は変形が進み、その後は、夏と冬の 温度変化による変形を繰り返しながら若干、抜け出している傾向を示しているが、 0.5 mmにも満たない極小の変形量である.また、ひずみゲージを貼っている下側のあ と施工アンカー筋の方が抜け出し変形量は小さく出ていた.

ひずみ分布は載荷後,あと施工アンカー部分で 250 μ ~350 μ の値を示した後は変 形と同様に夏と冬の温度変化による変形を繰り返しながらひずみが微増していた.

クリープ試験が終わったあと施工アンカー筋について、終局状態の引張試験を実 施した. 実験結果一覧を表 3.3.6-8 に、荷重-変形・ひずみ曲線を図 3.3.6-24~図 3.3.6-10に示す.

表 3.3.6-8 引抜き試験結果一覧 (単位:kN, mm)

試験体名	最大荷重	最大荷重時変形	終局荷重	終局荷重時変形	破壊モード
上	57.59	4.795	47.96	4.84	<b>杂效</b> 肉小
下	52.36	3.66	46.26	3.775	<b></b>



上側及び下側のアンカー筋は長期たわみ試験体に用いた鉄筋(SD295)と同一であ ったため、破壊モードは鉄筋降伏となった.

アンカー筋 (D13)の降伏点荷重は、6.1 あと施工アンカーの引抜き試験の鉄筋材用 試験結果と同様に 44.64kN とした.



図 3.3.6-25 荷重-変形曲線(抜け出し)



図 3.3.6-26 荷重-ひずみ曲線

アンカー筋の抜出しは,引抜き試験時の最大荷重時に上側では 0.01mm,下側では 0.15mm とクリープ試験時の上側 0.45mm,下側 0.2mm に比べ小さかった.

アンカー筋下側のひずみは,既存壁内のあと施工アンカー部分の A1,A6 のみ 2000 µ以下の弾性範囲内であったが,これ以外の歪みは 2000µを超えており鉄筋降伏し ていることが確認された. (2) 終局引張実験結果

アンカー筋引抜き試験の実験結果一覧を表 3.3.6-9, 荷重-変形曲線を図 3.3.6-27, 図 3.3.6-28 に示す.

試験体名	最大荷重	最大荷重時変形	終局荷重	終局荷重時変形	破壊モード
D1	49.33	2.595	42.76	3.06	
D2	46.1	1.765	36.96	2.55	
D3	59.06	2.63	54.79	2.75	建故陈件
D4	47.23	2.575	47.23	2.575	<u></u>
D5	47.43	2.165	39.43	2.265	
D6	48.8	2.48	43.6	2.515	
ア	54.49	1.4			
イ	65.39	1.13			
ウ	47.73	4.19			コーン破壊
エ	50.89	1.405			
オ	45.23	0.45			

表 3.3.6-9 アンカー筋引抜き試験の実験結果一覧



図 3.3.6-27 アンカー筋 (D1~D6) 引抜き試験の荷重-変形曲線



図 3.3.6-28 アンカー筋 (ア〜オ) 引抜き試験の荷重-変形曲線

D1~D6のアンカー筋は長期たわみ試験体に用いた鉄筋(SD295)と同一であった ため、破壊モードは鉄筋降伏となった.

アンカー筋 (D13)の下位降伏点荷重 (p1)は,鉄筋材用試験結果より,

p1=(44.76+44.38+44.78)/3=44.64kN

ア~オのアンカー筋には、高強度鉄筋(MK785)を用い、埋め込み長さも 65mm (5da) 程度であったので、破壊モードはコーン破壊となった.(写真 3.3.6-7, 写真 3.3.6-8)

コンクリートのコーン破壊荷重(p2)およびアンカー筋の付着破壊荷重(p3)は, 既存壁のコンクリート材料試験結果より,

> $p2=0.31\sqrt{(28.3+41.8)/2} \times \pi \times 65 \times (65+13) = 29.23$ kN  $p_3 = 10\sqrt{((28.3+41.8)/2/21)} \times \pi \times 13 \times 65 = 34.3 \text{kN}$





写真 3.3.6-7 高強度鉄筋(MK785) 写真 3.3.6-8 埋込長さ(5da=65mm)

D1~D6の破壊状況を写真 3.3.6-9 に示す.また、ア~オの破壊状況を写真 3.3.6-10 に 示す.



アンカー筋 (D1)

アンカー筋 (D2)



アンカー筋 (D3)

アンカー筋 (D4)



アンカー筋(D5)

アンカー筋(D6)

写真 3.3.6-9 破壞状況


アンカー筋 (ア)



アンカー筋 (イ)



アンカー筋 (ウ)



アンカー筋 (エ)



アンカー筋(オ) 写真 3.3.6-10 破壊状況

### 3.3.7 考察

実建築物における新設スラブの主筋定着に接着系あと施工アンカーを用いたときの当該スラブの長期性状を把握することを目的として、長期載荷試験を実施した. 鉄筋載荷直後の変形は、接着系あと施工アンカー定着によるスラブで 2.34 mm,標準 定着によるスラブで 3.01 mm であった.

載荷後4年経過した時点での変形は,各々15.1 mm, 16.8 mm であった. 両端固定 の一方向スラブの計算値(1.07 mm)に対する長期たわみ増大率は,各々14.1,15.7 であ った.

# 3.3.7-1 スラブ中央の長期たわみ量と長期たわみ増大率

各試験体の現在(2018.1.31)までのスラブ中央の長期たわみ量( $\delta_L$ )および長期たわみ 量の弾性たわみ( $\delta_e$ )に対する倍率(以下,増大率という)を表 3.3.7-1,図 3.3.7-1 に示 す.

長期たわみ量は図 3.3.7-1 に示す変形量を用い,弾性たわみ( $\delta_e$ )は,スラブ内法スパン 5 760 mm で算定した 1.07 mm とする.

							-		
	経過日数	自重	自重+積載	1W	2W	4W	8W(2ヶ月)	13W(3ヶ月)	26W(6ヶ月)
試験体名	月日	2016.1.29	2016.1.29	2016.2.5	2016.2.12	2016.2.26	2016.3.25	2016.4.29	2016.7.29
	変位	1.24	2.34	3.32	3.95	4.82	6.21	7.84	9.89
2015主	増大率	1.76	2.18	3.1	3.69	4.5	5.8	7.33	9.24
101日中	変位	1.73	3.01	4.04	4.8	5.91	7.31	8.88	11.3
101万主	増大率	2.47	2.81	3.78	4.48	5.52	6.83	8.29	10.5
	経過日数	54W	73W	105W	156W	209W			
試験体名	月日	2017.2.10	2017.6.23	2018.1.31	2019.1.25	2020.1.31			
201 - 中安	変位	12.5	13.1	13.9	14.9	15.1			
2015主	増大率	11.7	12.2	13.0	13.9	14.1			
101号室	変位	14.0	14.8	15.5	16.7	16.8			
	増大率	13.1	13.8	14.5	15.6	15.7			

表 3.3.7-1 長期たわみ量および増大率



図 3.3.7-1 201, 101 号室の増大率

# 3.3.7-2 将来たわみ量および増大率の推定

(1) 将来たわみ量の推定

101 号室の計測データを基に将来のたわみ量を推定するために最小二乗法による線 形近似および対数近似を用いて 100 年後のたわみ量を推定した結果を図-3.3.7-2 お よび表-3.3.7-2 に示す.

使用したデータは、4.1 項のたわみ変化量の経過から載荷後 0.5 年を経過するとた わみ変化量が落ち着き、2.5 年を経過すると微小となることから、載荷後 0.5 年から 2.5 年を一区切りとし、2.5 年から 4.5 年および 4.5 年から 6 年のデータを用いた.計 測は継続しているが、6 年から 6.5 年のデータを経過観察する必要があることから、 6 年までのデータで将来たわみ量を推定する.式は傾きの傾向から対数近似としてい る.



図 3.3.7-2 将来たわみの推定

表 3.3.7-2	100 年後のたわみ量の推定

試験体		0.5年~2.5年	2.5年~4年		
201	式	y=-2.518 ln(x) + 10.763	$y = -1.804 \ln(x) + 3.713$		
201	100 年後	-23.69	-20.97		
101	式	y=-2.796 ln(x) + 11.827	y = -2.109 ln(x) + 5.159		
101	100 年後	-26.43	-23.70		

※ x = 経過時間, y = 推定たわみ量 (mm)

赤字は一般的なたわみ増大率で算出された値(21.9 mm)を超える値

(2) たわみ増大率の推定

計算方法は, 3.2.7-4 項による.

推定した結果を図 3.2.7-3 に示す.また,以下に推定倍率と推定変位を示す.

【201号室】

a=	7.379	
b=	0.073	
c=	2.18	自重+積載

【101号室】							
a=	6.075						
b=	0.066						
c=	2.81	自重+積載					

<予測年>	<倍率>	<変位>	<予測年>	<倍率>	<変位>
50年	16.04	17.17	50年	18.28	19.56
100年	16.09	17.21	100年	18.32	19.60





## 3.3.7-3 既存壁・スラブ端部の変形および回転角

(1)長期載荷実験における結果

201号室および101号室の既存壁の変形測定方法を図3.3.7-4に示す.

201号室および101号室の既存壁の測定開始時からの変形を階段室壁の南側(測定番号⑪,⑬),北側(測定番号⑮,⑰)および妻壁の南側(測定番号⑫,⑭),北側(測定番号⑯,⑱)毎に図 3.3.7-5~図 3.3.7-9 に示す.

201号室および101号室の階段室壁および妻壁の回転角を図3.3.7-10,図3.3.7-11に 示す.階段室壁の回転角は、南側では測定番号⑪と⑬の差を、北側では測定番号⑮ と⑰の差を測定間距離(1,200 mm)で除して求めた.妻壁の回転角は、南側では測定番 号⑫と⑭の差を、北側では測定番号⑯と⑱の差を測定間距離(1,200 mm)で除して求め た.階段室壁と妻壁間の伸縮は、試験床上から1,100 mmの位置にインバー線を変位 計に取付けて、南側(測定番号⑲)、北側(測定番号⑳)で測定した.

101 号室の変位計取り換え後の 2016/9/16~2020/1/31 までの既存壁変形は, 階段室 側で 0.8 mm, 妻側で 0.3 mm 程度の変動である.

201 号室の 2016/9/16~2020/1/31 までの既存壁変形は, 階段室側で 1.0 mm, 妻側で 0.6 mm 程度の変動である.

101 号室の変位計取り換え後の既存壁の動きには,201 号室と101 号室で同時期の 変動量に差異は見られるが、変形としては微少な変形であり、特に不測となる現象 は見られなかった.

また、今回は壁が変形できるようにスリットを入れているので、実建物で用いる 場合に懸念されるような結果得られなかった。



図 3.3.7-4 201, 101 号室 階段室側壁の変形測定方法



図 3.3.7-5 201 号室の既存壁の変形



図 3.3.7-6 101 号室の既存壁の変形(2016/9/16~2020/1/31)変位計取り換え後



図 3.3.7-7 201 号室の既存壁の変形(2016/9/16~2020/1/31)



図 3.3.7-8 201 号室の既存壁の測定位置毎



3-189

-0 -7

置む宝岷

図 3.3.7-9

0.2

101 号室の既存壁の測定位置毎の変形

置む宝岷



図 3.3.7-10 201 号室の回転角



図 3.3.7-11 101 号室の回転角

階段室壁のスラブ端部に対する変形および回転角を図 3.3.7-12, 図 3.3.7-13 に示す. スラブ端部の回転角は,測定番号⁽²⁾(²⁰)と⁽²⁾(²⁰)の差を測定間距離(310 mm)で除して 求めた.



図 3.3.7-12 階段室壁のスラブ端部に対する変形



図 3.3.7-13 階段室壁のスラブ端部に対する測定位置毎の変形および回転角

階段室壁と妻壁間の伸縮(測定番号19, 20)を図 3.3.7-14 に示す.

階段室壁と妻壁間の温度変化量(*At*)による伸縮量(*AL*)の計算値は, (3.3.7-8)式によ り算定した.

*ΔL=L×α×Δt* (3.3.7-8)式 ここで、L : 階段室壁と妻壁間の距離 5,760 mm A : 鉄筋およびコンクリートの線膨張係数 1.0×10⁻⁵(1/℃)

> Δt : 階段室壁と妻壁間の伸縮の測定を開始した時の温度(201 号室: 5.6℃, 101号室: 6.5℃)と,図 5.2.3.8 に示す温度と の差. すなわち測定開始時の ΔL を零としている.よって 開始時の温度より低くなった場合は,ΔL が負(収縮)とな る.





図 3.3.7-14 階段室壁と妻壁間の伸縮

(2) 終局荷重による曲げ実験の結果

101 号室および 201 号室の既存壁の変形測定方法を図 3.3.7-15, 図 3.3.7-16 に示す.

101 号室および 201 号室の既存壁の荷重一変形曲線および測定位置毎の変形を, 階 段室壁の南側(測定番号⑪, ⑬), 北側(測定番号⑮, ⑰), 中央部(測定番号⑦, ⑳) および妻壁の南側(測定番号⑫, ⑭), 北側(測定番号⑯, ⑱), 中央部(測定番号⑧, ⑳) 毎に図 3.3.7-17~図 3.3.7-19 に示す.



図 3.3.7-15 101, 201 号室 階段室側壁の変形測定方法 階段室側壁の測定用ビームからの水平変形測定方法 (No.7)



図 3.3.7-16 階段室側壁の測定用ビーム (アングル) からの水平変形測定方法 (No.29)



図 3.3.7-17 101 号室 既存壁(階段室側,妻側)の荷重—変形曲線 (測定点 No.11~No18)



 
 201号室
 階段側壁の変形
 201号室
 妻側壁の変形

 図 3.3.7-18
 201号室
 既存壁(階段室側,妻側)の荷重—変形曲線 (測定点 No.11~No18)



階段室側

妻壁側

101 号室 中央部





階段室側

妻壁側

201 号室 中央部 図 3.3.7-19 既存壁(階段室側,妻側)の荷重—変形曲線 (測定点 No.7,8,29,30)

101号室および201号室の階段室壁および妻壁の回転角を図3.3.7-20,図3.3.7-21に示す.

階段室壁の回転角は、南側では測定番号⑪と⑬の差を、北側では測定番号⑮と⑰ の差を測定間距離(1,200 mm)で除して、中央部では測定番号⑦と⑲の差を測定間距離 (300mm)で除して求めた。

妻壁の回転角は,南側では測定番号⑫と⑭の差を,北側では測定番号⑮と⑱の差 を測定間距離(1,200 mm)で除して,中央部では測定番号⑧と⑲の差を測定間距離 (300mm)で除して求めた.



図 3.3.7-20 101 号室 既存壁(階段室側,妻側)の回転角



図 3.3.7-21 201 号室 既存壁(階段室側,妻側)の回転角

既存壁の回転角を測定した(測定番号⑪~⑬)については,201号室階段室側壁の 回転角は,-0.001~0.005(変動量:0.006)と101号室の0.003~0.006(変動量0.003) に比べ大きく回転している.

201 号室妻側壁の回転角は, -0.001~0.005(変動量:0.006)と101 号室の-0.002~ 0.004, 0.004~0.010(変動量:0.006)と同量であった.

階段室側壁の回転角を測定した(測定番号29,⑦)については,変位測定が不良 となる前の比較では,201号室で-0.003~0.03(変動量:0.033)と101号室の-0.005~ 0.008(変動量0.013)に比べ大きく回転している.

妻側壁の回転角を測定した(測定番号30, 8)については、101号室の変位測定が 不良であったので、201号室との比較は行えなかった.

101 号室および 201 号室の階段室壁および妻壁の変形測定位置における各ループの 最大荷重時毎の変形を図 3.3.7-22, 図 3.3.7-23 に示す.



図 3.3.7-22 101 号室 階段室壁および妻壁の変形測定位置における各ループの 最大荷重時毎の変形





101 号室および 201 号室の既存壁は,ループが大きくなるに連れて室外側に変形していく傾向があり,加力前の自重による長期たわみ時変形に対して平行に動く場合が多く見られ,ループが大きくなると上下の測定点間に差異が生じ壁回転による変形が表れてくる傾向が見られた.

なお,今回は壁が変形できるようにスリットを入れているので,実建物で同様の 壁の変形が生じることを示している訳ではない. 階段室壁のスラブ端部に対する変形を図 3.3.7-24 に示す.





スラブ回転下側



101 号室 階段室側壁のスラブ端部に対する変形

(測定点 No.23~No26)

図 3.3.7-24 階段室側壁のスラブ端部に対する荷重一変形曲線

101 号室および 201 号室の階段室壁のスラブ端部に対する回転角を図 3.3.7-25 に示す.

スラブ端部の回転角は、測定番号23(25)と24(26)の差を測定間距離(310 mm)で除し て求めた.





101 号室および 201 号室の階段室壁の変形測定位置における各ループの最大荷重時 毎の変形を図 3.3.7-26 に示す.



101 号室201 号室図 3.3.7-26階段室壁の変形測定位置における各ループの最大荷重時毎の変形

## 3.3.8 まとめ

(1) 長期載荷実験

実建築物に増設された床スラブの構造性能確認実験で,載荷後約4年間の結果は, 以下のとおりとなった.

- ・試験体のたわみについては、載荷直後から増大し始めたが、2016 年 8 月以降は その増加が鈍った.2018 年に入ってもこの傾向は変わらず、増加はさらに鈍化 した.たわみの値や期間を経ることによる増大の傾向という点において、あと 施工アンカーの使用の有無による大きな違いはなかった。
- ・鉄筋載荷直後の変形は, 接着系あと施工アンカー定着によるスラブで 2.34 mm, 標準定着によるスラブで 3.01 mm であった.
- ・載荷後4年経過した時点での変形は、各々15.1 mm、16.8 mm であった.両端固定の一方向スラブの計算値(1.07 mm)に対する長期たわみ増大率は、各々14.1、15.7 であった.
- (2) 終局載荷実験

接着系あと施工アンカー定着スラブおよび標準定着スラブについて実建築物の長期たわみ測定後,終局荷重による曲げ実験を実施し以下の知見を得た.

- ・接着系あと施工アンカー定着によるスラブおよび標準定着によるスラブ共に、 破壊モードはスラブ上端部のアンカー筋および標準定着筋の引張降伏による曲 げ破壊であった。
- ・接着系あと施工アンカー定着によるスラブの最大荷重は103.9kNで,最大荷重時のたわみは115.9mmでスパンのほぼ1/50であり,標準定着によるスラブの最大荷重は110.4kNで,最大荷重時のたわみは173.5mmでスパンのほぼ1/33であった.
- ・接着系あと施工アンカー定着によるスラブおよび標準定着によるスラブ共に, 固有振動数は鉄骨ビーム載荷から3ループまではほぼ変化せず,その後載荷荷重 が増えると固有振動数は急激に変化するが,スラブ中央たわみが100mmを超え たところから大きな変化は見られなかった.
- ・スラブを取り付けた既存壁は、ループが大きくなるに連れて室外側に変形していく傾向があり、加力前の自重による長期たわみ時変形に対して平行に動く場合が多く見られ、ループが大きくなると上下の測定点間に差異が生じ壁回転による変形が表れてくる傾向が見られた。

既存壁の回転角を測定した(測定番号⑪~⑱)については,接着系あと施工ア ンカー定着スラブの階段室側壁回転角は,-0.001~0.005(変動量:0.006)と標 準定着スラブの0.003~0.006(変動量0.003)に比べ大きく回転している.

接着系あと施工アンカー定着スラブの妻側壁回転角は,-0.001~0.005(変動 量:0.006)と標準定着スラブの-0.002~0.004,0.004~0.010(変動量:0.006) と同量であった.

スラブたわみに合わせて壁が回転しているが、今回は壁が変形できるようにス

リットを入れているため、現れているが、変形量は微少であった.

・曲げ実験終了後、アンカー筋を打ち込んだ既存壁の状態についてスラブ上端部のコンクリートをはつり調査を実施したところ、アンカー筋周囲のコンクリートは、接着剤と共に剥離している程度で、コーン状の破壊は見られなかった.このような破壊形状は、別途実施したアンカー筋の引抜き試験と同様に、破壊モードは鉄筋降伏であった.

以上より,あと施工アンカーの使用の有無による長期性状に対する明確な違いは 確認されなかったといえる.また,既存壁の乾燥収縮による新設スラブへの影響も 顕著なものはなく,既存壁の回転が与える影響も大きくはなかった.

## 3.4 スラブ増設に用いる接着系あと施工アンカーの引張特性

## 3.4.1 試験の目的・概要

3.2 項で示す長期載荷スラブ試験体のうち一部については、今後オイルジャッキに よる一点集中載荷で終局状態(破壊状態)とする実験(終局破壊実験)を行う予定 である.この長期載荷スラブ試験体のあと施工アンカーの埋め込み長さは、定着に 用いる D13 アンカー筋の直径の 12 倍(12da=156 mm)と設定しており、試験体の設 計当初は、「終局状態では引張によるアンカー筋周囲のコンクリートのコーン状破壊」 になるものと想定した.しかしながら、アンカー筋に作用する軸方向引張力は床ス ラブの曲げモーメントに起因するもので単純な軸方向引張によるものとはいいがた く、またアンカー筋にはせん断力も作用しており、当初の設定とは異なる結果とな ることも考えられる.

実際に,先んじて実施した 3.2 項や 3.3 項に示す長期載荷スラブ試験体の終局状態 の載荷実験結果では,端部接合部分のあと施工アンカーは,鋼材降伏後に表層部分 のコーン破壊やスタブ部分のコンクリートを掻き上げるような破壊を示しており, 長期載荷試験においてもアンカー筋の抜け出し量が 0.7 mm ほど生じていることから, 「コーン状破壊ではなく,アンカー筋の抜け出しにより終局状態となる」可能性も あることが分かっている²⁾.

このため、長期載荷試験体の床スラブ―周囲梁接合部を抜き出した別の試験体を 製作し載荷実験を行うこととした.パラメータとしてアンカー筋の本数や埋め込み 長さなどを変えた試験体を製作し、それらが試験体の力学的性質や最終破壊性状な どに与える影響についても明らかにすることとした.

## 3.4.2 試験体

(1) 試験体の形状・寸法

スラブ接合部試験体の一覧を表 3.4.2-1 に、あと施工アンカー単体試験体の一覧を 表 3.4.2-2 に示す. 試験体の形状寸法を図 3.4.2-1 に各試験体の平面図を図 3.4.2-2 に示 す. 試験体は、3.4.1 項で示したとおり、長期載荷試験体のあと施工アンカー使用部 分(床スラブと周辺梁との接合部)を再現して製作している. 既存建築物の周辺梁 を想定した版状の鉄筋コンクリートスタブ部分に、増設床スラブの端部を想定した 部分(以下、スラブ部分と呼ぶ)が接合されており、ちょうど実建築物の床スラブ 一周辺梁接合部を 90 度回転したような形状となっている. スラブ部分は、幅 500 mm×厚さ 200 mm×高さ(長さに相当) 700 mm で全試験体とも共通になっており、内 部には床スラブの配筋に相当する SD295 D13を使用した縦筋と横筋が配筋されてい る. この床スラブ縦筋に継手の長さ 520 mm で重ね継手をした接合筋(SD295 D13 を使用 以下、アンカー筋と呼ぶ)がスタブ部分に接着系あと施工アンカーを用い て定着されている. この仕様は、長期載荷試験体と同じである.

アンカー筋の定着に用いたあと施工アンカーは、8 体の試験体で設計上隣接するコ ーン状破壊領域が重複して群でコーン状破壊となるようになっている. 長期載荷試 験体では、アンカー筋の埋め込み長さ L をその直径(呼び名) da の 12 倍 (13 mm×12=156 mm) としていたこともあり、本研究の試験体でのアンカー筋の埋め込 み深さは 12da=156 mm を基本とし、さらに、コーン状破壊を確実に誘発させるため に 5da=65 mm とアンカー筋の引張降伏を誘発させるために 20da=260 mm の合計 3 水 準で変化させている. なお、埋め込み長さの変化にあわせて、スタブ部分の厚さも 変化させている. 一部の試験体では、特定のアンカー筋に軸方向の溝切りを施した うえでひずみゲージを貼付しており、アンカー筋が引張降伏するかどうかの確認も 行っている. よって、アンカー筋には「溝切りあり」「溝切りなし」が混在している.

一方,周辺梁内部には梁主筋や梁あばら筋があり,接合筋の配置位置によっては, あと施工アンカーの周囲に梁側の各種鉄筋が近接する状況が考えられる.これらの 梁側の各種鉄筋があと施工アンカーのコーン状破壊領域付近にあると,当然ながら コーンの形成や破壊面の変化に影響を与えることが考えられる.そこで,スタブ部 分に格子状鉄筋(SD345 D13)を配筋することで,想定されるコーン領域付近に格 子状鉄筋がある,またはない状態を設定し,コーンに近接する鉄筋がコーン状破壊 に与える影響を解明することにしている.

アンカー筋配筋間隔@150mm で埋め込み長さが 12da=156 mm の試験体(すなわち 試験体 2L, 3L および 4L)が,長期載荷試験体に直接的に対応している.

なお、あと施工アンカー単体の試験体は、スラブ接合部試験体のあと施工アンカーと同様の仕様とすることで、比較を行えるようにしている.また、溝切り有無の 影響について確認するために 12da 埋め込んだ試験体を用いた付着拘束試験用の試験 体を用意している.

試験	アンカー筋※ (SD205)	アンカー筋の	コーン状	スタブ部分	スタブ部分	アンカー筋への	
伴泊	(30293)	理の込み長さ L		厚さ	俗于扒妖肋	の貼付	
1L	3-D13@150mm	201-2(0	t N	250	たり(1)	t N	
1R	2-D13@300mm	20da=260mm	Ø	330mm	あり(1)	めり	
2L	3-D13@150mm	12da-156mm	あり	250mm	あり (1)	ちり	
2R	2-D13@300mm	1200-13011111	<i>«</i> ) 9	23011111	a) 9 (1)	<i>(()</i>	
3L	3-D13@150mm	12da-156mm	あり	250mm	あり (1)	<i>t</i> a1	
3R	2-D13@300mm	1200-13011111	<i>«</i> ) 9	23011111	<i>w</i> ) (1)	14 0	
4L	3-D13@150mm	12da-156mm	あり	250mm	<i>t</i> a 1	ちり	
4R	2-D13@300mm	1200-13011111	<i>«</i> ) 9	23011111	12 U	<i>\(\b)</i>	
5L	3-D13@150mm	5 do-65mm	<i>t</i> >1	250mm	ちり ( <b>2</b> )	ちり	
5R	2-D13@300mm	Jua-0511111	14 U	23011111	a) (2)	<i>\(\b)</i>	
6L	3-D13@150mm	5da-65mm	72]	250mm	あり (2)	721	
6R	2-D13@300mm	Jua-0511111	なし	23011111	(2)	<i>'</i> よし	

表-3.4.2-1 スラブ接合部試験体一覧

※載荷により引張側となるアンカー筋を示す.実際には、圧縮側にも同材種同径同本数のアンカー筋が打設されている.

(1):コーン状破壊領域内に配筋 (2):コーン状破壊領域外に配筋

試験体名	試験方法	埋込長さ	ゲージ	拘束鉄筋	試験体名	試験方法	埋込長さ	ゲージ	拘束鉄筋
1T-1			無		3T-1			有	
1T-2		20da	有(溝)	有	3T-2			有	
1T-3			無		3T-3			有	
2T-1			有(溝)		3T-4			有	
2T-2			有(溝)		3T-5			有	
2T-3		12da	有(溝)	有	3T-6			有(溝)	
2T-4			無		3T-7			有(溝)	
2T-5			無		3T-8	付着試験	12da	有(溝)	有
4T-1	리應計驗		有(溝)		3T-9			有(溝)	
4T-2	クトリスロル洞犬		有(溝)		3T-10			有(溝)	
4T-3		12da	有(溝)	無	3T-11			無	
4T-4			無		3T-12			無	
4T-5			無		3T-13			無	
5T-1			有(溝)		3T-14			無	
5T-2			有(溝)		3T-15			無	
5T-3		5da	有(溝)	有					
5T-4	]		無						
5T-5			無						

表-3.4.2-2 あと施工アンカー単体試験体一覧





図 3.4.2-2 各試験体平面図

(2) 試験体の使用材料

試験体に使用したコンクリート,鉄筋およびあと施工アンカーについて記す. コ ンクリートの材料試験結果を表 3.4.2-3 に,鉄筋の材料試験結果を表 3.4.2-4 に示す. スタブ部分は既存建築物を想定してFc15N/mm²(呼び強度15N/mm²,スランプ値18mm, 粗骨材最大寸法 20mm),スラブ部分は増設スラブを想定して Fc24N/mm²(呼び強度 24N/mm²,スランプ値18mm,粗骨材最大寸法 20mm)のいずれも普通レディミクストコ ンクリートを使用する.

使用した接着系あと施工アンカー(接着剤)は、主剤がビスフェノール A/F 型エ ポキシ樹脂、硬化剤が変性脂肪族ポリアミンで構成される 2 成分混合型注入式であ る.

A J. I.	25 Q/11-077	
使用部分	圧縮強さ	ヤング係数
	$N/mm^2$	$ imes 10^4~{ m N/mm^2}$
スラブ	34.4~38.1	2.65~2.71
スタブ	20.0~21.4	2.26~2.41

表 3.4.2-3 使用コンクリートの力学的性質

※「実験開始日の材料試験結果による値~実験終了日の材料試験結果による値」という形式で表示

÷ • -		- / / / / / /	
種別	降伏強さ N/mm ²	ヤング係数 $ imes 10^5 \ { m N/mm^2}$	引張強さ N/mm ²
SD295 溝切りなし	345	1.98	502
SD295 溝切りあり	345	1.86	463
SD345 溝切りなし	378	1.98	508

表 3.4.2-4 使用鉄筋 (D13) の力学的性質

※「SD295 溝切りあり」は、「SD295 溝切りなし」と同一ロットにつき、力学的性質は同じ.両 者の降伏強さの比較から、SD295 溝切りあり D13 鉄筋の断面積は 118.6mm²と推定する.

## 3.4.3 試験方法・加力方法

スラブ接合部実験の載荷装置図を図 3.4.3-1 に示す.

本実験では、長期載荷スラブ試験体の端部の終局状態を想定するため、試験体の スラブ部分の先端付近にオイルジャッキを取り付け、一方向繰り返しによる静的載 荷を行う.これにより、アンカー筋には曲げモーメントによる引張力とせん断力が 作用することになる.載荷の各サイクルのピークはジャッキ取り付け位置における たわみ量で制御する.すなわち、ジャッキ高さ(変位測定位置高さ)575 mm に対し てジャッキによって引張られたスラブ試験体の水平変形から部材角を算出して、 R=1/800,1/400,1/200,1/100,1/50,1/30,1/15,1/10 をピーク値とし、各サイクル1回の載荷 とする.サイクル図を図 3.4.3-3 に示す.

また,あと施工アンカー単体実験用の載荷装置図を図 3.4.3-2 に示す.単体実験で は、単調載荷でアンカー筋を引き抜く引張試験と拘束条件を変えた付着試験の2種類 を実施する.なお、荷重はロードセルで計測し、鉄筋に変位測定用の治具を設けて 抜け出し変位を計測する.



図 3.4.3-1 スラブ接合部実験載荷装置図



図 3.4.3-2 あと施工アンカー単体引張実験載荷装置図



図 3.4.3-3 加力サイクル

# 3.4.4 測定方法

(1)変位測定

スラブ接合部実験の変位測定位置を図 3.4.4-1 に示す. 各試験体のスラブの水平変 位を高さごと(上段・中段・下段)に確認する. また, スタブとの回転を確認するための 変位計(⑦~⑩),およびスラブ試験体の鉛直方向の変形を確認するための変位計を用 いて測定する.



図 3.4.4-1 変位測定位置

(2)鉄筋ひずみ測定

試験体のあと施工アンカー筋のひずみを測定する.各試験体のひずみ計測を行っているアンカー筋の位置を図 3.4.4-2 に、あと施工アンカー筋のひずみ測定位置を図 3.4.4-3 に示す.ひずみ測定位置は、スラブ接合部実験およびあと施工アンカー単体実験ともに埋め込み深さごとに同様の位置にひずみゲージを貼り付けて計測する.

あと施工アンカー部分のひずみゲージは鉄筋の縦節部分に溝切り加工を施した鉄筋の溝部分に通常よりゲージ線の細いイミド線のみの3線ゲージを用いている.なお,孔口部分には2線ゲージを用いて,ひずみゲージの養生によってあと施工アンカーの性能に差が出ないように配慮した.溝切り鉄筋へのひずみゲージの貼り付けの状況を図3.4.4-4 および写真3.4.4-1 に示す.



図 3.4.4-3 あと施工アンカーひずみ計測位置 (左:20da,中:12da,右:5da)



図 3.4.4-4 溝切り鉄筋



写真 3.4.4-1 溝切り鉄筋へのひずみゲージ貼り付け状況
#### 3.4.5 設計荷重について

本実験では、あと施工アンカーで接合されたスラブ端部接合筋の引張側の鉄筋が 載荷された荷重を全て負担するものと仮定して設計荷重を考えている.厳密に言え ば曲げやせん断が入った上で全引張になっているが、あと施工アンカーの設計荷重 を検討する段階では無視している.また、スラブ部分の変形についても剛体と仮定 して考えている.

今回,終局状態の載荷としていることから,耐震改修設計指針¹⁾を参考に以下の3 つの式のうち最小値を引張側のあと施工アンカー1本あたりの設計荷重と考えている.

(3.4.5-1)式「コンクリートのコーン状破壊で決まる(アンカー筋周囲のコンクリートのコーン状破壊で終局となる)場合」

$$T_{cc} = 0.23\sqrt{\sigma_B} \cdot A_c \tag{3.4.5-1}$$

ここで, T_{cc}: コーン状破壊したあと施工アンカーの終局引張耐力計算値(N),

 $\sigma_B$ : 試験体コンクリートの圧縮強さ(N/mm²),

A_c: コーン状破壊面の有効水平投影面積(mm²)

試験体 IL から 4R では、各種合成構造設計指針¹⁾を参考に「コーン状破壊領域の重なり」を考慮した値とする.一方、破壊領域の重なりのない試験体 5L から 6R では、耐震改修設計指針の Ac= $\pi$ ・ $\ell$ e・( $\ell$ e+da)で求めた値とする.

ℓe:アンカー筋の有効埋込み長さ(mm)で、本来は ℓe=L-da となるが、本研究の試験体のアンカー筋は先端形状が寸切りなので ℓe=L となる. なお、L:アンカー筋の 埋め込み長さ、 da:アンカー筋の呼び径(mm)で、異形鉄筋の場合、呼び名に用いた 数値である.

(3.4.5-2)式「付着力で決まる(アンカー筋の付着破壊で終局となる)場合」

$$T_{cb} = \tau_a \cdot \pi \cdot d_a \cdot l_e \tag{3.4.5-2}$$

ここで, T_{cb}: 付着破壊したあと施工アンカーの終局引張耐力計算値(N)

τa:接着系あと施工アンカーの付着強度信頼値(N/mm²)次の式による.

$$\tau_a = 10 \sqrt{\frac{\sigma_B}{21}}$$

(3.4.5-3)式「鋼材の耐力で決まる(アンカー筋の引張破壊で終局となる)場合」

$$T_{mu} = {}_m \sigma_u \cdot {}_s a_e \tag{3.4.5-3}$$

ここで, *T_{mu}*: アンカー筋が引張破断したアンカーの終局引張耐力計算値(N) mσ_u: アンカー筋の引張強さ(N/mm²)で mσ_u=1.1σ_y σ_y: アンカー筋の規格降伏点(N/mm²) sa_e: アンカー筋の公称断面積(mm)

この試験体では、 o_Bはスタブ側のコンクリート圧縮強さ 19.8 N/mm²を採用する. 各式の計算値を表 3.4.5-1 に示す.最大荷重時にアンカー筋に生じる軸方向力が、ア ンカー筋の耐力に相当する.また、あと施工アンカー単体の計算値を表 3.4.5-5 に示 す.

	•••-					
試験 体名	L (mm)	L+da (mm)	$A_c$ (mm ² )	$T_{cc}$ (kN)	$T_{cb}$ (kN)	$T_{mu}$ (kN)
1L	20da	260+13	147289	151.5	103.6	41.2
1R	=260	=273	166585	171.3	103.0	41.2
2L	12da	156+13	47156	48.5		
2R	=156	=169	81408	83.7	(2.2	41.2
4L			47156	48.5	02.2	41.2
4R			47156	48.5		
5L	5da	65+13				
5R	=65	=78	15920	16.3	25.9	41.2

表 3.4.5-1 各試験体のあと施工アンカーの計算値

 $\sigma_B$ :スタブ側のコンクリート圧縮強さ 19.8 N/mm²を採用する.

各L試験体では、アンカー筋本数のn=3,各R試験体ではn=2となる.

青字は「コーン状破壊領域の重なり」を考慮したコーン状破壊面の有効水平投影面積,およびそれを用いた Tcc の計算値である.

赤字は Tcc, Tcb および Tmu で最小となる値である.

なお、コーン状破壊領域の重なりを考慮した A。は各種合成構造指針を参考に引張 側のあと施工アンカー筋を対象に以下のように複数本で算出した有効投影面積を1本 あたりにした値としている.

【1L】1本当りの投影面積:147289mm²







【2,3,4L,4R】1本当りの投影面積:47156mm²【2,3R】1本当りの投影面積:81408mm²





今回の試験体は、あと施工アンカーを用いたスラブ接合部のアンカーの性状を確認することを目的としていることから、実際の設計では、あと施工アンカーの許容応力度を用いた設計を行う必要がある.

接着系あと施工アンカー強度指定申請ガイドライン¹⁾を参考に,あと施工アンカー が負担する許容引張力について算出する.許容引張力を算出する式を**表** 3.4.5-2 に示 す.また,**表** 3.4.5-3 に本実験で用いた各試験体のあと施工アンカー1本あたりが負担 する許容引張力を示す.

一覧のうち,赤字で示した値が各式で最小値を示した値になる.表 3.4.5-1 の終局 状態の設計値と比較すると,有効埋め込み長さが 12da 以上の No.1~No.4 試験体は鋼 材降伏が最小値になっていたが,許容引張力を算出するとあと施工アンカー固有の 破壊形式で最小値が決まるケースが散見されている.これは,許容応力度を算出す る際の余力の取り方などが起因しているものである.

種類	長期許容引張力(kl	N)	短期許容引張力(kN)	)
破壊形式	式	許容応 力度 <i>f</i> i	式	許容応 力度 <i>f</i> i
アンカー筋の 鋼材降伏	$_{L}T_{m,A}=f_{t}\cdot_{s}a_{e}$	$\frac{\sigma_y}{1.5}$	$_{ST_{m,A}=f_{i}\times_{s}a_{e}}$	$\sigma_y$
コンクリートの コーン状破壊		$\frac{0.23\sqrt{F}}{4.5}$	$sT_{cc,A} =_{f_i} \cdot \pi \cdot \ell_e(\ell_e + d_a)$	$\frac{0.23\sqrt{F}}{2.25}$
あと施工アンカーの 付着破壊	$_{L}T_{cb,A}=f_{t}\times \pi \cdot d_{a}\cdot \ell$	$\frac{10\sqrt{\frac{F}{21}}}{4.5}$	$_{S}T_{cb,A}=_{f_{i}}\times \pi \cdot d_{a} \cdot \ell$	$\frac{10\sqrt{\frac{F}{21}}}{2.25}$

表 3.4.5-2 あと施工アンカーが負担する許容引張力の計算式

試験 体名	L (mm)	L+da (mm)	$A_c$ (mm ² )	$_{L}T_{m,A}$ (kN)	$_{L}T_{cc,A}$ (kN)	$LT_{cb,A}$ (kN)	${}_{S}T_{m,A}$ (kN)	sT _{cc,A} (kN)	sT _{cb,A} (kN)
1L	20da	260+13	147289	25.0	33.7	22.0	27.5	67.3	46 1
1R	=260	=273	166585	25.0	38.1	23.0	57.5	76.2	40.1
2L	12da	156+13	47156		10.8	13.8		21.6	27.6
2R	=156	=169	81408	25.0	18.6	13.8	27 E	37.2	27.6
4L			47156	25.0	10.8	13.8	37.5	21.6	27.6
4R			47156		10.8	13.8		21.6	27.6
5L	5da	65+13	15920						
5R	=65	=78		25.0	3.6	5.8	37.5	7.3	11.5

表 3.4.5-3 あと施工アンカーが負担する許容引張力一覧

表 3.4.5-4 あと施工アンカー単体の計算値

試験体	鉄筋 径	埋込 長さ	コンクリート 圧縮強度	鉄筋 引張強度	アンカー 付着強度	コーン破壊 面積	鉄筋断面積	コーン破壊 $T_{cc} = 0.23\sqrt{\sigma_B} \cdot A_c$	付着破壊 T _{eb} = τ _a · π · d _a · l _e	鉄筋降伏 $T_{mu} = {}_m \sigma_u \cdot {}_s a_s$
	d _a	l _e	σ _B	mσu	T a	A _c	_s a _e		$\tau_a = 10 \sqrt{\frac{\sigma_B}{21}}$	$_{m}\sigma_{u} = 1.1\sigma_{y}$
20da(溝切り無)	13	260	20.7	345	22.8	212,372	127.0	222.2	242.1	43.8
20da(溝切り有)	13	260	20.7	345	22.8	212,372	118.6	222.2	242.1	40.9
12da(溝切り無)	13	156	20.7	345	22.8	76,454	127.0	80.0	145.3	43.8
12da(溝切り有)	13	156	20.7	345	22.8	76,454	118.6	80.0	145.3	40.9
5da(溝切り無)	13	65	20.7	345	22.8	13,273	127.0	13.9	60.5	43.8
5da(溝切り有)	13	65	20.7	345	22.8	13,273	118.6	13.9	60.5	40.9

#### 3.4.6 実験結果

#### 3.4.6-1 荷重·変形関係

実験結果のうち,最大荷重 Pmax およびその時の載荷点位置でのたわみ変位 δmax と試験体の最終破壊状況を表-3.4.6-1に,試験体の荷重-変位関係図を図-3.4.6-1~ 3.4.6-3 に示す.

試験体 IL と IR, 2L と 2R および 3L と 3R の組み合わせは,スタブ部分のコーン状 破壊領域内に格子状鉄筋がある状況でのアンカー筋の本数の違いによる実験結果の 比較が可能である.この6体では,アンカー筋の本数が多い各L試験体の最大荷重が 本数の少ない各R試験体の最大荷重よりも 1.39 倍以上大きくなっており,アンカー 筋の本数増加による最大荷重向上の効果が確認できる.後述するように,アンカー 筋の埋め込み長さが 20da の IL および IR の両試験体でも最終破壊状況がアンカー筋 周囲のスタブ側コンクリートのコーン状破壊となったこともあり,この6体の結果か らは,アンカー筋の埋め込み長さが 12da 以上の範囲では,埋め込み長さを増やして も最大荷重に対する効果は現れなかったことになる.

試験体 4L と 4R は、アンカー筋の埋め込み長さは 12da で、スタブ部分に格子状鉄 筋がないものである.この2体では、最大荷重がほぼ同じであり、荷重-変形関係図 もほぼ似通った形状となっている.すなわち、スタブ側のアンカー筋周囲に補強用 の格子状鉄筋がなければ、アンカー筋の本数が増えても、最大荷重の向上は期待で きないという結果となっている.後述するように、スタブ側に格子状鉄筋がないと、 アンカー筋周囲のコーン状破壊が左右でつながり、群としてのコーン状破壊を引き 起こしやすくなるため、アンカー筋本数の違いによる最大荷重の違いが現れなかっ たものと思われる.

試験体 5L と 5R, 6L と 6R の組み合わせは,スタブ部分のコーン状破壊領域外に格 子状鉄筋がある状況でのアンカー筋の本数の違いによる実験結果の比較が可能であ る.いずれも,20kN 程ピークに達すると荷重低下をともなって変位が増大するとい う状況を繰り返している.アンカー筋本数の多い各 L 試験体の方が,本数の少ない 各 R 試験体よりの荷重低下の割合は少ないとはいえるが,最大荷重記録後の荷重低 下が激しかったため,途中のサイクルで載荷終了としている.

試験体 2L および 3L と 2R および 3R, そして試験体 5L および 6L と 5R および 6R の比較から, アンカー筋に貼付したひずみゲージの有無は,最大荷重および荷重-変位関係には影響を与えないと判断される.

試験	最大荷重	Pmax 時の変位	各R試験体の	最終破壊性状	コーン状破壊の形状
体名	Pmax	$\delta \max (mm)$	Pmax に対す		
	(kN)		る各 L 試験体		
			の Pmax の比		
1L	54.1	58.99	1.51	$AY \rightarrow CC(s)$	単独
1R	35.9	61.30		$AY \rightarrow CC(s)$	単独
2L	53.0	63.68	1.51	$AY \rightarrow CC(s)$	単独
2R	35.2	65.41.		$AY \rightarrow CC(s)$	単独
3L	54.1	64.02	1.39	$AY^* \rightarrow CC(s)$	単独
3R	38.9	62.69		AY*→CC(s)	単独
4L	45.6	40.28	0.97	$AY \rightarrow CC(s)$	重複(群コーン)
4R	47.3	41.92		$AY \rightarrow CC(s)$	重複(群コーン)
5L	19.9	4.74	1.08	CC	重複(群コーン)
5R	18.5	5.72		CC	重複(群コーン)
6L	21.8	4.41.	1.21	CC**	重複(群コーン)
6R	18.0	4.31		CC**	重複(群コーン)

表 3.4.6-1 実験結果

【最終破壊状況の表記説明】

CC=アンカー筋周囲のスタブ側コンクリートのコーン上破壊

CC(s)=表層部でのコーン状破壊

AY=アンカー筋の引張降伏

→は発生順序(例えば AY→CC(s)は「アンカー筋の引張降伏が先行発生し,その後 に表層部コンクリートのコーン状破壊が発生」の意味)

*印を付けた試験体は、アンカー筋にひずみゲージを貼付していないため、アンカー筋の引張降伏を直接確認することができない.しかし、類似の試験体との比較から、アンカー筋の引張降伏が先行して発生していたものと推定される.

**印を付けた試験体は、アンカー筋にひずみゲージを貼付していないため、アンカ ー筋の引張降伏を直接確認することができない.しかし、類似の試験体との比較か ら、アンカー筋の引張降伏が起きていなかったものと推定される.





図 3.4.6-1 荷重-変位関係(上:1L1R, 下1L1R)





図 3.4.6-2 荷重-変位関係(上: 3L3R, 下 4L4R)





図 3.4.6-3 荷重-変位関係(上:5L5R,下6L6R)

# 3.4.6-2 荷重・ひずみ関係

水平荷重とあと施工アンカー筋に設置したひずみゲージで得られた荷重-ひずみ曲 線を図 3.4.6-4~図 3.4.6-11 に示す.また,各変形角およびあと施工アンカー筋が降伏 した時点のあと施工アンカー部分のひずみの一覧を表 3.4.6-2~表 3.4.6-9 にあと施工 アンカー筋の深さ方向のひずみ分布を図 3.4.6-12~図 3.4.6-19 に示す.

あと施工アンカー筋は、有効埋め込み深さの浅い 5da の試験体(No.5L, 5R)を除き、 全てあと施工アンカーの接合面である孔口の部分で鉄筋降伏が始まっている. なお、 A筋およびB筋は引張り鉄筋側のあと施工アンカーであるのに対してC筋は内側の あと施工アンカー筋になるが、1/100 を超える過大な変形となると引張側鉄筋と同様 に孔口から鉄筋降伏が始まることが確認された.



図 3.4.6-4 荷重-ひずみ曲線 (No.1L)

赤叱舟	北亚共美						2	あと施	エアン	カー筋	のひず	み (μ)					
変形円 (イベント)	小午何里 (kN)	水平変1型 (mm)	あ	と施工	アンカ	一筋	А	あ	と施工	アンカ	一筋	в	あ	と施工	アンカ	一筋	С
(1 - 1)	(1111)	()	孔口	-4da	-8da	-12da	-16da	孔口	-4da	-8da	-12da	-16da	孔口	-4da	-8da	-12da	-16da
1/800	13.50	0.83	795	318	147	111	57	736	452	297	166	101	68	10	70	226	213
1/400	23.74	1.62	1385	848	396	236	119	1333	897	746	361	213	225	48	138	437	418
A筋-孔口降伏	31.97	2.46	2002	1309	816	396	182	1914	1272	1089	564	300	407	96	191	582	557
B筋-孔口降伏	32.02	2.90	3077	1270	816	404	193	2142	1284	1105	574	302	537	146	198	588	561
1/200	32.66	3.27	7120	1266	819	407	186	2241	1300	1117	583	304	611	184	204	593	565
1/100	37.14	6.53	25958	1398	1021	506	233	17219	1426	1305	733	350	1199	647	326	750	702
C筋-孔口降伏	41.92	9.52	31593	1568	1178	607	277	18738	1572	1475	875	426	2212	1040	493	892	798
1/50	42.51	13.01	37082	1602	1250	666	304	14556	1591	1537	971	457	14923	1120	546	940	815
A筋-4da降伏	45.96	17.62	48508	2245	1393	774	352	14048	1859	1692	1100	545	19856	1193	593	1023	883
B筋-4da降伏	45.81	18.07	49634	3034	1404	781	355	13755	2071	1698	1110	551	19934	1194	595	1026	884
1/30	47.04	21.79	58292	12653	1490	871	471	11771	12805	1799	1195	600	20477	1253	620	1059	898
B筋-8da降伏	49.11	26.54	72612	21281	1619	974	524	10575	27600	2000	1330	688	21590	1356	667	1128	948
1/15	52.02	43.45	切断	31723	1800	1156	626	9130	51783	2336	1509	909	27576	1487	762	1247	992
A筋-8da降伏	53.64	55.01	切断	37248	2001	1303	726	8731	64057	2562	1522	1019	20655	1562	837	1382	1070
最大荷重	54.09	58.99	切断	38133	1993	1315	729	8791	67920	2573	1542	1040	20942	1569	844	1394	1077
1/10	46.85	65.08	切断	39075	1889	1304	743	8264	78641	2549	1553	1074	18804	1457	839	1427	1106

表 3.4.6-2 あと施工アンカー筋のひずみ (No.1L)



図 3.4.6-12 あと施工アンカーひずみ分布 (No.1L)



図 3.4.6-5 荷重-ひずみ曲線(No.1R)

赤叱舟	业业共和	ᅶᆓᄮ					č	あと施:	エアン	カー筋	のひず	み (μ)					
変形円 (イベント)	小午何里 (kN)	水平変1型 (mm)	あ	と施工	アンカ	一筋	А	あ	と施工	アンカ	一筋	В	あ	と施工	アンカ	一筋	С
(1 21)	( RI ()	(11117)	孔口	-4da	-8da	-12da	-16da	孔口	-4da	-8da	-12da	-16da	孔口	-4da	-8da	-12da	-16da
1/800	10.39	0.84	942	496	1064	961	575	829	477	778	659	274					
1/400 A-8da <b>降伏</b>	17.88	1.64	1668	981	2080	1789	1065	1461	995	1620	1228	497					
A筋-12da降伏	17.98	1.70	1681	990	2414	2143	1278	1527	1038	1865	1444	578					
A筋B筋-孔口 B筋-8da降伏	21.43	2.30	2037	1181	2550	2222	1310	9392	1249	2022	1529	604					
1/200	22.31	3.28	11228	1184	2608	2284	1346	12701	1265	2071	1582	631					
1/100	26.21	6.54	28552	1367	2992	2628	1545	17623	1432	2355	1802	710					
1/50	28.77	13.04	39050	1490	3290	2889	1688	23367	1607	2615	1996	746					
B筋-12da降伏	26.16	13.00	38235	1373	3312	2954	1722	22666	1474	2610	2034	760					
B筋-4da降伏	30.89	17.74	47550	1923	3519	3113	1800	28874	2012	2793	2140	808					
A筋-4da降伏	31.18	18.09	48161	2289	3531	3118	1798	29351	2074	2795	2140	810					
1/30	29.51	21.76	50421	11250	3663	3264	1818	31846	4709	2873	2222	840					
1/15	34.58	43.46	切断	20077	2454	2170	1559	2512	28074	2907	2164	1312					
最大荷重	35.91	61.30	切断	切断	切断	切断	切断	切断	切断	切断	切断	切断					
1/10	34.53	65.10	切断	切断	切断	切断	切断	切断	切断	切断	切断	切断					

表 3.4.6-3 あと施工アンカー筋のひずみ (No.1R)



図 3.4.6-13 あと施工アンカーひずみ分布 (No.1R)



図 3.4.6-6 荷重-ひずみ曲線 (No.2L)

亦叱名	水亚芬香	业亚杰达					č	あと施	エアン	カー筋	のひず	み (μ)					
変形円 (イベント)	小午何里 (kN)	水平変1型 (mm)	あ	と施工	アンカ	一筋	А	あ	と施工	アンカ	一筋	В	あ	と施工	アンカ	一筋	С
(1 - 1)	(111)	(11117)	孔口	-4da	-8da	-11da		孔口	-4da	-8da	-11da		孔口	-4da	-8da	-11da	
1/800	13.15	0.85	760	447	130	48		774	404	108	39		79	7	0	3	
1/400	21.72	1.64	1259	831	468	182		1299	823	430	131		268	34	5	0	
B筋-孔口降伏	29.36	2.41	1720	1161	619	246		2054	1196	662	263		418	62	9	-2	
A筋-孔口降伏	31.23	2.95	4973	1347	725	287		13577	1241	655	243		546	97	25	1	
1/200	30.84	3.27	10791	1314	714	286		16552	1226	653	242		608	118	36	4	
1/100	36.70	6.67	19349	1467	817	337		30049	1398	776	230		1243	376	318	62	
C筋-孔口降伏	40.74	9.78	21786	1638	977	397		34588	1622	913	386		2157	564	588	170	
1/50	41.38	13.09	23457	1731	1050	455		40428	1729	975	422		7878	597	775	293	
B筋-4da降伏	42.12	13.73	23440	1819	1060	463		41141	2064	1006	430		8040	607	860	299	
A筋-4da降伏	45.07	20.34	28482	17685	1216	532		51377	18571	1097	495		16445	628	1013	360	
1/30	43.94	21.93	29750	22784	1210	529		52999	23176	1098	505		18285	619	1027	364	
1/15	50.05	43.47	46624	切断	1566	684		切断	40581	1370	679		30987	974	1378	513	
C筋-4da降伏	51.23	47.57	67665	切断	1607	715		切断	45548	1455	708		32027	2036	1441	555	
最大荷重	52.95	63.68	切断	切断	1602	782		切断	57045	1597	782		39289	7844	1495	589	
1/10	51.77	65.09	切断	切断	1605	623		切断	57571	1583	781		39935	8190	1475	582	

表 3.4.6-4 あと施工アンカー筋のひずみ (No.2L)



図 3.4.6-14 あと施工アンカーひずみ分布 (No.2L)



図 3.4.6-7 荷重-ひずみ曲線(No.2R)

亦叱舟	业业共和	-1					Z	あと施工	エアン	カー筋	のひず	み (μ)				-	
変形円 (イベント)	水平何里 (kN)	水半変位 (mm)	あ	と施工	アンカ	一筋	А	あ	と施工	アンカ	一筋	в	あ	と施工	アンカ	一筋	С
(1 • • • • • )	( KIV)	(11111)	孔口	-4da	-8da	-11da		孔口	-4da	-8da	-11da		孔口	-4da	-8da	-11da	
1/800	8.87	0.82	846	476	155	65		702	487	247	74						
1/400	15.76	1.64	1480	923	551	209		1294	907	531	252						
B筋-孔口降伏	20.49	2.34	1902	1259	748	375		2122	1224	677	285						
A筋-孔口降伏	20.98	2.94	2023	1263	729	358		7134	1272	709	299						
1/200	21.28	3.27	2040	1274	732	362		8794	1278	717	299						
1/100	25.12	6.53	27420	1388	809	402		23144	1393	1532	349						
1/50	28.13	13.05	41647	1782	992	492		31939	1955	1702	411						
B筋-4da降伏	27.63	13.10	41478	1803	1001	501		31490	2053	1708	423						
A筋-4da降伏	28.67	13.47	42341	2018	1028	513		32212	2423	1732	434						
1/30	30.54	21.71	58883	18656	1141	585		45179	15824	1815	482						
B筋-8da降伏	33.64	36.38	89109	29170	1383	583		68478	26226	2011	579						
1/15	33.69	43.37	切断	35351	1445	578		切断	30566	2047	611						
最大荷重 1/10	35.22	65.41	切断	48982	1453	626		切断	39992	1396	789						

表 3.4.6-5 あと施工アンカー筋のひずみ (No.2R)



図 3.4.6-15 あと施工アンカーひずみ分布 (No.2R)



図 3.4.6-8 荷重-ひずみ曲線(No.4L)

亦以色	北亚芬香	业立亦位					5	あと施工	エアン	カー筋	のひず	み (μ)	-				
変形円 (イベント)	小午何里 (kN)	水平変1型 (mm)	あ	と施工	アンカ	一筋	А	あ	と施工	アンカ	一筋	В	あ	と施工	アンカ	一筋	С
(1 - 1)	( 111 ()	()	孔口	-4da	-8da	-11da		孔口	-4da	-8da	-11da		孔口	-4da	-8da	-11da	
1/800	12.17	0.83	675	387	123	59		713	421	180	95		47	0	47	40	
1/400	22.02	1.69	1217	819	473	192		1308	844	561	262		217	22	106	96	
B筋-孔口降伏	31.43	2.92	1856	1367	820	425		2016	1375	930	464		456	56	150	136	
1/200	32.41	3.49	1857	1417	870	443		3385	1352	925	465		596	91	168	139	
A筋-孔口降伏	36.21	6.15	2026	1522	987	507		15994	1486	1064	559		1144	300	359	241	
1/100	36.30	6.59	6554	1497	986	506		19824	1491	1078	580		1221	325	427	263	
C筋-孔口降伏	38.62	8.06	22841	1577	1068	553		30163	1593	1209	670		2055	419	619	351	
1/50	38.42	13.13	25706	1650	1255	574		30715	1989	1526	900		3904	518	1223	617	
B筋-4da降伏	36.35	13.22	25173	1628	1220	565		30340	2011	1548	911		3891	512	1257	641	
A筋-4da降伏	39.75	15.08	25622	2119	1365	591		30680	11847	1649	973		4968	1266	1381	691	
C筋-4da降伏	40.44	16.50	25837	5173	1432	600		30782	19045	1686	994		7036	2160	1406	701	
1/30	41.18	21.82	29856	19007	1577	583		31972	23704	1732	980		14893	4929	1419	713	
最大荷重	45.61	41.13	40705	32347	1729	605		41289	37989	1878	945		27572	9246	1550	799	
1/15	43.30	43.37	41819	33834	1646	563		40213	39513	1763	866		27927	9619	1535	798	
1/10	40.29	65.68	52500	48536	1704	590		39389	54650	1578	687		33833	16763	1752	914	

表 3.4.6-6 あと施工アンカー筋のひずみ (No.4L)



図 3.4.6-16 あと施工アンカーひずみ分布 (No.4L)



図 3.4.6-9 荷重-ひずみ曲線(No.4R)

亦形色	水亚荷香	ᅶᄑᅔᄮ					č	あと施	エアン	カー筋	のひず	み (μ)					
変形円 (イベント)	小十何里 ( kN)	<u>水平変位</u> (mm)	あ	と施工	アンカ	一筋	А	あ	と施工	アンカ	一筋	в	あ	と施工	アンカ	一筋	С
( )	(/	()	孔口	-4da	-8da	-11da		孔口	-4da	-8da	-11da		孔口	-4da	-8da	-11da	
1/800	11.82	0.83	722	368	122	64		604	420	151	53						
1/400	19.46	1.63	1171	819	527	211		929	709	403	191						
1/200	29.56	3.31	1790	1396	855	386		1613	1293	718	323						
B筋-孔口降伏	34.19	6.00	1939	1610	1033	468		2011	1576	903	409						
1/100	34.14	6.57	1921	1617	1044	469		5274	1565	898	404						
A筋-孔口降伏	35.86	7.78	2039	1681	1092	490		17651	1654	947	417						
1/50	39.46	13.18	30327	1838	1190	534		28467	1901	1061	502						
B筋-4da降伏	38.92	13.59	29399	1887	1203	536		28530	2008	1106	527						
A筋-4da降伏	40.39	14.25	29722	2018	1226	545		28993	3592	1134	541						
1/30	41.82	21.76	34180	21211	1327	580		35642	22798	1293	609						
B筋-8da降伏	46.40	37.26	46809	39750	1522	644		52476	35412	2005	679						
最大荷重	47.29	42.44	67805	47864	1535	671		58657	40136	3040	692						
1/15	45.96	43.33	68630	49001	1498	660		58824	40457	3170	670						
A筋-8da降伏	40.7873	64.98	95670	79939	2032	749.8		56058	43090	4058	380.6						
1/10	38.9647	65.585	94990	80012	2072	737.4		55866	42879	3964	345						

表 3.4.6-7 あと施工アンカー筋のひずみ (No.4R)



図 3.4.6-17 あと施工アンカーひずみ分布 (No.4R)





図 3.4.6-10 荷重-ひずみ曲線 (No.5L)

亦叱色	业业共和	北亚杰达					2	あと施工	エアン	カー筋	のひず	み (μ)					
変 <i>i</i> が円 (イベント)	小十何里 (kN)	八千変12 (mm)	あ	と施工	アンカ	一筋	А	あ	と施工	アンカ	一筋	в	あ	と施工	アンカ	一筋	С
(1 .2 1)	( RI I)	(11111)	孔口	-4da				孔口	-4da				孔口	-4da			
1/800	11.58	0.81	643	258				691	281				54	9			
1/400	17.83	1.65	939	408				1080	464				256	62			
ひずみ最大	19.46	3.20	854	483				1230	603				545	247			
1/200	19.31	3.32	839	479				1212	596				550	254			
最大荷重	19.85	4.74	891	514				1220	620				696	377			
1/100	18.82	6.52	898	538				1132	605				646	364			
1/50	16.31	13.10	991	582				942	498				532	284			
1/30	13.55	21.83	961	489				865	390				406	205			
1/15	7.44	43.72	671	353				687	310				299	155			
1/10	2.76	65.46	256	190				278	164				156	76			

表 3.4.6-8 あと施工アンカー筋のひずみ (No.5L)



図 3.4.6-18 あと施工アンカーひずみ分布 (No.5L)



図 3.4.6-11 荷重-ひずみ曲線 (No.5R)

表 3.4.6-9 あと	と施工ア	ンカー	筋のひずみ	(No.5R)
--------------	------	-----	-------	---------

変形角 (イベント) ( kN)	水田花香	业业本估	あと施工アンカー筋のひずみ(µ)														
	小十何里 (kN)	· 水平変位 (mm)	あと施エアンカー筋 A			あと施エアンカー筋 B				в	あと施エアンカー筋 C						
	( RI U		孔口	-4da				孔口	-4da				孔口	-4da			
1/800	7.78	0.84	690	259				669	270								
1/400	12.32	1.68	1108	424				1029	419								
1/200	16.70	3.26	1471	627				1348	614								
最大荷重	18.52	6.02	1831	767				1469	706								
ひずみ最大	18.47	6.40	1840	769				1445	695								
1/100	17.93	6.72	1766	758				1400	671								
1/50	8.47	13.37	735	426				502	300								
1/30	5.47	21.70	611	318				111	84								
1/15	2.32	44.14	341	39				-1	19								



図 3.4.6-19 あと施工アンカーひずみ分布 (No.5R)

### 3.4.6-3 破壊状況

表-3.4.6-1 に示すとおり,試験体の最終破壊状況ではすべての試験体でスタブ側のアンカー筋周囲のコンクリートのコーン状破壊が見られている.しかしながら, 試験体 1L から 2R および 4L と 4R の計 6 体では,アンカー筋の引張降伏が先行して 発生し,その後にスタブ部分の表層のコンクリートがコーン状破壊を起こしている. 図-3 に示す試験体 2L および 2R の荷重-変位関係図の形状との類似および両試験体 でのアンカー筋の引張ひずみ度の測定結果から,アンカー筋にひずみゲージを貼付 していない試験体 3L および 3R でも,アンカー筋の引張降伏が起きているものと推 定される. 試験体 4L および 4R では,群としてのコーン状破壊が起きている.一方, 試験体 5L と 5R では,アンカー筋の引張降伏をともなわずに,群としてのコーン状 破壊が起きている. 試験体 6L と 6R でも,群としてのコーン状破壊が起き,アンカ ー筋の引張降伏はないものと推定される.

実験時の試験体のひび割れおよび載荷終了後に試験体を引き倒して,アンカー筋 周囲のコーン状破壊の詳細を確認している.その状況を図 3.4.6-12~図 3.4.6-23 に示 す.なお,載荷終了後にアンカー筋を人為的に切断している.

アンカー筋の引張降伏を誘発させるために埋め込み長さを 20da=260 mm とした試 験体 IL および IR でも、最終破壊状況はコーン状破壊となった. 写真 3.4.6-1 は、コ ーン状破壊が1本のアンカー筋の周囲だけで起きているもの(すなわち、群でのコー ン状破壊になっていないもの)の最終破壊状況である. 各 L 試験体および IR 試験体 は隣接するコーン状破壊領域が重複して群でコーン状破壊となることが予想されて いた. しかし、IL から 3R までの6体の試験体では、各アンカー筋周囲での単独のコ ーン状破壊となっている. これらは、スタブ部分に格子状鉄筋が配筋されており、 想定されるコーン領域内に格子状鉄筋がある場合、コーン状破壊を起こす領域が小 さくなることが分かる.

一方,群でのコーン状破壊が起きているものの最終破壊状況である. 試験体 4L および 4R はスタブ内に格子状鉄筋の配筋がないもので,コーン状破壊領域内に格子状鉄筋の配筋がある 2L から 3R までの 4 体の試験体との比較から,コーン状破壊領域内の格子状鉄筋が群でのコーン状破壊を防止することが分かる.

5Lから6Rまでの4体の試験体では、コーン状破壊領域外に格子状鉄筋が配筋されている.写真を見ても明らかなように、格子状鉄筋より上側にあるコンクリートが浮き上がるようにして、群でのコーン状破壊が起きている.群でのコーン状破壊を防ぐためには、アンカー筋の埋め込み長さの範囲内に今回の格子状鉄筋のような補強用鉄筋の配筋が必要と思われる.





図 3.4.6-12 ひび割れ図および最終破壊状況写真(No.1L)



断面図(外側)反転

平面図



図 3.4.6-13 ひび割れ図および最終破壊状況写真 (No.1R)



平面図



図 3.4.6-14 ひび割れ図および最終破壊状況写真(No.2L)



平面図



図 3.4.6-15 ひび割れ図および最終破壊状況写真 (No.2R)


平面図



図 3.4.6-16 ひび割れ図および最終破壊状況写真(No.3L)







図 3.4.6-17 ひび割れ図および最終破壊状況写真(No.3R)



平面図



図 3.4.6-18 ひび割れ図および最終破壊状況写真 (No.4L)



平面図



図 3.4.6-19 ひび割れ図および最終破壊状況写真 (No.4R)



平面図



図 3.4.6-20 ひび割れ図および最終破壊状況写真(No.5L)



平面図



図 3.4.6-21 ひび割れ図および最終破壊状況写真(No.5R)



平面図



図 3.4.6-22 ひび割れ図および最終破壊状況写真(No.6L)



平面図



図 3.4.6-23 ひび割れ図および最終破壊状況写真(No.6R)

## 3.4.6-4 あと施工アンカー単体引張実験結果

あと施工アンカー単体の引張実験は、単調載荷で、あと施工アンカーの鉄筋降伏 が確認できるか載荷し、鉄筋降伏を超える試験体については、材料試験で確認され ている鉄筋破断強度の手前まで載荷して除荷した.

(1)荷重·変形関係

単体引張実験結果のうち荷重、抜け出し変形および最終破壊形式に関する一覧を 表 3.4.6-3 に示す.また,荷重-抜け出し変位の関係図を図 3.4.6-24~図 3.4.6-30 に示 す.

有効埋め込み長さが浅い 5da の試験体を除き鋼材降伏の値を超える挙動を示していた.5da の試験体は,鋼材降伏前にコーン状破壊を示していた.

また,溝切り加工を施した試験体は降伏荷重が小さく出ているが、これは溝切り によって鉄筋の断面積が現象したことに起因したものである。その現象はひずみゲ ージの貼り方による違いを検証するために行った付着試験においても同様の結果と なっている。

=:# #순	⇒∞	∔⊞≥λ	ゲージ	均古		最大荷重			降伏荷重			
<b></b> 武 駅	武駅	埋込	ゲージ	- 拘宋 - 研究	荷重	変位 (mm)	平均値	荷重	変位 (mm)	平均値	最終破壊形状	
内台	评石	жe		<u></u> 或刑	(kN)	最大荷重時	(変位)	(kN)	降伏荷重時	(変位)		
	1T-1		無		57.74	4.16	F7 01	46.15	0.24	42.50	鋼材降伏+コーン(73*73)	
	1T-2	20da	有(溝)	有	57.14	8.31	57.91	39.76	0.49	43.58	鋼材降伏+コーン(50*46)	
	1T-3		無		58.83	5.06	(5.84)	44.84	0.51	(0.41)	鋼材降伏+コーン(78*78)	
	2T-1		有(溝)		57.75	7.92		40.15	0.84		鋼材降伏+コーン(100*106)	
	2T-2		有(溝)		56.14	7.97	56.93	39.76	0.40	42.26	鋼材降伏+コーン(95*105)	
	2T-3	12da	有(溝)	有	56.35	7.32		40.45	0.37		鋼材降伏+コーン(65*76)	
	2T-4		無		58.30	4.14	(6.15)	45.95	0.33	(0.42)	鋼材降伏+コーン(75*62)	
	2T-5		無		56.09	3.42	(0.15)	45.02	0.23	(0.43)	鋼材降伏+コーン(94*84)	
引張	4T-1		有(溝)		55.23	7.02		41.60	0.77		鋼材降伏+コーン(149*150)	
試験	4T-2	12da	有(溝)		54.29	6.53	56.93	40.75	1.48	43.09	鋼材降伏+コーン(75*74)	
	4T-3		有(溝)	無	56.33	7.68		40.91	1.40		鋼材降伏+コーン(73*89)	
	4T-4		無		59.39	5.64	(6.7)	45.75	0.46	(1.0)	鋼材降伏+コーン(132*149)	
	4T-5		無		59.39	6.66	(0.7)	46.44	1.91	(1.2)	鋼材降伏+コーン(128*117)	
	5T-1		有(溝)		28.41	0.90		I	—		コーン(175*191)	
	5T-2		有(溝)		33.00	1.56	32.23	_	-	-	コーン(313*532)	
	5T-3	5da	有(溝)	有	30.55	1.33		-	-		コーン(391*309)	
	5T-4		無	<u>無</u> 無	31.80	0.43	(1.04)	_	-	_	コーン(394*239)	
	5T-5		無		37.40	0.99		_	-	_	コーン(234*272)	
	3T-1		有			63.83	8.49		45.84	0.99		鋼材降伏
	3T-2		有		62.94	7.98	61.82	46.25	1.20	41.06	鋼材降伏	
	3T-3		有		62.05	8.24		44.24	1.35		鋼材降伏	
	3T-4		有		60.19	7.92	(7.47)	30.36	1.67	(1.20)	鋼材降伏	
	3T-5		有		60.07	4.73	(1.41)	38.60	1.75	(1.59)	鋼材降伏	
	3T-6		有(溝)		56.55	6.82		34.35	1.04		鋼材降伏	
仕美	3T-7		有(溝)		58.02	7.75	56.74	40.54	1.16	37.60	鋼材降伏	
討雇	3T-8	12da	有(溝)	有	56.05	7.92		32.25	1.59		鋼材降伏	
副心园火	3T-9		有(溝)		56.86	8.06	(7.59)	39.79	0.92	(1.06)	鋼材降伏	
	3T-10		有(溝)		56.24	7.32	(1.50)	41.05	0.59	(1.00)	鋼材降伏	
	3T-11		無		62.15	5.49		43.30	1.83		鋼材降伏	
	3T-12		無		64.06	5.76	63.77	44.95	0.97	44.98	鋼材降伏	
	3T-13		無		64.69	5.17		45.84	0.54		鋼材降伏	
	3T-14		無		64.03	6.33	(5.70)	45.26	1.28	(1.14)	鋼材降伏	
	3T-15		無		63.90	6.04	(0.70)	45.54	1.09	(1.14)	鋼材降伏	

表 3.4.6-3 あと施工アンカー単体引張実験結果一覧(荷重・変位・破壊形式)



図 3.4.6-24 あと施工アンカー単体引張荷重-抜け出し変位関係(1T-1~1T-3)



図 3.4.6-25 あと施工アンカー単体引張荷重-抜け出し変位関係(2T-1~2T-5)



図 3.4.6-26 あと施工アンカー単体引張荷重-抜け出し変位関係(4T-1~4T-5)



図 3.4.6-27 あと施工アンカー単体引張荷重-抜け出し変位関係(5T-1~5T-5)



図 3.4.6-28 あと施工アンカー単体引張荷重-抜け出し変位関係(3T-1~3T-5)



図 3.4.6-29 あと施工アンカー単体引張荷重-抜け出し変位関係(3T-6~3T-10)



図 3.4.6-30 あと施工アンカー単体引張荷重-抜け出し変位関係(3T-11~3T-15)

(2)荷重・ひずみ関係

あと施工アンカー単体の引張実験においてひずみを計測した試験体の結果一覧を 表 3.4.6-4~表 3.4.6-5 に示す.また,各計測位置のひずみの関係を図 3.4.6-31~図 3.4.6-に示す.

ひずみは各試験体の降伏荷重時と終局荷重時を示している.埋込長さが 5da と浅い 5T-1~5T-3の試験体を除き,埋込長さ方向のひずみ分布は同じような分布を示しており,鋼材降伏時は,孔口のひずみが降伏を示し,終局荷重時には,孔口から 4da まで降伏ひずみに達している.この傾向は,3T-1~3T-10の付着試験体でも同様の傾向が確認されており,鋼材降伏する長さが埋め込まれた試験体(12da 以上)では同様の傾向になると推察される.

試験体名		引張試験ひずみ(µ)											
坦	埋込長さ		2T-1	2T-2	2T-3	4T-1	4T-2	4T-3	5T-1	5T-2	5T-3		
降伏荷重(kN)		39.76	40.15	39.76	40.45	41.60	40.75	40.91	-	—	_		
終局荷重(kN)		57.14	57.75	56.14	56.35	55.23	54.29	56.33	28.41	33.00	30.55		
	孔口	10188	14951	2590	2087	10020	2059	3878	-	—	—		
喀什	-4da	1304	1256	1265	1235	1341	1251	1198	—	—	—		
一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	-8da	715	529	600	576	580	556	585					
刊里	-12da(11da)	266	233	216	195	217	202	200					
	-16da	79											
	孔口	切断	切断	切断	切断	88877	77024	切断	1266	1469	1397		
終局	-4da	26778	切断	切断	切断	切断	切断	切断	568	635	536		
荷香	-8da	1301	1106	1197	1045	1237	954	1050					
回里	-12da	683	524	471	395	483	398	409					
	-16da	266											

表 3.4.6-4 あと施工アンカー単体引張実験におけるひずみ分布(引張試験)

# 表 3.4.6-4 あと施工アンカー単体引張実験におけるひずみ分布(付着試験)

=	≠睦仕々					付着試験で	ひずみ(μ)					
地設体石 埋込長さ			—	般的なゲー	-ジ		溝切り鉄筋によるゲージ					
		3T-1	3T-2	3T-3	3T-4	3T-5	3T-6	3T-7	3T-8	3T-9	3T-10	
降位	犬荷重(kN)	45.84	46.25	44.24	30.36	38.60	34.35	40.54	32.25	39.79	41.05	
終居	局荷重(kN)	63.83	62.94	62.05	60.19	60.07	56.55	58.02	56.05	56.86	56.24	
	孔口	3101	6613	2001	2086	2063	2022	2303	2057	2565	2227	
喀伊	-4da	1359	1334	1287	866	955	812	1301	897	974	1203	
一 一 一 一 一 一 一	-8da	644	695	641	367	426	419	631	434	452	553	
刊里	-12da(11da)	132	228	131	106	105	128	195	111	118	192	
	-16da											
	孔口	切断	66193	45853	52048	37525	切断	125879	116585	切断	94915	
紋曰	-4da	29895	24680	26564	18592	1735	切断	切断	切断	切断	切断	
荷香	-8da	1060	1039	970	795	747	切断	切断	960	788	950	
戸王	-12da	203	342	178	155	142	343	切断	切断	269	384	
	-16da											



図 3.4.6-30 あと施工アンカー単体引張実験におけるひずみ分布図(鋼材降伏)



図 3.4.6-31 あと施工アンカー単体引張実験におけるひずみ分布図 (コーン破壊)



図 3.4.6-32 あと施工アンカー単体引張実験におけるひずみ分布図(付着試験)

(3)破壊状況

あと施工アンカー単体の引張実験の最終破壊状況について写真 3.4.6-1~写真 3.4.6-5 に示す.

埋込長さが長い(12da以上)引張試験体(1T-1~1T-3, 2T-1~2T-5, 4T-1~4T-5)については、鋼材降伏後のコーン破壊が確認される.また、埋込長さが浅い(5da)引張試験体(5T-1~5T-5)については大きなコーン破壊が確認される.なお、付着試験体(3T-1~3T-15)については、目に見える破壊は確認されなかった.



写真 3.4.6-1 あと施工アンカー単体実験破壊状況(1T-1~1T-3)



写真 3.4.6-2 あと施工アンカー単体実験破壊状況(2T-1~2T-5)



写真 3.4.6-3 あと施工アンカー単体実験破壊状況(3T-1~3T-8)



写真 3.4.6-4 あと施工アンカー単体実験破壊状況(3T-9~3T-15)



写真 3.4.6-5 あと施工アンカー単体実験破壊状況(4T-1~4T-5)



写真 3.4.6-6 あと施工アンカー単体実験破壊状況(5T-1~5T-5)

## 3.4.7 考察

#### 3.4.7-1 あと施エアンカー単体引張実験の各種比較

あと施工アンカー単体引張実験について,スラブ接合部実験の考察のために以下 について考察する.

(1)計算値との比較

引張試験結果と計算値を比較した一覧を表 3.4.7-1 に示す.

最終破壊形状が鋼材降伏後にコーン破壊を起こしている試験体(埋込長さ 20da および 12da の全て)では、実験での降伏荷重が鉄筋の鋼材降伏から決まる設計値と比較して0.97~1.06倍の範囲でほぼ整合していると言える。若干下回った試験体は何れもゲージを貼り付けるために溝切り加工した試験体であり、溝切り加工のばらつきによって鋼材の断面積の違いが影響した可能性はあるが微小なばらつきであった.なお、降伏後の最大荷重のは、54.29~58.83kN であり、埋込長さやゲージ有無、鉄筋による拘束などの影響は微小で、どの試験体も同じような結果となった.

一方,最終破壊形状がコーン破壊の試験体(埋込長さが 5da と短い試験体)では,実 験での最大荷重がコンクリートのコーン破壊で決まる設計値と比較して2.05~2.69倍 の値が確認された.

試験 内容	試験 体名	埋込 長さ	ゲージ	拘束 鉄筋	最大荷重 (kN)	降伏荷重 (kN)	最終破壊形状	計算値(kN)	実験値(最大) /計算値	実験値(降伏) /計算値
	1T-1		無		57.74	46.15	鋼材降伏+コーン	43.82	1.32	1.05
	1T-2	20da	有(溝)	有	57.14	39.76	鋼材降伏+コーン	40.92	1.40	0.97
	1T-3		無		58.83	44.84	鋼材降伏+コーン	43.82	1.34	1.02
	2T-1		有(溝)		57.75	40.15	鋼材降伏+コーン	40.92	1.41	0.98
	2T-2		有(溝)		56.14	39.76	鋼材降伏+コーン	40.92	1.37	0.97
	2T-3	12da	有(溝)	有	56.35	40.45	鋼材降伏+コーン	40.92	1.38	0.99
	2T-4		無		58.30	45.95	鋼材降伏+コーン	43.82	1.33	1.05
	2T-5		無		56.09	45.02	鋼材降伏+コーン	43.82	1.28	1.03
引張	4T-1		有(溝)		55.23	41.60	鋼材降伏+コーン	40.92	1.35	1.02
試験	4T-2		有(溝)		54.29	40.75	鋼材降伏+コーン	40.92	1.33	1.00
	4T-3	12da	有(溝)	無	56.33	40.91	鋼材降伏+コーン	40.92	1.38	1.00
	4T-4		無		59.39	45.75	鋼材降伏+コーン	43.82	1.36	1.04
	4T-5		無		59.39	46.44	鋼材降伏+コーン	43.82	1.36	1.06
	5T-1		有(溝)		28.41	-	コーン	13.89	2.05	-
	5T-2		有(溝)		33.00	—	コーン	13.89	2.38	-
	5T-3	5da	有(溝)	有	30.55		コーン	13.89	2.20	-
	5T-4		無		31.80	—	コーン	13.89	2.29	-
	5T-5		無		37.40	—	コーン	13.89	2.69	-

表 3.4.7-1 引張試験結果と計算値の比較

## (2)コーン破壊による影響

引張試験のいずれの試験体でもコーン破壊が確認されたため、実測されたコーン 破壊面積による実測値とコーン破壊の計算値を比較した結果を表 3.4.7-2 に示す.

鋼材降伏後にコーン破壊している試験体において確認されたコーン破壊面積は計 算上のコーン破壊面積に比べて著しく小さいため、計算値と比較すると埋込長さが 20da のもので 0.01~0.02 倍と極めて小さく、12da のものでも 0.05~0.23 倍と同様に 小さい値となった.しかし、実際に計測された最大荷重はコーン破壊面積によらず、 ほぼ材料試験における鋼材の引張強度を示しており、また付着試験においても同様の結果になっていることから、鋼材降伏後に見られたコーン破壊は鋼材降伏時に孔口から4da付近で確認された鉄筋の伸び変形(表 3.4.6-1 および図 3.4.6-1 参照)によって、鋼材降伏後にコンクリート表面をコーン破壊させたものではないかと推察される.そのことを踏まえると埋込長さが長い試験体では、表層部分のコーン破壊は見られるが、鋼材降伏強度から求まる計算値が実測値に近いと考えられる.

一方,最終破壊形状がコーン破壊の試験体において確認されたコーン破壊面積は 計算上のコーン破壊面積に比べて著しく大きいため,計算値と比較すると1.98~9.85 倍と大きく,ばらつきも大きい値となった.しかし,実際に計測された最大荷重は コーン破壊実測値ほどばらつきがないことから,コーン破壊のみの計算値で実験値 が評価できないことが確認された.

試験 内容	試験 体名	埋込 長さ	ゲージ	拘束 鉄筋	最大荷重 (kN)	最終破壊形状 (コーン直径(mm))	コーン破壊 実測面積 (mm ² )	コーン破壊 実測値(kN)	コーン破壊 計算値(kN)	コーン破壊 実測値 /計算値
	1T-1		無		57.74	鋼材降伏+コーン(73*73)	4185	4.38	222.23	0.02
	1T-2	20da	有(溝)	有	57.14	鋼材降伏+コーン(50*46)	1806	1.89	222.23	0.01
	1T-3		無		58.83	鋼材降伏+コーン(78*78)	4778	5.00	222.23	0.02
	2T-1	_	有(溝)		57.75	鋼材降伏+コーン(100*106)	8325	8.71	80.00	0.11
	2T-2		有(溝)		56.14	鋼材降伏+コーン(95*105)	7834	8.20	80.00	0.10
	2T-3	12da	有(溝)	有	56.35	鋼材降伏+コーン(65*76)	3880	4.06	80.00	0.05
	2T-4 2T-5		無		58.30	鋼材降伏+コーン(75*62)	3652	3.82	80.00	0.05
			無		56.09	鋼材降伏+コーン(94*84)	6202	6.49	80.00	0.08
引張	4T-1		有(溝)		55.23	鋼材降伏+コーン(149*150)	17554	18.37	80.00	0.23
試験	4T-2		有(溝)		54.29	鋼材降伏+コーン(75*74)	4359	4.56	80.00	0.06
	4T-3	12da	有(溝)	無	56.33	鋼材降伏+コーン(73*89)	5103	5.34	80.00	0.07
	4T-4		無		59.39	鋼材降伏+コーン(132*149)	15447	16.16	80.00	0.20
	4T-5		無		59.39	鋼材降伏+コーン(128*117)	11762	12.31	80.00	0.15
	5T-1		有(溝)		28.41	$\neg - > (175*191)$	26252	27.47	13.89	1.98
	5T-2		有(溝)		33.00	⊐−ン(313*532)	130781	136.85	13.89	9.85
	5T-3	5da	有(溝)	有	30.55	⊐−ン(391*309)	94891	99.30	13.89	7.15
	5T-4		無		31.80	コーン(394*239)	73958	77.39	13.89	5.57
	5T-5		無		37.40	コーン(234*272)	49989	52.31	13.89	3.77

表 3.4.7-2 コーン破壊を考慮した計算値と実験値の比較

(3)あと施工アンカーにおけるひずみゲージの貼り方の検証

あと施工アンカーの孔内の鉄筋のひずみを計測する場合,孔内の接着剤と鉄筋の 間に防水テープなどの養生やリード線などによってひずみゲージを貼らない場合と 条件が異なっているのが現状である.その問題の解決のため,本実験では,接合部 実験で計測したあと施工アンカー内のひずみはひずみゲージを異形鉄筋の縦節に溝 切り加工を施して貼り付けて計測を行っている.

それらのひずみゲージの貼り方による違いを検証するために行ったあと施工アン カー単体の付着試験結果一覧を表 3.4.7-3 に示す.

実験値と計算値を比較した結果,ひずみゲージを貼っていない試験体は降伏荷重 に対して0.99~1.05倍とほぼ整合しているのに対して,通常のひずみゲージを貼った 試験体は0.69~1.06倍,溝切り鉄筋にひずみゲージを貼った試験体は0.79~1.00倍と ばらつきが大きく低い強度になっていることが確認された.ただし,最大強度はい ずれの試験体もばらつきが少なく、ほぼ材料試験における鋼材の引張強度を示している。

今回実施した埋込長さであれば、溝切り加工によって鋼材の断面積が小さいため 強度の違いはあるが、設計値で断面欠損分を考慮すれば、最大荷重時の評価に影響 はなく、降伏荷重時を評価する場合は、ばらつきがあることが分かった.これは、 ひずみゲージを貼るか貼らないかの違いであり、貼り方による影響は確認されなか った.ただし、溝切り鉄筋にゲージを貼り付ける場合、リード線が細いことから鉄 筋の伸びが大きくなると断線してしまうため、試験体製作の工夫は必要であると考 えられる.

	-					1				
試驗	試驗	埋込		最大	荷重	降伏	荷重		計質値	宝駼値(降伏)
内应	休夕	E+	ゲージ	荷重	変位 (mm)	荷重	変位 (mm)	最終破壞形状	(LN)	/計質値
NA	座右	жe		(kN)	最大荷重時	(kN)	降伏荷重時		(KIN)	11 年 16 /
	3T-1		有	63.83	8.49	45.84	0.99	鋼材降伏	43.82	1.05
	3T-2		有	62.94	7.98	46.25	1.20	鋼材降伏	43.82	1.06
	3T-3		有	62.05	8.24	44.24	1.35	鋼材降伏	43.82	1.01
	3T-4		有	60.19	7.92	30.36	1.67	鋼材降伏	43.82	0.69
	3T-5	1	有	60.07	4.73	38.60	1.75	鋼材降伏	43.82	0.88
	3T-6	12da	有(溝)	56.55	6.82	34.35	1.04	鋼材降伏	40.92	0.84
仕差	3T-7		有(溝)	58.02	7.75	40.54	1.16	鋼材降伏	40.92	0.99
討槍	3T-8		有(溝)	56.05	7.92	32.25	1.59	鋼材降伏	40.92	0.79
武小司火	3T-9	1	有(溝)	56.86	8.06	39.79	0.92	鋼材降伏	40.92	0.97
	3T-10	1	有(溝)	56.24	7.32	41.05	0.59	鋼材降伏	40.92	1.00
	3T-11		無	62.15	5.49	43.30	1.83	鋼材降伏	43.82	0.99
	3T-12		無	64.06	5.76	44.95	0.97	鋼材降伏	43.82	1.03
	3T-13		無	64.69	5.17	45.84	0.54	鋼材降伏	43.82	1.05
	3T-14		無	64.03	6.33	45.26	1.28	鋼材降伏	43.82	1.03
	3T-15	1	無	63.90	6.04	45.54	1.09	鋼材降伏	43.82	1.04

表 3.4.7-3 付着試験結果一覧

# 3.4.7-2 スラブ接合部実験における実験値と計算値との比較

あと施工アンカー単体の実験結果を用いて,スラブ接合部実験におけるあと施工 アンカーの実験値と計算値の比較を行った.

図 3.4.7-2 に検討の模式図を示す.

本検討は、ILから4Rまでの8試験体について、接合部実験で最大荷重時に全ての あと施工アンカー筋(引張側も圧縮側も)のひずみが引張降伏していることが確認され たことから、最大荷重時にスラブ接合部に生じる力は全てあと施工アンカー筋が負 担すると仮定して、最大荷重から算出した全体曲げモーメントを内側と外側のそれ ぞれのあと施工アンカーがスラブ端部を起点に発生するモーメントで負担すると考 え、あと施工アンカー単体の引張実験結果から計算値を算出して比較を行った.あ と施工アンカー単体の降伏荷重を表 3.4.7-2 に示す.比較した結果を表 3.4.7-3 に示す.



 $(P \times h)/3 = T_1 \times 150 + T_2 \times 50$  (No. 1~4L試験体) (P × h)/2=T_1 × 150 + T_2 × 50 (No. 1~4R試験体)

> h = 575 mm T₁=T₂=あと施工アンカー単体引張降伏荷重

図 3.4.7-2 スラブ接合部実験の計算値算出模式図

試験体名	溝切り有無混合	溝切り無
No. 1L, R	42. 6kN	_
No. 2L, R	42. 7kN	_
No. 3L, R	-	44. 9kN
No. 4L, R	43. 6kN	_

表 3.4.7-2 計算値に使用したあと施工アンカー降伏荷重

No.1L~No.3R の試験体は,計算値と比べて 1.15~1.24 倍の実験結果となっている. 模式図のように純粋な引張ではなく曲げが加わっていることから,計算値を算出す る際に用いているあと施工アンカー単体の降伏荷重よりは大きな値になると考えら れる. なお,スラブ接合部実験では,最大荷重時には引張側のあと施工アンカーは 深い位置(孔口から 8da)まで降伏しているのに対して,単体の降伏荷重は孔口の降伏 で決定しているので,実際には降伏荷重よりは高い荷重であると考えられる.

また, No.4L~No.4R の試験体は,計算値と比べて 1.00~1.04 倍の実験結果となっ ているが,前述した通り,あと施工アンカー単体の降伏荷重がもう少し大きい可能 性があり,安全側の評価にはなっていない.また,最終破壊形状が鋼材降伏後に表 層のコーン破壊を起こしていることも関係していると考えられる.この理由として は、コンクリート母材側に鉄筋がない試験体であることが起因している.

		計算	結果					
試驗休夕	アンカー単体	アンカー筋ー	組の負担モーン	×ント(kN・mm)	水平荷重	全曲げモーメ	ント(kN・mm)	宝騇値 /計質値
121/12/ P+1/1	の降伏荷重 (kN)	外側	内側	合計	(最大値) ( kN)	接合部全体	アンカー筋 一組当り	
No.1L	42.6	6390.0	2130.0	8520.0	54.09	31100.31	10366.77	1.22
No.1R	42.6	6390.0	2130.0	8520.0	35.91	20648.54	10324.27	1.21
No.2L	42.7	6405.0	2135.0	8540.0	52.95	30448.84	10149.61	1.19
No.2R	42.7	6405.0	2135.0	8540.0	35.22	20252.02	10126.01	1.19
No.3L	44.9	6735.0	2245.0	8980.0	54.09	31100.31	10366.77	1.15
No.3R	44.9	6735.0	2245.0	8980.0	38.87	22348.01	11174.00	1.24
No.4L	43.6	6540.0	2180.0	8720.0	45.61	26228.51	8742.84	1.00
No.4R	43.6	6540.0	2180.0	8720.0	47.29	27191.52	9063.84	1.04

表 3.4.7-3 スラブ接合部の計算値と実験値の比較

鋼材降伏はしていないが, 接合部全体がコーン破壊している No. 5L~No. 6R の 4 体の試験体についても計算値を算出して実験値と比較した結果を表 3.4.7-4 に示す.

こちらは、実験結果が脆性的にコーン破壊しているので、外側(T₁)のあと施工アンカーが単体強度に達した段階で全体破壊すると仮定して計算値を算出していしる.

計算値と実験値を比較した結果,計算値と比べて 0.62~0.87 倍と危険側の評価に なってしまった.これは,あと施工アンカー単体のコーン破壊荷重(30.7kN)が設計 値の 2 倍以上の強度が出ており,設計値としてコーン破壊を評価できていないこと が起因している.

表 3.4.7-4 スラブ接合部の計算値と実験値の比較

			計算	結果					
	試驗休夕	アンカー単体	アンカー筋ー	組の負担モーン	×ント(kN・mm)	水平荷重	全曲げモーメ	ント(kN・mm)	史睦佑 /斗筲佑
	武武平石	のコーン破壊	从侧	内側	소카	(最大値)	按合部全体	アンカー筋	1 平口 / 1 ( 大歌 に / 1) ( 大歌 に / 1)
		荷重(kN)	7183	r 1 RJ		( kN)	波口叩王仲	一組当り	
	No.5L	30.7	4597.5	-	4597.5	19.85	11414.79	3804.93	0.83
	No.5R	30.7	4597.5	-	4597.5	18.52	10650.04	5325.02	1.16
	No.6L	30.7	4597.5	-	4597.5	21.97	12632.75	4210.92	0.92
	No.6R	30.7	4597.5	-	4597.5	17.98	10338.44	5169.22	1.12

No. 4L~No. 6R のように危険側の評価になっているのは、母材側に拘束する鉄筋が ないことや埋込長さが浅い(5da)ことなど実際の使用では想定していない仕様である が、このような破壊が生じることに注意は必要であると考えられる.

# 3.4.7-3 スラブ接合部実験におけるあと施工アンカー筋のひずみ分布に関する検討

あと施工アンカーの耐力の計算値と実験値の比較で述べたようにアンカー筋の鋼 材降伏が確認された試験体では,降伏後に小さなコーン破壊を起こしたり,拘束鉄 筋がない試験体では,群体でのコーン破壊を示していた.

各試験体のうち,あと施工アンカー筋の埋込長さ方向にひずみゲージを貼った鉄筋のうち引張側の鉄筋それぞれの変形角毎のひずみ分布を図 3.4.7-1~3.4.7-2 に示す.

埋込長さが 20da の No.1 試験体は、曲げ載荷実験の変形角で 1/200~1/100 程度で 孔口の鉄筋降伏が見られており、4da 埋め込まれたあたりのひずみは大きく変化して いないことが確認される.また更に深い位置の鉄筋でも同様に著しいひずみの増進 は見られていない.これは、孔口から 4da のあたりの表層部分の鉄筋が伸びること で曲げ載荷実験の変位が伸びていることに起因していると推察される.そのため、 最終破壊状況において、鉄筋降伏後に表層部分のコーン破壊となっており、このコ ーン破壊が鉄筋の表層部分の変形に依存しているものと推察される.

埋込長さが 12da の No.2 試験体は,曲げ載荷実験の変形角で 1/400~1/200 程度で 孔口の鉄筋降伏が見られており,4da 以深の鉄筋に著しいひずみの増進は見られてい ない.これも孔口から 4da のあたりの表層部分の鉄筋が伸びることで曲げ載荷実験 の変位が伸びていることに起因していると推察され,最終破壊状況についても同様 に鉄筋降伏後に表層部分のコーン破壊となっており,このコーン破壊が鉄筋の表層 部分の変形に依存しているものと推察される.

同様に埋込長さが12da でアンカー筋の周りに拘束している鉄筋がない No.4 試験 体は、曲げ載荷実験の変形角で1/400~1/50 程度とバラつきが大きくなっている.こ れは、アンカー筋を拘束している鉄筋が無いことから、コンクリート部分に先にひ び割れが入り、アンカー筋の降伏の前に変形が進んでいることが考えられる.ただ し、いずれのアンカーも孔口での鉄筋降伏が確認されている.また、この試験体で も4da 以深の鉄筋に著しいひずみの増進は見られていない.これは、孔口から4da の あたりの表層部分の鉄筋の伸びとコンクリートのひび割れによって曲げ載荷実験の 変位が伸びていることに起因していると推察される.

埋込長さが 5da の試験体は,鉄筋降伏せずにコンクリートのコーン破壊を起こし ており,4da 埋め込んだ位置のひずみは大きく変わらず,孔口部分のひずみが増えて 行き,最大耐力に達した後は,ひずみが減る傾向を示している.

上述したように、各試験体ともに埋込長さが 50 mm程度の位置から孔口の間の鉄筋 が伸びていることが確認されている. コンクリートに先にひび割れが入るかによっ て、最終的な破壊状況は異なるが、鉄筋降伏後に単体でコーン破壊を示した No.1 か ら No.3 の試験体の破壊状況は,直径 100 mm程度のコーン破壊であり、埋込長さ 50 mm程度の鉄筋の変形が寄与していると考えると鉄筋降伏後に表層部分の鉄筋の伸び によるその部分でのコーン破壊が生じているのではと推察される.

いずれの既往の計算式では考慮していない破壊形式であることから、今後の検討 が必要であると考えられる.



図 3.4.7-1 引張鉄筋側のあと施工アンカーのひずみ分布(No.1, No.2)



図 3.4.7-1 引張鉄筋側のあと施工アンカーのひずみ分布(No.4, No.5)

## 3.4.8 まとめ

- スラブ接合部実験について以下の知見が得られた.
- ・有効埋込長さごとに比較すると、有効埋め込み深さの浅い5daの試験体を除き、 鉄筋降伏後の破壊が確認された.
- ・ひずみゲージの貼り付けの有無を比較すると、断面欠損分の強度低下が確認さ れた.
- ・スタブ側の鉄筋の有無を比較すると、スタブ側に拘束する鉄筋がないと鉄筋降 伏後に群でのコーン状破壊を示しており、拘束鉄筋の必要性について確認され た.
- あと施工アンカー単体引張実験結果においては、スラブ接合部実験の破壊状況 と同様の破壊を示している。
- ・設計値としての比較を行うと許容応力度レベルではコーン破壊となっている試験体も終局状態では鉄筋降伏を示しており,確認されたコーン破壊は、鉄筋降伏による変形に伴っているコーン破壊と推察される.なお、コーン破壊はアンカー固有の破壊形式であるが、終局状態で鋼材降伏を担保できているのであれば、許容応力度として用いる値がコーン破壊となったとしても最終的にはコーン破壊は起こさないものと考えられる.計算上ではあるが、終局時に降伏していることから靭性を担保することが出来ていると考えられる.

本研究で実施した試験体では、アンカー筋の埋め込み長さによらず、鉄筋降伏後 であるが、最終的にコンクリートのコーン状破壊を示しているものがある.

長期載荷試験体に対応した試験体では、アンカー筋の引張降伏が先行した.既往の知見によるアンカーの引張耐力計算式で、今回実施した実験の最大荷重時におけるアンカー筋の耐力を直接評価することは難しかった.また、コーン状破壊に与える格子状鉄筋の効果が引張耐力計算式には見込めていないことも原因と考えられる.

この群でのコーン状破壊を防ぐためには、アンカー筋の埋め込み長さの範囲内に 補強用鉄筋が配筋されることが必要と思われる.

また,これらの計算値を既往の式で求めることは難しく,計算式を作るための更 なる実験的研究が必要であると思慮する. 3.5 まとめ

既存 RC 造建築物に RC 造の床スラブを増設するためにあと施工アンカーを端部定 着に用いたスラブ試験体の構造性能評価として,以下の知見が得られた.

実験室のスラブ試験体の長期載荷実験において、端部定着にあと施工アンカーを 用いた場合と通常の RC 定着を用いた場合の6年間におよぶ長期載荷実験の結果、そ れぞれの接合方法の違いによる顕著な違いは見られなかった.また、最終的な破壊 性状を確認するために実施した終局載荷実験においては、過大な変形が生じた際に 端部接合部であと施工アンカー定着部のコンクリートの掻き出し破壊が生じたが、 スラブ全体の脱落等は起きなかった.

実建築物におけるスラブ試験体の長期載荷実験では、実験室の試験体と同様に接 合方法による顕著な違いは見られなかった.また、最終的な破壊性状の確認では、 端部接合部において著しい破壊はなく、スラブ全体としても脱落等は生じなかっ た.

端部接合部部分のあと施工アンカー筋の破壊性状を確認するためにスラブ端部を 模した試験体を用いて曲げ実験を実施した結果,スラブ試験体で用いたあと施工ア ンカーの定着長さであと施工アンカー筋の鉄筋降伏が起こることが確認され,最終 的な破壊状況としては,孔口付近の鉄筋が降伏して伸びていることが起因され,鉄 筋降伏後に小さなコーン破壊を示していた.

この傾向は、あと施工アンカー単体の引張実験結果においても同様の結果が見られ、埋込長さが長くなった際の鉄筋降伏後のコーン破壊の評価方法については、現状のコーン破壊の設計式では評価出来ないことが確認された.

RC 造床スラブを増設する場合,通常の RC 定着を用いた場合とあと施工アンカー を用いた場合で,大きな違いはないことから,2辺固定以上で一般的な使い方を想 定したスラブであれば,あと施工アンカーによる増設が可能であると考えられる.