枠組壁工法4層鉛直構面の静的水平載荷実験

構造研究グループ 主任研究員 中島 昌一

I はじめに

中層(4階建以上)の枠組壁工法の建築物には、国交省告示 第1540号に基づく保有水平耐力計算もしくは限界耐力計算に よる構造設計法(ルート3)が定められている¹⁾。一方、在来 軸組構法や集成材等建築物では、技術的検討の蓄積が多く、許 容応力度等計算(ルート2)による構造設計法が定められてい る²⁾。ここでは、中層(4階建以上)の枠組壁工法の建築物に おける許容応力度等計算(ルート2)の妥当性を検討すること を目的とし、建築基準整備促進事業「S24枠組壁工法建築物の 構造設計法の合理化に関する検討」において4層鉛直構面の静 加力実験を実施した。

Ⅱ 実験の概要

図1に試験体を示す。1層につき2面の鉛直構面、4面の耐力壁を有する。装置の高さ制限により、層高さは2200mmとした。各層の梁の両端には鋼製の加力桁を取り付けた。桁の一方をジャッキにピン固定し、他方とφ30のPC鋼棒8本で緊結した。構面外の転倒を防ぐため、構面と直交する方向に構造用合板を貼り付けた。各層の床には、固定荷重として錘を積載した。

各層の仕様の詳細を表1に示す。各耐力壁(写真1(b))の両 側にはタイロッド(写真1(c))を取り付けた。文献¹⁾に示され るように、各層の梁上端には座金を取り付けた(写真1(c))。 上階のタイロッドとはカプラによって接続した。

載荷は、1 層の層間変形角が 1/450、1/300、1/200、1/150、 1/100、1/75、1/50 rad に達するまでを 3 回、1/30 を 1 回繰り 返した。その後、1 層の層関変形角が 1/18rad となるまで引き 倒し試験を終了した。2 層~4 層は、各層の重量に応じた Ai 分 布になるよう、事前に実施した静的増分解析に基づく変位制御 を実施した。各層の目標変位を表 2 に示す。

ジャッキに取り付けたロードセルで層せん断力を計測した。 試験体前後の加力桁と鋼製基礎、および床と梁の間に斜めに取 り付けた変位計で、層間変形角を計測した。また、梁およびタ イロッドに貼付したひずみゲージで梁の曲げモーメントとタ イロッドの引張軸力を計測した。

写真1 試験体の様子

表1 各層の耐力壁の仕様

	構造用合板			釘			フレーム			
層	同々	掛鴰	Ŧ	插粨	ピッチ	ピッチ	縦枠	横枠	梁	土台
	序で	们的们里	田	1里大只	(周囲)	(中央)	SPF	D.fir	D.fir	SPF
1st	12	JL*	両面	CN65	50	200	4-206	206	h390	406
2nd	12	JL	両面	CN65	50	200	4-206	206	h390	406
3rd	12	JL	両面	CN65	60	200	2-206	206	h330	406
4th	12	JL	片面	CN65	50	200	2-206	206	h300	406

*JL: カラマツ

表2 載荷時の各層の目標絶対水平変位(mm)

層	1/450	1/300	1/200	1/150	1/100	1/75	1/50	1/30
1st	4.6	6.9	10.36	13.81	20.71	27.61	41.42	69.03
2nd	10.95	16.29	23.94	31.57	46.23	61.08	86.8	135.43
3rd	17.98	26.87	39.67	50.49	71.81	94.83	138.53	216.12
4th	25.72	38.67	57.1	71.23	99.04	128.5	182	273.2

Ⅲ 実験結果

図2に層せん断力-見かけの層間変形角関係を写真2に終局 時の破壊の様子を示す。1層は1/20rad程度で最大荷重を迎 えた。その際に写真2のような面材周辺の破壊が見られた。 その後1/18rad程度で最大荷重の8割程度まで低下した。仕 様の同じ2層も同形状の荷重変位関係を示した。4層は1~3 層に比べやや小さい荷重変位関係を示した。

図3に1層のタイロッドに貼付されたひずみゲージによる 引張力と見かけの層間変形角関係を示す。2面の耐力壁の両 側にある全4本のタイロッドのうち、構面の内側に比べ、外 側両端のタイロッドに大きな軸力が生じており、建物全体の ロッキングの影響が確認された。両端のタイロッドは、 1/30rad 時に弾性範囲内の 120kN の最大引張力を示した。そ の後、軸力は上昇せず、写真2(c)のような下枠のめり込み変 形が進展した。同様に、図4に示す1層の梁の曲げモーメン トについても1/30以降は上昇しなかった。

以上の結果とこれまでの検討³⁾⁴から、耐力壁の性能が十分 に発揮されるまで、タイロッドや梁には、過度な応力が生じ ていないことが確認された。

IV 単体壁試験の実験結果との比較

本実験を実施する前に、本試験の各層と同仕様の単体壁試 験を実施した。図5に単体壁試験結果と、本実験の1層と2 層の層せん断力-層間変形角関係の比較を示す。1/30rad 程度 までは、単体壁と本実験結果はほぼ同様の傾向を示した。 4 層で枠組壁工法建築物について、終局までの各部材の応 力状態、接合部等の状態を把握するため、鉛直構面の静的水 平載荷実験を実施した。今後、許容応力度等計算による構造 設計法の整備を進める予定である。

謝辞

本実験を実施するにあたり協力いただいた関係各位に謝意 を申し上げる。

参考文献 1) (一社)日本ツーバイフォー建築協会:2018 年枠組壁工法建築物構造 計算指針、2018.11、2) (一社)日本建築行政センター他:2015 年版 建築物 の構造関係技術基準解説書、2017.7、3)、大橋他:枠組壁工法4 層鉛直構面 静加力試験 その1 実験計画概要、その2 実験結果、その3 解析による検証 と構造設計法の提案、日本建築学会大会学術講演梗概集、2019.9 4)本研究は 建築基準整備促進事業「S24 枠組壁工法建築物の構造設計法の合理化に関する 検討」報告書