長周期地震動に対する CFT 造超高層建築物の 耐震安全性に関する研究

構造研究グループ 主任研究員 長谷川 隆

I はじめに

現在の鉄骨系の超高層建築物では、柱をCFT構造として、 梁はハンチ付きやノンスカラップとしている場合が多い。し かし、このようなCFT柱を有する超高層建築物が長周期地震 動を受けた場合のCFT柱及び梁端部の多数回繰り返し変形時 の疲労性能は、必ずしも明らかにされていない。

そこで、長周期地震動を受ける CFT 柱を有する鉄骨系超高 層建築物の部材が発揮する保有性能を明らかにするために、 CFT 柱部材及び CFT 柱梁接合部の梁端部を対象に、多数回繰 り返し載荷実験を行った。また、CFT 柱の載荷実験に基づい て CFT 柱の保有性能曲線を提示し、その保有性能曲線を用い て超高層建築物の CFT 柱の損傷を評価する方法を検討した。 本稿では、それらについて紹介する。

Ⅱ CFT 柱部材の多数回繰り返し載荷実験

多数回繰り返し変位を受ける CFT 柱部材の保有性能把握を 目的として、定振幅繰り返し載荷時の耐力低下までの繰り返 し数に着目して曲げせん断実験を行った。試験体は、縮尺 1/3 ~1/2 の断面の角形断面 CFT 柱試験体であり、鋼管に 590N 級 及び 400N 級鋼材、充填材に 100N 級コンクリートを用いた試 験体 17 体¹⁾、鋼管に 490N 級鋼材、充填材に 60N 級コンクリ ートを用いた試験体 7 体²⁾ で、合計 24 体である。表1 には、 100N 級コンクリートを用いた 17 体の試験体一覧を示す。本 実験の主な実験パラメーターは、幅厚比 (20、30)、径長比 (8、 12、15)、軸力比 (0.3(一定)、0~0.6(変動)、0~0.45(変動)) である。図1に実験から得られた荷重-変形関係の例を示す。

本実験から得られた知見は以下である。①図2に示すよう に、漸増載荷を除く全ての試験体の部材角振幅と繰り返し数 の関係は対数軸上で右下がりに分布する。②試験体の耐力低 下の原因としては、仕口破断、局部座屈、コンクリート損傷 の3つに分類される(図2参照)。③幅厚比が大きいか、最大 導入軸力が大きいほど、また、最大導入軸力が同じ場合、変 動よりも一定軸力の方が繰り返し数は少なくなる。

表1 CFT 柱試験体	、一覧	(100N 級コン	ク	リー	ト試験体)
-------------	-----	-----------	---	----	-------

	材質			Я	≶状	加力形式		
	鋼管	コンクリート		鋼管	十日々			θ
試験体名	鋼種	強度	ヤング率	板厚 t (B/t)	住女子 <i>L</i> <i>(L/D</i>)	加力 方向	<i>N/N</i> 0	[~] h /1000
		N/mm ²	$\times 10^{4}$					rad
			N/mm ²					rad
HH-14M-C		104	4.39		2240	0°	0.3	漸増
HH-14M-C1		104	4.39					10
HH-14M-C2		109	4.55					15
HH-14M-C3		109	4.55					20
HH-14M-CH1		103	4.34				0.6	10
HH-14M-V0	Υ04	111	4.67	14	(8)		0.0~0.6	6
HH-14M-V1	N 55	111	4.67	14				10
HH-14M-V2	E	110	4.26	(20)				15
HH-14M-VL1	ES	105	4.41					10
HH-14M-VL2	(-B	102	4.34				~0.45	15
HH-14MU-V1	ð	105	4.31		3360	00	00.06	10
HH-14MU-V2		105	4.31		(12)	0	0.0~0.6	15
HH-14L-V1		105	4.24		4200 (15)	0°	0.0~0.6	10
HH-9M-V0		103	4.38	9	2240	00	0.0~0.6	6
HH-9M-V1		103	4.05	(31)	(8)	0°		10
HH-14M-V0D		103	4.38	14 (20)	2240 (8)	45°	0.0~0.6	6
LH-9M-V1	SN400B	105	4.41	9 (31)	2240 (8)	0°	0.0~0.6	10

※鋼管外形は全て□-280x280 ※試験体名は(材質)-(形状)-(加力形式)

(材質)□HH: 590N 級鋼+100N 級□>, LH: 400N 級鋼+100N 級□> (形状)=(板厚, 径長比) 板厚 14:14mm, 9:9mm 径長比 M:8, MU:12, L:15 (加力形式)□無印:漸増載荷, 0: 6/1000rad, 1:10/1000rad, 2:15/1000rad, 3:20/1000rad, 0D: 6/1000rad(45° 方向)

図2 CFT 柱部材の部材角振幅-繰り返し数の関係

Ⅲ 超高層建築物の CFT 柱部材の保有性能と損傷評価

CFT 柱を有する超高層建築物が長周期地震動を受けた場合 の挙動を把握するため、図3に示す35層モデルの地震応答解 析を行った。また、前述したCFT 柱部材の多数回繰り返し載 荷実験から得られる保有性能を用いて、長周期地震動を受け るCFT 柱部材の損傷評価を行った³³。

図4にCFT柱部材の実験結果に基づく柱の保有性能曲線を 示す。図4より、部材角振幅θと繰り返し回数N_{80%}は、コン クリート強度と軸力比毎に分類するとほぼ同一の傾きとなる ため、図に示すような分類で性能曲線を提示した。この性能 曲線を用いて、図3の35層モデル建物の応答解析から得られ る柱部材角の振幅頻度分布により損傷を評価した結果が表2 である。中柱では損傷度Dが1以上となり、この部材で耐力 低下が生じる可能性があることがわかる。

IV CFT 柱梁接合部梁端部の多数回繰り返し載荷実験

CFT 柱を有する柱梁接合部で、フランジ端部を拡幅した水 平ハンチ梁の場合(CHシリーズ)とウェブ端のスカラップを 省略したノンスカラップ梁の場合(CNシリーズ)について、 梁端部の多数回繰り返し載荷実験を行った⁴⁾。表3に実験を 行った4体の試験体一覧を示す。図5に梁端接合部詳細を示 す。図6は、実験から得られた4体の試験体の塑性率と破断 までの繰り返し回数(破断寿命)を、既往の研究で得られて いる鉄骨造梁端部の実験結果と性能曲線⁵⁰の図中にプロット したものである。CHシリーズとCNシリーズは、スカラップ 無し梁端の設計式で安全側に評価できる。

謝辞

本研究は、平成25年度国土交通省建築基準整備促進事業の調査項目「長周期地震動に対するCFT造柱部材等の安全性検証方法に関する検討」の事業主体(竹中工務店、大成建設、小堀鐸二研究所、大林組、鹿島建設、清水建設)と(独)建築研究所との共同研究として実施したものです。ここに記して、関係各位に謝意を表します。

参考文献

- 宇佐美,他:長周期地震動に対する鉄骨造超高層建築物の安全性 検証方法の検討,その29~31,日本建築学会大会学術講演梗概集, 構造 III, pp. 1255-1260, 2014.9
- 成原,他:長周期地震動に対する鉄骨造超高層建築物の安全性検 証方法の検討,その27~28,日本建築学会大会学術講演梗概集, 構造III,pp.1251-1254,2014.9
- 池嵜,他:長周期地震動に対する鉄骨造超高層建築物の安全性検 証方法の検討,その33,日本建築学会大会学術講演梗概集,構造 III, pp. 1263-1264, 2014.9
- 4) 安田,他:長周期地震動に対する鉄骨造超高層建築物の安全性検 証方法の検討,その32,日本建築学会大会学術講演梗概集,構造 III,pp. 1261-1262, 2014.9
- 5) 成原,他:長周期地震動に対する鉄骨造超高層建築物の安全性検 証方法の検討,その20,日本建築学会大会学術講演梗概集,構造 III,pp. 1087-1088, 2013.8

表 2 CFT 柱損傷評価結果

柱位置	長期 軸圧比	最大 軸圧比	軸圧区分	損傷度D	
隅柱	0.05	0.46	$0{\sim}0.6$	0.12	
中柱	0.52	0.65	0.6一定	1.29	
内側構面隅柱	0.24	0.38	0.15~0.45	0.06	

表 3 梁端部試験体一覧

試験体	断面	接合形式	スカラップ	変位振幅
CH-2	梁:(SN490B)	現場溶接	複合円	±2 δp
CH-4	BH-600×200~300×12×19 (梁端水平ハンチ)	形式	35R+10R	±4δp
CN-2	梁 : (SN490B) BH-600 × 200 × 12 × 19	工場溶接 形式		±2δp
CN-4			ノンスカラッフ	±4 ōp

※ δp:梁全塑性耐力(水平ハンチ無視)に対応する梁弾性変位計算値

