平成28年熊本地震による益城町中心部の 建物基礎・地盤被害と微動特性

構造研究グループ 主任研究員 新井 洋

I はじめに

2016 年熊本地震では、熊本県益城町の中心部において、大 破・倒壊など甚大な建物被害が多数発生した。本稿は、国土 交通省住宅局の要請を踏まえて、国土技術政策総合研究所建 築研究部の柏尚稔主任研究官と共同で実施した第4次調査の 速報¹⁾から、益城町中心部の建物基礎・地盤に関する被害の 概要と特徴を報告する。また、この地域の地盤特性に関する 先験的情報を得るため、別途に行った益城町宮園地区におけ る微動の移動1点観測について、暫定的な結果を報告する。

Ⅱ 益城町中心部の建物基礎・地盤被害の概要と特徴

2016年4月23日と24日の午前中、益城町中心部の県道28 号線に交差する南北方向の2測線(図1:Line A およびLine B) において、建物基礎・地盤の被害に注意して、通り悉皆調査 を行った。調査は、目視踏査により行い、測線に沿う145棟 について、岡田・高井²⁾に基づき、建物各棟の位置、築年数、 用途、構造種別、階数、基礎形式、沈下・傾斜の有無、地盤 変状の有無、上部構造および基礎の被災度を判定・記録した。 調査した建物のうち100棟が在来構法・布基礎の平屋ないし 2階建て木造住宅であった。

地盤が建物の被害に影響を与える要因として、静的な地盤 変状と動的な地盤震動の2つが考えられるが、ここでは前者 に着目する。大破・倒壊など甚大な被害を受けた建物におい て確認できた基礎・地盤に関する被害形態は概ね、①建物の 倒壊により基礎ないし敷地全体の状況確認が困難な事例(写 真1)、②地盤変状は認められるが基礎の損傷が軽微あるいは 無被害の事例(写真2)、③地盤変状が認められ基礎の損傷が 顕著な事例(写真3-4)の3つに分類される。地盤変状が建 物被害に影響を与えるとすれば、地盤変状により基礎が破壊 し、1階柱脚に強制変位が作用することで、構造的被害の生 じるメカニズムが考えられる。そのためには、かなり大きな 地盤変位が必要で、基礎には形態③(写真 3-4)以上の被害 状況が要求される。しかし、このような基礎の甚大な被害は、 ほとんど見られなかった。よって、現時点では断定するには 至らないが、建物に甚大な被害を生じさせた要因として、地 盤変状の影響は小さい場合が多いと推察される。

図1 益城町中心部の建物基礎・地盤被害調査測線 (Line A お よび Line B) と微動観測地点(白抜き黒丸印)

- 写真1(左) 建物の倒壊により基礎ないし敷地全体の状況 確認が困難な事例(被害形態①)
- 写真2(右) 地盤変状は認められるが基礎の損傷が軽微あ るいは無被害の事例(被害形態2)

写真3(左)4(右) 地盤変状が認められ基礎の損傷が顕著 な事例(被害形態③)

図2 (a)-(c) 益城町中心部の1981 年以降の木造建物の大破以 上の被害率、基礎被害顕著の割合、地盤変状ありの割合 の関係および (d) 基礎被害顕著の割合と地表面の平均 傾斜量の関係

図 2(a)-(c)は、通り悉皆調査データを整理して得られた 1981 年以降の木造建物の大破以上の被害率、基礎被害顕著の割合、 地盤変状ありの割合の関係を示している。基礎被害顕著の割 合は建物大破以上の被害率や地盤変状ありの割合よりも小さ く、また、建物大破以上の被害率が小さくても地盤変状はあ る程度生じている。この結果は、前述の推察と矛盾がなく、 この地域の地盤変状が建物の甚大な被害に与えた影響の小さ かった可能性を支持するものと考えられる。なお、図 2(d)は、 基礎被害顕著の割合と地表面の平均傾斜量の関係を示してい るが、両者の間に相関性は見られない。

Ⅲ 益城町中心部の微動特性とS波速度構造推定の試み

微動の移動1点観測は、固有周期5秒の3成分速度計を用 いて、図1に白抜き黒丸印で示す5地点で行った。ただし、 町役場では、震度計が設置されていた庁舎の近傍(盛土上) と、その南側の駐車場(盛土下)の2箇所で観測を行った。5 地点6箇所で得られた微動のH/Vスペクトル³⁾を図3(a)-(f)に 黒実線で示す。いずれの観測点においても、微動のH/Vスペ クトルには明瞭な単一のピークが認められる。そのピーク周 期は、県道28号線より北側の3地点では0.4-0.5s程度である のに対して、南側の2地点では0.7-0.8s程度となっており、 北側と南側の地域で地盤特性の異なっている可能性が示唆さ れる。なお、町役場(図3(c)(d))では、盛土の上下で、微動 のH/Vスペクトルに大きな差異は見られない。

表1 (左)町役場と(右)E地点で仮定した地盤構造

層厚 (m)	密度 (kN/m ³)	S波速度 (m/s)	層厚 (m)	密度 (kN/m ³)	S波速度 (m/s)
15	16	150	5	16	200
10	19	350	15	19	300
13	19	440	30	19	440
28	20	760	30	20	760
32	21	820	23	21	820
133	23	1150	42	23	1150
2770	25	2700	2860	25	2700
14000	27	3500	14000	27	3500
16000	30	3800	16000	30	3800
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	33	4300	~	33	4300



図3 益城町中心部における微動および理論 H/V スペクトル

さらに検討のため、町役場の深さ 30-35m までのボーリン グデータ⁴、E地点近傍の深さ 50m までの速度検層データ⁵、 KiK-net 益城の深さ 255m までの速度検層データ⁶、文献 7 の 地殻構造モデルを参考に、町役場と E 地点の地盤構造を表 1 のように仮定して、高次モードの影響を考慮した表面波の H/V スペクトル³⁾を試算し、図 3(c)-(e)に赤鎖線で示す。試算 した理論 H/V スペクトルは、微動 H/V スペクトルと、周期特 性・絶対値とも、概ね適合している。また、町役場と E 地点 の H/V スペクトルのピークは、仮定した地盤構造の深さ 15m および 50m の S 波速度コントラストによるものであることを、 感度解析から確認している。このことは、両地点で仮定した 地盤構造(表 1)の深さ数十m 程度までの妥当性を、ある程 度は支持するものと考えられる。

#### IV 今後の課題

不足する地盤調査・室内試験や地震応答解析などの追加検 討を行って、地盤震動が建物の応答や被害に与える影響を分 析し、被害要因を明らかにする予定である。

参考文献:1) http://www.kenken.go.jp/japanese/contents/topics/2016/2) 岡田・高井:AIJ 構造系論文集、524、65-72、19993) 時松・新井: AIJ 構造系論文集、511、69-75、19984) 益城町庁舎建設 地質調査 報告書、19795) 吉見ほか:JSAF大会、P17、20166) 防災科研強 震観測網 http://www.kyoshin.bosai.go.jp/7) 地震調査研究推進本部: 布田川・日奈久断層帯の地震を想定した強震動評価、2003